Functional Characterization of Gomisin N in High-Fat-Induced Drosophila Obesity Models
Abstract
:1. Introduction
2. Results
2.1. Feeding of Adult Drosophila with a High-Fat Diet Displayed Characteristic Phenotypes of Previously Established Obesity Models
2.2. A Treatment of GOMISIN N Reversed the Effect of a High-Fat Diet on Obese Phenotypes in Drosophila
2.3. Gomisin N Suppressed the Endoplasmic Reticulum Stress Response Induced by a High-Fat Diet in Drosophila
3. Discussion
4. Materials and Methods
4.1. Reagents and High-Fat Diet Preparation
4.2. Fly Rearing and Feeding Assay
4.3. Measurement of Climbing Ability
4.4. Measurement of Triglyceride (TG)
4.5. Measurement of Life Span
4.6. Real-Time Quantitative PCR Analysis
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Akt | Akt1 |
ATGL | adipose triglyceride lipase |
Bmm | triacylglycerol lipase brummer |
Chico | chico |
Crebp | cyclic-AMP response element binding protein A |
Desat1 | desaturase 1 |
dGRP94 | heat shock protein Hsp90 family member |
dILP6 | insulin-like peptide 6 |
Fas | fatty acid synthase 1 |
FBP | fructose 1, 6-biphosphatase |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
GLYP | glycogen phosphorylase |
Hsl | hormone-sensitive lipase |
LSD-1 | lipid storage droplet-1 |
LSD-2 | lipid storage droplet-2 |
PDK | pyruvate dehydrogenase kinase |
PEPCK | phosphoenolpyruvate carboxykinase |
PI3K | Pi3K21B |
S6k | ribosomal protein S6 kinase |
References
- OECD. OfEC-oaD: OECD Obesity Update 2017. Available online: https://www.oecd.org/els/health-systems/Obesity-Update-2017.pdf (accessed on 21 June 2017).
- Kim, Y.E.; Lee, Y.R.; Yoon, S.J.; Kim, Y.A.; Oh, I.H. Years of life lost due to premature death in people with disabilities in Korea: The Korean national burden of disease study framework. J. Korean Med. Sci. 2019, 34, e22. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.J. Beneficial health effects of modest weight loss. Int. J. Obes. Relat. Metab. Disord. 1992, 16, 397–415. [Google Scholar] [PubMed]
- Cheung, B.M.; Cheung, T.T.; Samaranayake, N.R. Safety of antiobesity drugs. Ther. Adv. Drug Saf. 2013, 4, 171–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, E.; Kim, C.Y. Natural Products and Obesity: A Focus on the Regulation of Mitotic Clonal Expansion during Adipogenesis. Molecules 2019, 24, 1157. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Lin, K.F.; Yeung, R.Y.; Li, R.C. Evaluation of the protective effects of Schisandra chinensis on Phase I drug metabolism using a CCl4 intoxication model. J. Ethnopharmacol. 1999, 67, 61–68. [Google Scholar] [CrossRef]
- Na, M.; Hung, T.M.; Oh, W.K.; Min, B.S.; Lee, S.H.; Bae, K. Fatty acid synthase inhibitory activity of dibenzocyclooctadiene lignans isolated from Schisandra chinensis. Phytother. Res. 2010, 24, S225–S228. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Deepa, P.; Kim, M.; Park, S.J.; Kim, S. An overview of neuroprotective and cognitive enhancement properties of lignans from Schisandra chinensis. Biomed. Pharmacother. 2018, 97, 958–968. [Google Scholar] [CrossRef]
- Jang, M.K.; Yun, Y.R.; Kim, J.H.; Park, M.H.; Jung, M.H. Gomisin N inhibits adipogenesis and prevents high-fat diet-induced obesity. Sci. Rep. 2017, 7, 40345. [Google Scholar] [CrossRef]
- Yun, Y.R.; Kim, J.H.; Kim, J.H.; Jung, M.H. Protective effects of gomisin N against hepatic steatosis through AMPK activation. Biochem. Biophys. Res. Commun. 2017, 482, 1095–1101. [Google Scholar] [CrossRef]
- Reiter, L.T.; Potocki, L.; Chien, S.; Gribskov, M.; Bier, E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 2001, 11, 1114–1125. [Google Scholar] [CrossRef] [Green Version]
- Haemmerle, G.; Lass, A.; Zimmermann, R.; Gorkiewicz, G.; Meyer, C.; Rozman, J.; Heldmaier, G.; Maier, R.; Theussl, C.; Eder, S.; et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 2006, 312, 734–737. [Google Scholar] [CrossRef] [PubMed]
- Grönke, S.; Mildner, A.; Fellert, S.; Tennagels, N.; Petry, S.; Müller, G.; Jäckle, H.; Kühnlein, R.P. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab. 2005, 1, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, L.; Rabouille, C.; Rorth, P.; Ephrussi, A.; Vanzo, N.F. Drosophila Perilipin/ADRP homologue Lsd2 regulates lipid metabolism. Mech. Dev. 2003, 120, 1071–1081. [Google Scholar] [CrossRef]
- Grönke, S.; Beller, M.; Fellert, S.; Ramakrishnan, H.; Jäckle, H.; Kühnlein, R.P. Control of fat storage by a Drosophila PAT domain protein. Curr. Biol. 2003, 13, 603–606. [Google Scholar] [CrossRef] [Green Version]
- Musselman, L.P.; Kuhnlein, R.P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol. 2018, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, N.; Mishra, M. Simple techniques to study multifaceted diabesity in the fly model. Toxicol. Mech. Methods 2019, 29, 549–560. [Google Scholar] [CrossRef]
- Rivera, O.; McHan, L.; Konadu, B.; Patel, S.; Sint Jago, S.; Talbert, M.E. A high-fat diet impacts memory and gene expression of the head in mated female Drosophila melanogaster. J. Comp. Physiol. B 2019, 189, 179–198. [Google Scholar] [CrossRef]
- Heinrichsen, E.T.; Haddad, G.G. Role of high-fat diet in stress response of Drosophila. PLoS ONE 2012, 7, e42587. [Google Scholar] [CrossRef] [Green Version]
- Miyazawa, M.; Hirota, K.; Fukuyama, M.; Ishikawa, Y.; Kameoka, H. Insecticidal lignans against Drosophila melanogaster from fruits of Schisandra chinensis. Nat. Prod. Lett. 1998, 12, 175–180. [Google Scholar] [CrossRef]
- Shirazi, F.; Farmakiotis, D.; Yan, Y.; Albert, N.; Do, K.A.; Kontoyiannis, D.P. Diet modification and metformin have a beneficial effect in a fly model of obesity and mucormycosis. PLoS ONE 2014, 9, e108635. [Google Scholar] [CrossRef] [Green Version]
- Heinrichsen, E.T.; Zhang, H.; Robinson, J.E.; Ngo, J.; Diop, S.; Bodmer, R.; Joiner, W.J.; Metallo, C.M.; Haddad, G.G. Metabolic and transcriptional response to a high-fat diet in Drosophila melanogaster. Mol. Metab. 2013, 3, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Cnop, M.; Foufelle, F.; Velloso, L.A. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol. Med. 2012, 18, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Ladriere, L.; Igoillo-Esteve, M.; Cunha, D.A.; Brion, J.P.; Bugliani, M.; Marchetti, P.; Eizirik, D.L.; Cnop, M. Enhanced signaling downstream of ribonucleic Acid-activated protein kinase-like endoplasmic reticulum kinase potentiates lipotoxic endoplasmic reticulum stress in human islets. J. Clin. Endocrinol. Metab. 2010, 95, 1442–1449. [Google Scholar] [CrossRef] [Green Version]
- Cnop, M.; Ladriere, L.; Hekerman, P.; Ortis, F.; Cardozo, A.K.; Dogusan, Z.; Flamez, D.; Boyce, M.; Yuan, J.; Eizirik, D.L. Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis. J. Biol. Chem. 2007, 282, 3989–3997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryoo, H. Drosophila as a model for unfolded protein response research. BMB Rep. 2015, 48, 445–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eletto, D.; Dersh, D.; Argon, Y. GRP94 in ER quality control and stress responses. Semin. Cell Dev. Biol. 2010, 21, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Emerging Risk Factors Collaboration; Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.Y.; Kim, J.H.; Lee, H.; Jung, M.H. Antidiabetic effect of gomisin N via activation of AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 2017, 494, 587–593. [Google Scholar] [CrossRef]
- Graham, P.; Pick, L. Drosophila as a Model for Diabetes and Diseases of Insulin Resistance. Curr. Top. Dev. Biol. 2017, 121, 397–419. [Google Scholar]
- Baenas, N.; Piegholdt, S.; Schloesser, A.; Moreno, D.A.; Garcia-Viguera, C.; Rimbach, G.; Wagner, A.E. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster. Int. J. Mol. Sci. 2016, 17, 251. [Google Scholar] [CrossRef] [Green Version]
- Nagappan, A.; Jung, D.Y.; Kim, J.H.; Jung, M.H. Protective Effects of Gomisin N against Hepatic Cannabinoid Type 1 Receptor-Induced Insulin Resistance and Gluconeogenesis. Int. J. Mol. Sci. 2018, 19, 968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Paula, M.T.; Silva, M.R.P.; Araujo, S.M.; Bortolotto, V.C.; Martins, I.K.; Macedo, G.E.; Franco, J.L.; Posser, T.; Prigol, M. Drosophila melanogaster: A model to study obesity effects on genes expression and developmental changes on descendants. J. Cell. Biochem. 2018, 119, 5551–5562. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Kang, P.; Tatar, M. Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell 2012, 11, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Ren, D.; Li, W.; Jiang, L.; Cho, K.W.; Huang, P.; Fan, C.; Song, Y.; Liu, Y.; Rui, L. SH2B regulation of growth, metabolism, and longevity in both insects and mammals. Cell Metab. 2010, 11, 427–437. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.Y.; Lee, J.H.; Cheon, C.K. Functional Characterization of Gomisin N in High-Fat-Induced Drosophila Obesity Models. Int. J. Mol. Sci. 2020, 21, 7209. https://doi.org/10.3390/ijms21197209
Lee JY, Lee JH, Cheon CK. Functional Characterization of Gomisin N in High-Fat-Induced Drosophila Obesity Models. International Journal of Molecular Sciences. 2020; 21(19):7209. https://doi.org/10.3390/ijms21197209
Chicago/Turabian StyleLee, Joo Young, Ji Hye Lee, and Chong Kun Cheon. 2020. "Functional Characterization of Gomisin N in High-Fat-Induced Drosophila Obesity Models" International Journal of Molecular Sciences 21, no. 19: 7209. https://doi.org/10.3390/ijms21197209
APA StyleLee, J. Y., Lee, J. H., & Cheon, C. K. (2020). Functional Characterization of Gomisin N in High-Fat-Induced Drosophila Obesity Models. International Journal of Molecular Sciences, 21(19), 7209. https://doi.org/10.3390/ijms21197209