Review on Structures of Pesticide Targets
Abstract
:1. Introduction
2. Pesticide Targets
2.1. Antiviral Targets
2.2. Fungicidal Targets
2.3. Bactericidal Targets
2.4. Insecticidal Targets
2.5. Herbicidal Targets
2.6. Plant Growth-Regulator Targets
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CP | Coat proteins |
TMV | Tobacco mosaic virus |
SDH | Succinate dehydrogenase |
OSBP | Oxysterol-binding protein |
DLST | Dihydrolipoamide S-succinyltransferase |
DM | 14 α-demethylases |
GABACl | γ-aminobutyrie acid-gated chloride channel |
nAChR | Nicotinic acetylcholine receptor |
GluCl | Glutamate-gated chloride channel |
TRPV | Transient receptor potential vanilloid channel |
RyR | Ryanodine receptor |
AHAS | Acetohydroxyacid synthase |
PPO | Protoporphyrinogen oxidase |
HPPD | 4-hydroxyphenylpyruvate dioxygenase |
ACC | Acetyl CoA carboxylase |
DHAD | Dihydroxy-acid dehydratase |
PYLs | PYL family proteins |
COI1 | Coronatine insensitive 1 |
GID1 | Gibberellin receptor gibberellin insensitive dwarf1 |
D14 | Strigolactone receptor hydrolase DWARF14 |
DAD2 | Decreased apical dominance 2 |
ABA | Abscisic acid |
ToCV | Tomato chlorosis virus |
References
- Clemens, L.; Stephane, J.; Torsten, L.; Andrew, P. Current challenges and trends in the discovery of agrochemicals. Science 2013, 341, 742–746. [Google Scholar]
- Turner, J.A. The Pesticide Manual, 17th ed.; British Crop Protection Council: Hampshire, UK, 2015; pp. 1–1440. [Google Scholar]
- Fungicide Resistance Action Committee. Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action. 2020. Available online: https://www.frac.info/ (accessed on 16 August 2020).
- IRAC International MoA Working Group. IRAC Mode of Action Classification Scheme. 2020. Available online: https://irac-online.org/modes-of-action/ (accessed on 16 August 2020).
- The Global Herbicide Resistance Action Committee. HRAC Mode of Action Classification. 2020. Available online: https://www.hracglobal.com/herbicide-resistance (accessed on 16 August 2020).
- Li, X.; Song, B.; Chen, X.; Wang, Z.; Zeng, M.; Yu, D.; Hu, D.; Chen, Z.; Jin, L.; Yang, S.; et al. Crystal structure of a four-layer aggregate of engineered TMV CP implies the importance of terminal residues for oligomer assembly. PLoS ONE 2013, 8, e77717. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Chase, E.; Schmidt, T.; Perry, K.L. The structure of cucumber mosaic virus and comparison to cowpea chlorotic mottle virus. J. Virol. 2000, 74, 7578–7586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kežar, A.; Kavčič, L.; Polák, M.; Nováček, J.; Gutiérrez-Aguirre, I.; Žnidarič, M.T.; Coll, A.; Stare, K.; Gruden, K.; Ravnikar, M.; et al. Structural basis for the multitasking nature of the potato virus Y coat protein. Sci. Adv. 2019, 5, eaaw3808. [Google Scholar] [CrossRef] [Green Version]
- Nishikiori, M.; Sugiyama, S.; Xiang, H.; Niiyama, M.; Ishibashi, K.; Inoue, T.; Ishikawa, M.; Matsumura, H.; Katoh, E. Crystal structure of the superfamily 1 helicase from tomato mosaic virus. J. Virol. 2012, 86, 7565–7576. [Google Scholar] [CrossRef] [Green Version]
- Akita, F.; Higashiura, A.; Shimizu, T.; Pu, Y.; Suzuki, M.; Uehara-Ichiki, T.; Sasaya, T.; Kanamaru, S.; Arisaka, F.; Tsukihara, T.; et al. Crystallographic analysis reveals octamerization of viroplasm matrix protein P9-1 of rice black streaked Dwarf virus. J. Virol. 2011, 86, 746–756. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, W.; Ding, Y.; Wang, Z.; Wu, Z.; Yu, L.; Hu, D.; Li, P.; Song, B. Characterization of the importance of terminal residues for southern rice black-streaked dwarf virus P9-1 viroplasm formations. Protein Expr. Purif. 2015, 111, 98–104. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Jin, L.; Hu, D.; Yang, S. New strategies and methods to study interactions between tobacco mosaic virus coat protein and its inhibitors. Int. J. Mol. Sci. 2016, 17, 252. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Hao, G.; Wang, Q.; Chen, Z.; Ding, Y.; Yu, L.; Hu, D.; Song, B. Ningnanmycin inhibits tobacco mosaic virus virulence by binding directly to its coat protein discs. Oncotarget 2017, 8, 82446–82458. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, J.; Yang, X.; Ding, Y.; Wu, J.; Hu, D.; Song, B. Studies of binding interactions between Dufulin and southern rice black-streaked dwarf virus P9-1. Bioorganic Med. Chem. 2015, 23, 3629–3637. [Google Scholar] [CrossRef]
- Wang, D.; Xie, X.; Gao, D.; Chen, K.; Chen, Z.; Jin, L.; Li, X.; Song, B. Dufulin intervenes the viroplasmic proteins as the mechanism of action against Southern rice black-streaked Dwarf virus. J. Agric. Food Chem. 2019, 67, 11380–11387. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Ding, Y.; Luo, L.; Gan, X.; Li, X.; Chen, Y.; Hu, D.; Song, B. Interaction research on an antiviral molecule that targets the coat protein of southern rice black-streaked dwarf virus. Int. J. Boil. Macromol. 2017, 103, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Chen, K.; Gao, D.; Wang, N.; Huang, M.; Zhu, H.; Kang, J. Binding studies between cytosinpeptidemycin and the superfamily 1 helicase protein of tobacco mosaic virus. RSC Adv. 2018, 8, 18952–18958. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Huang, M.; Gao, D.; Chen, K.; Xu, W.; Li, X.; Xu, X. Screening anti-TMV agents targeting tobacco mosaic virus helicase protein. Pestic. Biochem. Physiol. 2020, 166, 104449. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, Y.-L.; Wu, L.-Y.; Wang, J.-X.; Chen, C.; Zhou, M.-G. Baseline sensitivity of Bipolaris maydis to the novel succinate dehydrogenase inhibitor benzovindiflupyr and its efficacy. Pestic. Biochem. Physiol. 2018, 149, 81–88. [Google Scholar] [CrossRef]
- Huang, L.-S.; Sun, G.; Cobessi, D.; Wang, A.C.; Shen, J.T.; Tung, E.Y.; Anderson, V.E.; Berry, E.A. 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J. Boil. Chem. 2005, 281, 5965–5972. [Google Scholar] [CrossRef] [Green Version]
- Sáez-Calvo, G.; Sharma, A.; Balaguer, F.D.A.; Barasoain, I.; Rodríguez-Salarichs, J.; Olieric, N.; Muñoz-Hernández, H.; Berbís, M.Á.; Wendeborn, S.; Peñalva, M.A.; et al. Triazolopyrimidines are microtubule-stabilizing agents that bind the Vinca inhibitor site of tubulin. Cell Chem. Boil. 2017, 24, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Wen, X.; Yu, C.; Esser, L.; Tsao, S.; Quinn, B.; Zhang, L.; Yu, L.; Xia, D. The crystal structure of mitochondrial cytochromebc1in complex with famoxadone: The role of aromatic−aromatic interaction in inhibition. Biochemistry 2002, 41, 11692–11702. [Google Scholar] [CrossRef]
- Esser, L.; Zhou, F.; Zhou, Y.; Xiao, Y.; Tang, W.-K.; Yu, C.-A.; Qin, Z.; Xia, D. Hydrogen bonding to the substrate is not required for Rieske iron-sulfur protein docking to the quinol oxidation site of complex III. J. Boil. Chem. 2016, 291, 25019–25031. [Google Scholar] [CrossRef] [Green Version]
- Esser, L.; Zhou, F.; Yu, C.-A.; Xia, D. Crystal structure of bacterial cytochrome bc1 in complex with azoxystrobin reveals a conformational switch of the Rieske iron–sulfur protein subunit. J. Boil. Chem. 2019, 294, 12007–12019. [Google Scholar] [CrossRef]
- Zhao, P.-L.; Wang, L.; Zhu, X.-L.; Huang, X.; Zhan, C.-G.; Wu, J.-W.; Yang, G.-F. Subnanomolar inhibitor of cytochromebc1complex designed by optimizing interaction with conformationally flexible residues. J. Am. Chem. Soc. 2010, 132, 185–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Li, D.; Xiao, T.; Zhang, S.; Song, Z.; Ma, H. Design, synthesis, fungicidal activity, and unexpected docking model of the first chiral boscalid analogues containing oxazolines. J. Agric. Food Chem. 2016, 64, 8927–8934. [Google Scholar] [CrossRef] [PubMed]
- Tyndall, J.D.A.; Sabherwal, M.; Sagatova, A.A.; Keniya, M.V.; Negroni, J.; Wilson, R.K.; Woods, M.A.; Tietjen, K.; Monk, B.C. Structural and functional elucidation of yeast lanosterol 14α-demethylase in complex with agrochemical antifungals. PLoS ONE 2016, 11, e0167485. [Google Scholar] [CrossRef]
- Hargrove, T.Y.; Friggeri, L.; Wawrzak, Z.; Qi, A.; Hoekstra, W.J.; Schotzinger, R.J.; York, J.D.; Guengerich, F.P.; Lepesheva, G.I. Structural analyses of Candida albicanssterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J. Boil. Chem. 2017, 292, 6728–6743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, Y.J.; Raychaudhuri, S.; Prinz, W.A.; Hurley, J.H. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature 2005, 437, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Manik, M.K.; Yang, H.; Tong, J.; Im, Y.J. Structure of yeast OSBP-related protein Osh1 reveals key determinants for lipid transport and protein targeting at the nucleus-vacuole junction. Structure 2017, 25, 617–629.e3. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Du, X.; Wang, H.; Wang, J.; Lu, C.; Chen, X.; Zhu, Z.; Luo, Z.; Yu, L.; Brown, A.J.; et al. Allosteric enhancement of ORP1-mediated cholesterol transport by PI(4,5)P2/PI(3,4)P2. Nat. Commun. 2019, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhao, B.; Fan, Z.; Guo, X.; Yang, D.-Y.; Zhang, N.; Yu, B.; Zhou, S.; Zhao, J.; Chen, F. Discovery of novel piperidinylthiazole derivatives as broad-spectrum fungicidal candidates. J. Agric. Food Chem. 2019, 67, 1360–1370. [Google Scholar] [CrossRef]
- Zheng, Z.; Hou, Y.; Cai, Y.; Zhang, Y.; Li, Y.; Zhou, M. Whole-genome sequencing reveals that mutations in myosin-5 confer resistance to the fungicide phenamacril in Fusarium graminearum. Sci. Rep. 2015, 5, 8248. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, X.E.; Gong, Y.; Zhu, Y.; Cao, X.; Brunzelle, J.S.; Xu, H.E.; Zhou, M.; Melcher, K.; Zhang, F. Structural basis of Fusarium myosin I inhibition by phenamacril. PLOS Pathog. 2020, 16, e1008323. [Google Scholar] [CrossRef]
- Jurica, M.S.; Mesecar, A.D.; Heath, P.J.; Shi, W.; Nowak, T.; Stoddard, B.L. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 1998, 6, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Fan, S.; Fan, Z.; Wang, H.; Zhang, N.; Guo, X.; Yang, D.; Wu, Q.; Yu, B.; Zhou, S. Discovery of pyruvate kinase as a novel target of new fungicide candidate 3-(4-Methyl-1,2,3-thiadiazolyl)-6-trichloromethyl-[1,2,4]-triazolo-[3,4-b][1,3,4]-thiadizole. J. Agric. Food Chem. 2018, 66, 12439–12452. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Long, Q.; Zhao, Y.-L.; Wu, Y.; Ge, S.; Wang, P.; Yang, C.-G.; Chi, Y.R.; Song, B.; Yang, S. Sulfone-based probes unraveled dihydrolipoamide S-Succinyltransferase as an unprecedented target in phytopathogens. J. Agric. Food Chem. 2019, 67, 6962–6969. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Bi, L.; He, J.; Jiang, T. Determination of the crystal structure and active residues of FabV, the Enoyl-ACP reductase from xanthomonas oryzae. PLoS ONE 2011, 6, e26743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Reynaga, P.; Zhao, C.; Sarpong, R.; Casida, J.E. New GABA/glutamate receptor target for [3H] isoxazoline insecticide. Chem. Res. Toxicol. 2013, 26, 514–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onozaki, Y.; Horikoshi, R.; Ohno, I.; Kitsuda, S.; Durkin, K.A.; Suzuki, T.; Asahara, C.; Hiroki, N.; Komabashiri, R.; Shimizu, R.; et al. Flupyrimin: A novel insecticide acting at the nicotinic acetylcholine receptors. J. Agric. Food Chem. 2017, 65, 7865–7873. [Google Scholar] [CrossRef] [PubMed]
- Casida, J.E. Radioligand recognition of insecticide targets. J. Agric. Food Chem. 2018, 66, 3277–3290. [Google Scholar] [CrossRef]
- Liu1, G.; Wu, Y.; Gao, Y.; Ju, X.-L.; Ozoe, Y. Potential of competitive antagonists of insect ionotropic γ-aminobutyric acid receptors as insecticides. J. Agric. Food Chem. 2020, 68, 4760–4768. [Google Scholar] [CrossRef]
- Casida, J.E. Golden age of RyR and GABA-R diamide and isoxazoline insecticides: Common genesis, serendipity, surprises, selectivity, and safety. Chem. Res. Toxicol. 2015, 28, 560–566. [Google Scholar] [CrossRef]
- George, P.; Daniel, C.; James, D. New and selective ryanodine receptor activators for insect control. Bioorg. Med. Chem. 2009, 17, 4127–4133. [Google Scholar]
- Xu, T.; Yuchi, Z. Crystal structure of diamondback moth ryanodine receptor Repeat34 domain reveals insect-specific phosphorylation sites. BMC Boil. 2019, 17, 77. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Liu, C.; Qin, J.; Wang, J.; Dong, S.; Chen, W.; He, W.-Y.; Gao, Q.; You, M.; Yuchi, Z. Crystal structure of ryanodine receptor N-terminal domain from Plutella xylostella reveals two potential species-specific insecticide-targeting sites. Insect Biochem. Mol. Boil. 2018, 92, 73–83. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Ma, D.; Lin, L.; You, M.; Yuchi, Z.; You, S. Crystal structure of the ryanodine receptor SPRY2 domain from the diamondback moth provides insights into the development of novel insecticides. J. Agric. Food Chem. 2020, 68, 1731–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samurkas, A.; Fan, X.; Ma, D.; Sundarraj, R.; Lin, L.; Yao, L.; Ma, R.; Jiang, H.; Cao, P.; Gao, Q.; et al. Discovery of potential species-specific green insecticides targeting the lepidopteran ryanodine receptor. J. Agric. Food Chem. 2020, 68, 4528–4537. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, R.; London, D.; Stam, L.; Von Deyn, W.; Zhao, X.; Salgado, V.L.; Nesterov, A. Afidopyropen: New and potent modulator of insect transient receptor potential channels. Insect Biochem. Mol. Boil. 2017, 84, 32–39. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, H.; Liu, F.; Wu, Q.; Shen, X.; Yang, Q. Structural determinants of an insect beta-N-Acetyl-D-hexosaminidase specialized as a chitinolytic enzyme. J. Biol. Chem. 2011, 286, 4049–4058. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, H.; Liu, F.; Chen, L.; Shen, X.; Yang, Q. Active-pocket size differentiating insectile from bacterial chitinolytic β-N-acetyl-D-hexosaminidases. Biochem. J. 2011, 438, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Liu, T.; Zhou, Y.; Dou, T.; Yang, Q. Glycoside hydrolase family 18 and 20 enzymes are novel targets of the traditional medicine berberine. J. Boil. Chem. 2018, 293, 15429–15438. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhou, Y.; Yang, Q. Structural dissection reveals a general mechanistic principle for group II chitinase (ChtII) inhibition. J. Boil. Chem. 2019, 294, 9358–9364. [Google Scholar] [CrossRef]
- Chen, W.; Yang, Q. Development of novel pesticides targeting insect chitinases: A minireview and perspective. J. Agric. Food Chem. 2020, 68, 4559–4565. [Google Scholar] [CrossRef]
- Wang, J.-G.; Lee, P.K.-M.; Dong, Y.; Pang, S.S.; Duggleby, R.G.; Li, Z.-M.; Guddat, L.W. Crystal structures of two novel sulfonylurea herbicides in complex with Arabidopsis thaliana acetohydroxyacid synthase. FEBS J. 2009, 276, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Qu, R.-Y.; Chen, Q.; Yang, J.-F.; Cong-Wei, N.; Zhen, X.; Yang, G.-F. Triazolopyrimidines as a new herbicidal lead for combating weed resistance associated with acetohydroxyacid synthase mutation. J. Agric. Food Chem. 2016, 64, 4845–4857. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Sun, L.; Wen, X.; Yang, X.; Tan, Y.; Jin, H.; Cao, Q.; Zhou, W.; Xi, Z.; Shen, Y. Structural insight into unique properties of protoporphyrinogen oxidase from Bacillus subtilis. J. Struct. Boil. 2010, 170, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Tan, Y.; Wang, L.; Wang, Z.; Wang, B.; Wen, X.; Yang, G.; Xi, Z.; Shen, Y. Structural insight into human variegate porphyria disease. FASEB J. 2010, 25, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.-F.; Zuo, Y.; Yang, S.-G.; Chen, Q.; Zhang, Y.; Yin, C.-Y.; Niu, C.-W.; Xi, Z.; Yang, G.-F. Computational discovery of potent and bioselective protoporphyrinogen IX oxidase inhibitor via fragment deconstruction analysis. J. Agric. Food Chem. 2017, 65, 5581–5588. [Google Scholar] [CrossRef]
- Hao, G.-F.; Tan, Y.; Yang, S.-G.; Wang, Z.-F.; Zhan, C.-G.; Xi, Z.; Yang, G.-F. Computational and experimental insights into the mechanism of substrate recognition and feedback inhibition of protoporphyrinogen oxidase. PLoS ONE 2013, 8, e69198. [Google Scholar] [CrossRef] [Green Version]
- Hao, G.-F.; Zuo, Y.; Yang, S.-G.; Yang, G.-F. Protoporphyrinogen oxidase inhibitor: An ideal target for herbicide discovery. Chim. Int. J. Chem. 2011, 65, 961–969. [Google Scholar] [CrossRef]
- Yang, C.; Pflugrath, J.W.; Camper, D.L.; Foster, M.L.; Pernich, D.J.; Walsh, T.A. Structural basis for herbicidal inhibitor selectivity revealed by comparison of crystal structures of plant and mammalian 4-hydroxyphenylpyruvate dioxygenases. Biochemistry 2004, 43, 10414–10423. [Google Scholar] [CrossRef]
- Fritze, I.M.; Lindén, L.; Freigang, J.; Auerbach, G.; Huber, R.; Steinbacher, S. The crystal structures of zea mays and arabidopsis 4-hydroxyphenylpyruvate dioxygenase. Plant Physiol. 2004, 134, 1388–1400. [Google Scholar] [CrossRef] [Green Version]
- Serre, L.; Sailland, A.; Sy, D.; Boudec, P.; Rolland, A.; Pebay-Peyroula, E.; Cohen-Addad, C. Crystal structure of Pseudomonas fluorescens 4-hydroxyphenylpyruvate dioxygenase: An enzyme involved in the tyrosine degradation pathway. Structure 1999, 7, 977–988. [Google Scholar] [CrossRef] [Green Version]
- Brownlee, J.M.; Johnson-Winters, K.; Harrison, D.H.T.; Moran, G.R. Structure of the ferrous form of (4-Hydroxyphenyl) pyruvate Dioxygenase from Streptomyces avermitilisin complex with the therapeutic herbicide, NTBC. Biochemistry 2004, 43, 6370–6377. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y.; Chen, X.; Chen, J.-N.; Wang, D.-W.; Wu, F.-X.; Lin, S.-Y.; Zhan, C.-G.; Wu, J.-W.; Yang, W.-C.; Yang, G.-F. Crystal structure of 4-hydroxyphenylpyruvate dioxygenase in complex with substrate reveals a new starting point for herbicide discovery. Research 2019, 2019, 2602414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.-W.; Lin, H.-Y.; Cao, R.-J.; Chen, T.; Wu, F.-X.; Hao, G.-F.; Chen, Q.; Yang, W.-C.; Yang, G.-F. Synthesis and herbicidal activity of triketone–quinoline hybrids as novel 4-hydroxyphenylpyruvate dioxygenase inhibitors. J. Agric. Food Chem. 2015, 63, 5587–5596. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-W.; Lin, H.-Y.; Cao, R.-J.; Ming, Z.-Z.; Chen, T.; Hao, G.-F.; Yang, W.-C.; Yang, G.-F. Design, synthesis and herbicidal activity of novel quinazoline-2,4-diones as 4-hydroxyphenylpyruvate dioxygenase inhibitors. Pest Manag. Sci. 2014, 71, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Yang, J.; Wang, D.; Hao, G.; Dong, J.; Wang, Y.; Yang, W.; Wu, J.; Zhan, C.; Yang, G. Molecular insights into the mechanism of 4-hydroxyphenylpyruvate dioxygenase inhibition: Enzyme kinetics, X-ray crystallography and computational simulations. FEBS J. 2019, 286, 975–990. [Google Scholar] [CrossRef]
- Moosavi, B.; Yang, W.C.; Yang, G.F. 4-Hydroxyphenylpyruvate dioxygenase inhibitors: From chemical biology to agrochemicals ferdinand ndikuryayo. J. Agri. Food Chem. 2017, 65, 8523–8537. [Google Scholar]
- Yu, L.P.C.; Kim, Y.S.; Tong, L. Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden. Proc. Natl. Acad. Sci. USA 2010, 107, 22072–22077. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Liu, Q.; Zang, X.; Yuan, S.; Bat-Erdene, U.; Nguyen, C.; Gan, J.; Zhou, J.; Jacobsen, S.E.; Tang, Y. Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature 2018, 559, 415–418. [Google Scholar] [CrossRef]
- Hao, Q.; Yin, P.; Li, W.; Wang, L.; Yan, C.; Lin, Z.; Wu, J.Z.; Wang, J.; Yan, S.; Yan, N. The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol. Cell 2011, 42, 662–672. [Google Scholar] [CrossRef]
- Yin, P.; Fan, H.; Hao, Q.; Yuan, X.; Wu, D.; Pang, Y.; Yan, C.; Li, W.; Wang, J.; Yan, N. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat. Struct. Mol. Boil. 2009, 16, 1230–1236. [Google Scholar] [CrossRef]
- Okamoto, M.; Peterson, F.C.; DeFries, A.; Park, S.-Y.; Endo, A.; Nambara, E.; Volkman, B.F.; Cutler, S.R. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc. Natl. Acad. Sci. USA 2013, 110, 12132–12137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheard, L.B.; Tan, X.; Mao, H.; Withers, J.; Ben-Nissan, G.; Hinds, T.R.; Kobayashi, Y.; Hsu, F.-F.; Sharon, M.; Browse, J.; et al. Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 2010, 468, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Shimada, A.; Ueguchi-Tanaka, M.; Nakatsu, T.; Nakajima, M.; Naoe, Y.; Ohmiya, H.; Kato, H.; Matsuoka, M. Structural basis for gibberellin recognition by its receptor GID1. Nature 2008, 456, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Ming, Z.; Yan, L.; Li, S.; Wang, F.; Ma, S.; Yu, C.; Yang, M.; Chen, L.; Chen, L.; et al. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 2016, 536, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Seto, Y.; Yasui, R.; Kameoka, H.; Tamiru, M.; Cao, M.; Terauchi, R.; Sakurada, A.; Hirano, R.; Kisugi, T.; Hanada, A.; et al. Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat. Commun. 2019, 10, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamiaux, C.; Larsen, L.; Lee, H.W.; Luo, Z.; Sharma, P.; Hawkins, B.C.; Perry, N.B.; Snowden, K.C. Chemical synthesis and characterization of a new quinazolinedione competitive antagonist for strigolactone receptors with an unexpected binding mode. Biochem. J. 2019, 476, 1843–1856. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, M.; Song, B.; Hou, C.; Hu, D.; Li, X.; Wang, Z.; Fan, H.; Bi, L.; Liu, J.; et al. Dufulin activates HrBP1 to produce antiviral responses in tobacco. PLoS ONE 2012, 7, e37944. [Google Scholar] [CrossRef] [Green Version]
- Cañizares, M.C.; Lozano-Durán, R.; Canto, T.; Bejarano, E.R.; Bisaro, D.M.; Navas-Castillo, J.; Moriones, E. Effects of the Crinivirus coat protein–interacting plant protein SAHH on post-transcriptional RNA silencing and its suppression. Mol. Plant-Microbe Interact. 2013, 26, 1004–1015. [Google Scholar] [CrossRef] [Green Version]
- Cañizares, M.C.; Navas-Castillo, J.; Moriones, E. Multiple suppressors of RNA silencing encoded by both genomic RNAs of the crinivirus, Tomato chlorosis virus. Virology 2008, 379, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Xie, D.; Zhang, J.; Yang, H.; Liu, Y.; Hu, D.-Y.; Song, B. First anti-ToCV activity evaluation of glucopyranoside derivatives containing a dithioacetal moiety through a novel ToCVCP-oriented screening method. J. Agric. Food Chem. 2019, 67, 7243–7248. [Google Scholar] [CrossRef]
- Zan, N.; Xie, D.; Li, M.; Jiang, D.; Song, B. Design, synthesis, and anti-ToCV activity of novel pyrimidine derivatives bearing a dithioacetal moiety that targets ToCV coat protein. J. Agric. Food Chem. 2020, 68, 6280–6285. [Google Scholar] [CrossRef] [PubMed]
- Zu, G.; Gan, X.; Xie, D.; Yang, H.; Zhang, A.; Li, S.; Hu, D.; Song, B. Design, synthesis, and anti-ToCV activity of novel 4(3H)-quinazolinone derivatives bearing dithioacetal moiety. J. Agric. Food Chem. 2020, 68, 5539–5544. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Yang, H.; Luo, L.; Huang, M.; Hu, D. Discovery of potent and novel quinazolinone sulfide inhibitors with Anti-ToCV activity. J. Agric. Food Chem. 2020, 68, 5302–5308. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zu, G.; Liu, Y.; Xie, D.; Gan, X.; Song, B. Tomato chlorosis virus minor coat protein as a novel target to screen antiviral drugs. J. Agric. Food Chem. 2020, 68, 3425–3433. [Google Scholar] [CrossRef] [PubMed]
- Boutemy, L.S.; King, S.R.F.; Win, J.; Hughes, R.K.; Clarke, T.A.; Blumenschein, T.M.A.; Kamoun, S.; Banfield, M.J. Structures of phytophthora RXLR effector proteins. J. Boil. Chem. 2011, 286, 35834–35842. [Google Scholar] [CrossRef] [Green Version]
- Maqbool, A.; Hughes, R.K.; Dagdas, Y.; Tregidgo, N.; Zess, E.K.; Belhaj, K.; Round, A.; Bozkurt, T.O.; Kamoun, S.; Banfield, M. Structural basis of host autophagy-related Protein 8 (ATG8) binding by the Irish potato famine pathogen effector protein PexRD54. J. Boil. Chem. 2016, 291, 20270–20282. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Wang, H.; Yang, B.; Jiang, W.; Jing, M.; Li, H.; Xia, Y.; Xu, Y.; Hu, Q.; Wang, F.; et al. Phytophthora sojae effector PsAvh240 inhibits host aspartic protease secretion to promote infection. Mol. Plant 2019, 12, 552–564. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Cesari, S.; De Guillen, K.; Chalvon, V.; Mammri, L.; Ma, M.; Meusnier, I.; Bonnot, F.; Padilla, A.; Peng, Y.-L.; et al. Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proc. Natl. Acad. Sci. USA 2018, 115, 11637–11642. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Zhang, Y.; Ma, M.; Liu, Q.; Zhang, Y.; Peng, Y.; Liu, J. Crystallization of the rice immune receptor RGA5A_S with the rice blast fungus effector AVR1-CO39 prepared via mixture and tandem strategies. Acta Crystallogr. Sect. F. 2018, 74, 262–267. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.Y.; Li, X.C.; Chen, M.H.; Zhang, Y.L. Key amino acid associated with acephate detoxification bycydia pomonellacarboxylesterase based on molecular dynamics with alanine scanning and site-directed mutagenesis. J. Chem. Inf. Model. 2014, 54, 1356–1370. [Google Scholar] [CrossRef]
- Ma, R.; Haji-Ghassemi, O.; Ma, D.; Jiang, H.; Lin, L.; Yao, L.; Samurkas, A.; Li, Y.; Wang, Y.; Cao, P.; et al. Structural basis for diamide modulation of ryanodine receptor. Nat. Methods 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; et al. A deep learning approach to antibiotic discovery. Cell 2020, 180, 688–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pesticide Type | Target Site | Pesticides or Compounds |
---|---|---|
fungicides | nucleic acids synthesis (e.g., RNA polymerase I and adenosin-deaminase) | phenylamides, hydroxy-(2-amino-) pyrimidines, heteroaromatics and carboxylic acids |
cytoskeleton and motor protein (e.g., ß-tubulin) | methyl benzimidazole carbamates, N-phenyl carbamates, benzamides, thiazole carboxamide, phenylureas, benzamides, cyanoacrylates and aryl-phenyl-ketones | |
respiration (e.g., complex I: NADH oxido-reductase, complex II: succinate-dehydro-genase, complex III: cytochrome bc1) | pyrimidinamines, succinate-dehydrogenase inhibitors (e.g., phenyl-benzamides, thiazole-carboxamides, and pyrazole-4-carboxamides) and quinone outside/inside inhibitors (e.g., methoxy-acrylates, oximino-acetates, and tetrazolinones) | |
amino acids and protein synthesis | anilino-pyrimidines and tetracycline antibiotic | |
signal transduction (e.g., MAP/histidine-kinase in osmotic signal transduction) | phenylpyrroles and dicarboximides | |
lipid synthesis or transport/membrane integrity or function (e.g., phospholipid biosynthesis and methyltransferase) | phosphoro-thiolates, dithiolanes, heteroaromatics, and oxysterol binding protein homologue inhibitors | |
sterol biosynthesis in membranes (e.g., C14-demethylase) | demethylation inhibitors (e.g., piperazines, pyridines, pyrimidines, imidazoles, triazoles, and triazolinthiones) | |
cell wall biosynthesis (e.g., chitin synthase and cellulose synthase) | polyoxins and carboxylic acid amides | |
melanin synthesis in cell wall (e.g., reductase, dehydratase, polyketide synthase) | melanin biosynthesis inhibitors (e.g., isobenzo-furanone, pyrrolo-quinolinone, triazolobenzo-thiazole, cyclopropane-carboxamide, carboxamide, propionamide, and trifluoroethyl-carbamate) | |
host plant defence induction (e.g., salicylate-related, polysaccharide elicitors, anthraquinone elicitors, microbial elicitors, and phosphonates) | benzo-thiadiazole, benzisothiazole, thiadiazole-carboxamide, natural compound (e.g., polysaccharides), plant extract (e.g., anthraquinones, resveratrol), microbial (e.g., bacterial Bacillus spp. and fungal Saccharomyces spp.), and phosphonates (e.g., ethyl phosphonates) | |
insecticides | Acetylcholinesterase | carbamates and organophosphates |
γ-aminobutyrie acid-gated chloride channel | cyclodiene, organochlorines, and phenylpyrazoles | |
sodium channel | pyrethroids, pyrethrins, DDT, and methoxychlor | |
nicotinic acetylcholine receptor | neonicotinoids and nicotine | |
glutamate-gated chloride channel | avermectins and milbemycins | |
Juvenile hormone | juvenile hormone analogues (e.g., hydroprene, kinoprene, and methoprene), fenoxycarb and pyriproxyfen | |
chordotonal organ transient receptor potential vanilloid channel | pyridine azomethine derivatives (e.g., pymetrozine and pyrifluquinazon) and pyropenes | |
chitin synthase I | clofentezine, diflovidazin, hexythiazox, and etoxazole | |
insect midgut membranes | Bacillus thuringiensis and Bacillus sphaericus | |
mitochondrial ATP synthase | diafenthiuron, organotin miticides, propargite, and tetradifon | |
oxidative phosphorylation | pyrroles, dinitrophenols, sulfluramid | |
herbicides | Acetyl CoA carboxylase | Cyclohexanediones, and aryloxphenoxy-propionates |
acetolactate synthase/acetohydroxy acid synthase | triazolopyrimidine, imidazolinone, sulfonylurea, sulfonanilides, and pyrimidinylbenzoates | |
microtubule assembly | dinitroanilines, phosphoroamidates, and pyridines | |
auxin | phenoxy-carboxylates | |
D1 serine 264/histidine 215 | triazines, ureas, triazinones, phenylcarbamates, and amides | |
enolpyruvyl shikimate phosphate synthase | glyphosate | |
glutamine synthetase | phosphinicacids | |
phytoene desaturase | phenyl-ethers | |
deoxy-D-xyulose phosphate synthase | isoxazolidinones | |
protoporphyrinogen oxidase | N-Phenyl-imides and diphenyl ethers | |
very long-chain fatty acid synthesis | thiocarbamates, α-chloroacetamides, benzofuranes, and azolyl-carboxamides | |
auxin transport | aryl-carboxylates | |
microtubule organization | carbamates | |
hydroxyphenyl pyruvate dioxygenase | triketones and pyrazoles | |
cellulose synthesis | alkylazines and nitriles | |
serine threonine protein phosphatase | endothall | |
solanesyl diphosphate synthase | aclonifen | |
homogentisate solanesyltransferase | solanesyl diphosphate synthase; cyclopyrimorate | |
lycopene cyclase | amitrole |
No. | Target Protein | Species | Ligand | Target Type | PDB ID | Reference |
---|---|---|---|---|---|---|
1 | CP | Tobacco mosaic virus | no | antiviral target | 4GQH | 6 |
2 | P9-1 | Southern rice black-streaked dwarf virus | no | 5EFT | unpublished | |
3 | P9-1 | Rice black-streaked dwarf virus | no | 3VJJ | 10 | |
4 | Helicase | Tomato mosaic virus | no | 3VKW | 9 | |
5 | VLP | Potato virus Y | no | 6HXZ | 8 | |
6 | P5 | Rice dwarf virus | S-adenosylmethionine | 5X6Y | unpublished | |
7 | SDH | Gallus gallus | 3-nitropropionic acid | fungicide target | 2FBW | 20 |
8 | Tubulin | Bos Taurus | triazolopyrimidines | 5NJH | 21 | |
9 | DM | Candida albicans | S-tebuconazole | 5EAB | 27 | |
10 | DM | Candida albicans | R-tebuconazole | 5EAC | 27 | |
11 | DM | Candida albicans | S-desthio-prothioconazole | 5EAD | 27 | |
12 | DM | Candida albicans | R-desthio-prothioconazole | 5EAE | 27 | |
13 | DM | Candida albicans | fluquinconazole | 5EAF | 27 | |
14 | DM | Candida albicans | prochloraz | 5EAG | 27 | |
15 | DM | Candida albicans | difenoconazole | 5EAH | 27 | |
16 | DM | Candida albicans | posaconazole | 5FSA | 28 | |
17 | DM | Candida albicans | posaconazole | 5TZ1 | 28 | |
18 | bc1 complex | Bos Taurus | famoxadone | 1L0L | 22 | |
19 | bc1 complex | Rhodobacter sphaeroides | famoxadone | 5KKZ | 23 | |
20 | bc1 complex | Gallus gallus | trifloxystrobin | 3L70 | unpublished | |
21 | bc1 complex | Gallus gallus | azoxystrobin | 3L71 | unpublished | |
22 | bc1 complex | Gallus gallus | triazolone | 3L73 | unpublished | |
23 | bc1 complex | Gallus gallus | famoxadone | 3L74 | unpublished | |
24 | bc1 complex | Gallus gallus | fenamidone | 3L75 | unpublished | |
25 | bc1 complex | Rhodobacter sphaeroides | azoxystrobin | 6NHH | 24 | |
26 | Osh4 | Saccharomyces cerevisiae | ergosterol | 1ZHZ | 29 | |
27 | Osh1 | Kluyveromyces lactis | Cholesterol | 5WVR | 30 | |
28 | ORP1 | Homo sapiens | Cholesterol | 5ZM5 | 29 | |
29 | Myosin I | Fusarium graminearum | Phenamacril | 6UI4 | 34 | |
30 | Pyruvate kinase | Saccharomyces cerevisiae | no | bactericide target | 1A3W | 35 |
31 | FabV | Xanthomonas oryzae | no | 3S8M | 38 | |
32 | RyR PD | Plutella xylostella | no | insecticide target | 6J6O | 45 |
33 | RyR NTD | Plutella xylostella | no | 5Y9V | 46 | |
34 | RyR SPRY2 | diamondback moth | no | 6J6P | 47 | |
35 | OfHex1 | Ostrinia furnacalis | no | 3NSM | 50 | |
36 | OfHex1 | Ostrinia furnacalis | TMG-chitotrimycin | 3NSN | 50 | |
37 | OfHex1 | Ostrinia furnacalis | PUGNAc | 3OZP | 51 | |
38 | OfHex1 | Ostrinia furnacalis | berberine | 5Y0V | 52 | |
39 | AHAS | Arabidopsis thaliana | monsulfuron-sulfuron | herbicide target | 3EA4 | 55 |
40 | PPO | Bacillus subtilis | acifluorfen | 3I6D | 57 | |
41 | PPO | Homo sapiens | acifluorfen | 3NKS | 58 | |
42 | HPPD | Arabidopsis thaliana | no | 1SQD | 62 | |
43 | HPPD | Arabidopsis thaliana | no | 1TFZ | 62 | |
44 | HPPD | Arabidopsis thaliana | no | 1TG5 | 62 | |
45 | HPPD | Zea mays | no | 1SP8 | 63 | |
46 | HPPD | Homo sapiens | no | 3ISQ | unpublished | |
47 | HPPD | Rattus norvegicus | no | 1SQI | 62 | |
48 | HPPD | Pseudomonas fluorescens | no | 1CJX | 64 | |
49 | HPPD | Streptomyces avermitilis | NTBC | 1T47 | 65 | |
50 | HPPD | Arabidopsis thaliana | HPPA | 5XGK | 66 | |
51 | DHAD | Arabidopsis thaliana | aspterric acid | 5ZE4 | 72 | |
52 | ACC | Saccharomyces cerevisiae | pinoxaden | 3PGQ | 71 | |
53 | PYL10-PP2C | Arabidopsis thaliana | ABA | plant growth regulator target | 3RT0 | 73 |
54 | PYL10-PP2C | Arabidopsis thaliana | no | 3RT2 | 73 | |
55 | PYL2-HAB1 | Arabidopsis thaliana | ABA | 3KDI | 75 | |
56 | PYL2-HAB1 | Arabidopsis thaliana | quinabactin | 4LA7 | 75 | |
57 | COI1-ASK1 | Arabidopsis thaliana | incomplete JAZ1 degron | 3OGK | 76 | |
58 | COI1-ASK1 | Arabidopsis thaliana | JA-isoleucine and the JAZ1 degron | 3OGL | 76 | |
59 | COI1-ASK1 | Arabidopsis thaliana | JAZ1 degron | 3OGM | 76 | |
60 | GID1 | Oryza sativa Japonica Group | GA3 | 3ED1 | 77 | |
61 | GID1 | Oryza sativa Japonica Group | GA4 | 3EBL | 77 | |
62 | DAD2 | Petunia x hybrida | quinazolinedione | 6O5J | 80 | |
63 | D14-D3-ASK1 | Arabidopsis thaliana | strigolactone | 5HZG | 78 | |
64 | D3-ASK1 | Arabidopsis thaliana | no | 5HYW | 78 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yang, X.; Zheng, X.; Bai, M.; Hu, D. Review on Structures of Pesticide Targets. Int. J. Mol. Sci. 2020, 21, 7144. https://doi.org/10.3390/ijms21197144
Li X, Yang X, Zheng X, Bai M, Hu D. Review on Structures of Pesticide Targets. International Journal of Molecular Sciences. 2020; 21(19):7144. https://doi.org/10.3390/ijms21197144
Chicago/Turabian StyleLi, Xiangyang, Xueqing Yang, Xiaodong Zheng, Miao Bai, and Deyu Hu. 2020. "Review on Structures of Pesticide Targets" International Journal of Molecular Sciences 21, no. 19: 7144. https://doi.org/10.3390/ijms21197144
APA StyleLi, X., Yang, X., Zheng, X., Bai, M., & Hu, D. (2020). Review on Structures of Pesticide Targets. International Journal of Molecular Sciences, 21(19), 7144. https://doi.org/10.3390/ijms21197144