Oral Submucous Fibrosis: A Review on Biomarkers, Pathogenic Mechanisms, and Treatments
Abstract
:1. Epidemiology of OSF
1.1. Clinical Features of OSF
1.2. Prevalence of OSF
1.3. The Malignant Transformation Rate of OSF
1.4. Risk Factors of OSF
2. Differential Diagnosis of OSF
2.1. OSF Classification by Function
2.2. OSF Classification by Histology
2.3. Biomarkers of OSF
3. The Mechanism of OSF Pathogenesis and Malignant Transformation
3.1. Pathogenesis of OSF
3.2. Transformation of OSF to Malignancy
3.3. OSF and Malignancy Formation-The Evidence on Animal Models
4. Treatment Strategy
4.1. Clinical Drug Treatments of OSF
4.2. Mouth Exercising Devices
4.3. Elective Surgery
4.4. Comparison of Treatment Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dionne, K.R.; Warnakulasuriya, S.; Zain, R.B.; Cheong, S.C. Potentially malignant disorders of the oral cavity: Current practice and future directions in the clinic and laboratory. Int. J. Cancer 2015, 136, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Chole, R.H.; Gondivkar, S.M.; Gadbail, A.R.; Balsaraf, S.; Chaudhary, S.; Dhore, S.V.; Ghonmode, S.; Balwani, S.; Mankar, M.; Tiwari, M.; et al. Review of drug treatment of oral submucous fibrosis. Oral Oncol. 2012, 48, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Tail, Y.H.; Wang, W.C.; Chen, C.Y.; Kao, Y.H.; Chen, Y.K.; Chen, C.H. Malignant transformation in 5071 southern Taiwanese patients with potentially malignant oral mucosal disorders. BMC Oral Health 2014, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Reichart, P.A. A review of betel quid chewing, oral cancer and precancer in Mainland China. Oral Oncol. 2007, 43, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Tilakaratne, W.M.; Ekanayaka, R.P.; Warnakulasuriya, S. Oral submucous fibrosis: A historical perspective and a review on etiology and pathogenesis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, 178–191. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, A.; Ray, J.G. Molecular Pathology of Malignant Transformation of Oral Submucous Fibrosis. J. Environ. Pathol. Toxicol. Oncol. 2016, 35, 193–205. [Google Scholar] [CrossRef]
- Chang, M.C.; Chiang, C.P.; Lin, C.L.; Lee, J.J.; Hahn, L.J.; Jeng, J.H. Cell-mediated immunity and head and neck cancer: With special emphasis on betel quid chewing habit. Oral Oncol. 2005, 41, 757–775. [Google Scholar] [CrossRef]
- Cox, S.C.; Walker, D.M. Oral submucous fibrosis. A review. Aust. Dent. J. 1996, 41, 294–299. [Google Scholar] [CrossRef]
- Liu, B.; Shen, M.; Xiong, J.; Yuan, Y.; Wu, X.; Gao, X.; Xu, J.; Guo, F.; Jian, X. Synergistic effects of betel quid chewing, tobacco use (in the form of cigarette smoking), and alcohol consumption on the risk of malignant transformation of oral submucous fibrosis (OSF): A case-control study in Hunan Province, China. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 120, 337–345. [Google Scholar] [CrossRef]
- Reichart, P.A.; Nguyen, X.H. Betel quid chewing, oral cancer and other oral mucosal diseases in Vietnam: A review. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2008, 37, 511–514. [Google Scholar] [CrossRef]
- Yang, S.F.; Wang, Y.H.; Su, N.Y.; Yu, H.C.; Wei, C.Y.; Yu, C.H.; Chang, Y.C. Changes in prevalence of precancerous oral submucous fibrosis from 1996 to 2013 in Taiwan: A nationwide population-based retrospective study. J. Med. Assoc. 2018, 117, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Nigam, N.K.; Aravinda, K.; Dhillon, M.; Gupta, S.; Reddy, S.; Srinivas Raju, M. Prevalence of oral submucous fibrosis among habitual gutkha and areca nut chewers in Moradabad district. J. Oral Biol. Craniofac. Res. 2014, 4, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottipamula, S.; Sundarrajan, S.; Moorthy, A.; Padmanabhan, S.; Sridhar, K.N. Buccal Mucosal Epithelial Cells Downregulate CTGF Expression in Buccal Submucosal Fibrosis Fibroblasts. J. Maxillofac. Oral Surg. 2018, 17, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Maher, R.; Lee, A.J.; Warnakulasuriya, K.A.; Lewis, J.A.; Johnson, N.W. Role of areca nut in the causation of oral submucous fibrosis: A case-control study in Pakistan. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 1994, 23, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Pindborg, J.J.; Murti, P.R.; Bhonsle, R.B.; Gupta, P.C.; Daftary, D.K.; Mehta, F.S. Oral submucous fibrosis as a precancerous condition. Scand. J. Dent. Res. 1984, 92, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Murti, P.R.; Bhonsle, R.B.; Pindborg, J.J.; Daftary, D.K.; Gupta, P.C.; Mehta, F.S. Malignant transformation rate in oral submucous fibrosis over a 17-year period. Community Dent. Oral Epidemiol. 1985, 13, 340–341. [Google Scholar] [CrossRef]
- Shiau, Y.Y.; Kwan, H.W. Submucous fibrosis in Taiwan. Oral Surg. Oral Med. Oral Pathol. 1979, 47, 453–457. [Google Scholar] [CrossRef]
- Tang, J.G.; Jian, X.F.; Gao, M.L.; Ling, T.Y.; Zhang, K.H. Epidemiological survey of oral submucous fibrosis in Xiangtan City, Hunan Province, China. Community Dent. Oral Epidemiol. 1997, 25, 177–180. [Google Scholar] [CrossRef]
- Lian Ie, B.; Tseng, Y.T.; Su, C.C.; Tsai, K.Y. Progression of precancerous lesions to oral cancer: Results based on the Taiwan National Health Insurance Database. Oral Oncol. 2013, 49, 427–430. [Google Scholar] [CrossRef]
- Yang, P.Y.; Chen, Y.T.; Wang, Y.H.; Su, N.Y.; Yu, H.C.; Chang, Y.C. Malignant transformation of oral submucous fibrosis in Taiwan: A nationwide population-based retrospective cohort study. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2017, 46, 1040–1045. [Google Scholar] [CrossRef]
- Jeng, J.H.; Chang, M.C.; Hahn, L.J. Role of areca nut in betel quid-associated chemical carcinogenesis: Current awareness and future perspectives. Oral Oncol. 2001, 37, 477–492. [Google Scholar] [CrossRef]
- Passi, D.; Bhanot, P.; Kacker, D.; Chahal, D.; Atri, M.; Panwar, Y. Oral submucous fibrosis: Newer proposed classification with critical updates in pathogenesis and management strategies. Natl. J. Maxillofac. Surg. 2017, 8, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, C.; Aswath, N. Estimation of serum, salivary immunoglobulin G, immunoglobulin A levels and total protein, hemoglobin in smokeless tobacco chewers and oral submucous fibrosis patients. Contemp. Clin. Dent. 2015, 6, S157–S162. [Google Scholar] [CrossRef]
- Arakeri, G.; Rai, K.K.; Hunasgi, S.; Merkx, M.A.W.; Gao, S.; Brennan, P.A. Oral submucous fibrosis: An update on current theories of pathogenesis. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2017, 46, 406–412. [Google Scholar] [CrossRef]
- Guruprasad, R.; Nair, P.P.; Singh, M.; Singh, M.; Singh, M.; Jain, A. Serum vitamin c and iron levels in oral submucous fibrosis. Indian J. Dent. 2014, 5, 81–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.P.; Wu, Y.C.; Cheng, S.J.; Chen, H.M.; Sun, A.; Chang, J.Y. High frequencies of vitamin B12 and folic acid deficiencies and gastric parietal cell antibody positivity in oral submucous fibrosis patients. J. Formos. Med. Assoc. = Taiwan Yi Zhi 2015, 114, 813–819. [Google Scholar] [CrossRef] [Green Version]
- Teh, M.T.; Tilakaratne, W.M.; Chaplin, T.; Young, B.D.; Ariyawardana, A.; Pitiyage, G.; Lalli, A.; Stewart, J.E.; Hagi-Pavli, E.; Cruchley, A.; et al. Fingerprinting genomic instability in oral submucous fibrosis. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2008, 37, 430–436. [Google Scholar] [CrossRef]
- Seedat, H.A.; van Wyk, C.W. Submucous fibrosis in non-betel nut chewing subjects. J. Biol. Buccale 1988, 16, 3–6. [Google Scholar]
- Ratheesh, A.V.; Kumar, B.; Mehta, H.; Sujatha, G.P.; Shankarmurthy, S.P. Etiopathogenesis of oral submucous fibrosis. J. Med. Radiol. Pathol. Surg. 2015, 1, 16–21. [Google Scholar] [CrossRef]
- Raina, C.; Raizada, R.M.; Chaturvedi, V.N.; Harinath, B.C.; Puttewar, M.P.; Kennedy, A.K. Clinical profile and serum beta-carotene levels in oral submucous fibrosis. Indian J. Otolaryngol. Head Neck Surg. 2005, 57, 191–195. [Google Scholar] [CrossRef]
- Thakur, M.; Guttikonda, V.R. Estimation of hemoglobin, serum iron, total iron-binding capacity and serum ferritin levels in oral submucous fibrosis: A clinicopathological study. J. Oral Maxillofac. Pathol. 2017, 21, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, P.K.; Freeland-Graves, J.; Beretvas, S.N.; Sanjeevi, N. Zinc, Copper, and Iron in Oral Submucous Fibrosis: A Meta-Analysis. Int. J. Dent. 2018, 2018, 3472087. [Google Scholar] [CrossRef] [PubMed]
- Vallet, S.D.; Ricard-Blum, S. Lysyl oxidases: From enzyme activity to extracellular matrix cross-links. Essays Biochem. 2019, 63, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, F.; Manohar, V.; Jose, M.; Thapasum, A.F.; Mohamed, S.; Shamaz, B.H.; D’Souza, N. Estimation of copper in saliva and areca nut products and its correlation with histological grades of oral submucous fibrosis. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2015, 44, 208–213. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, L.; Mashrah, M.; Zhu, Y.; He, Z.; Hu, Y.; Xiang, T.; Yao, Z.; Guo, F.; Zhang, C. Expression and promoter methylation of Wnt inhibitory factor-1 in the development of oral submucous fibrosis. Oncol. Rep. 2015, 34, 2636–2642. [Google Scholar] [CrossRef] [Green Version]
- Kaliyaperumal, S.; Sankarapandian, S. Evaluation of p16 hypermethylation in oral submucous fibrosis: A quantitative and comparative analysis in buccal cells and saliva using real-time methylation-specific polymerase chain reaction. South Asian J. Cancer 2016, 5, 73–79. [Google Scholar] [CrossRef]
- Tilakaratne, W.M.; Klinikowski, M.F.; Saku, T.; Peters, T.J.; Warnakulasuriya, S. Oral submucous fibrosis: Review on aetiology and pathogenesis. Oral Oncol. 2006, 42, 561–568. [Google Scholar] [CrossRef]
- Angadi, P.V.; Rekha, K.P. Oral submucous fibrosis: A clinicopathologic review of 205 cases in Indians. Oral Maxillofac. Surg. 2011, 15, 15–19. [Google Scholar] [CrossRef]
- Jain, A.; Taneja, S. Oral Submucous Fibrosis in Pediatric Patients: A Systematic Review and Protocol for Management. Int. J. Surg. Oncol. 2019, 2019, 3497136. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, A.; Kiran, S.; Dhillon, S.; Mallikarjuna, R. Oral submucous fibrosis: A premalignant condition in a 14-year-old Indian girl. BMJ Case Rep. 2013, 2013, bcr2013200786. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yao, M.; Zhu, X.; Li, Q.; He, J.; Chen, L.; Wang, W.; Zhu, C.; Shen, T.; Cao, R.; et al. YAP-Induced Endothelial-Mesenchymal Transition in Oral Submucous Fibrosis. J. Dent. Res. 2019, 98, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.P.; Wu, K.J.; Chen, H.M.; Deng, Y.T. Arecoline activates latent transforming growth factor beta1 via mitochondrial reactive oxygen species in buccal fibroblasts: Suppression by epigallocatechin-3-gallate. J. Formos. Med. Assoc. = Taiwan Yi Zhi 2018, 117, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.H.; Yang, S.F.; Chen, Y.J.; Chu, S.C.; Hsieh, Y.S.; Chang, Y.C. Regulation of interleukin-6 expression by arecoline in human buccal mucosal fibroblasts is related to intracellular glutathione levels. Oral Dis. 2004, 10, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.F.; Chen, M.Y.; Lai, J.C.; Chen, Y.L.; Wong, Y.W.; Yang, C.C.; Chen, H.Y.; Hsia, S.M.; Shih, Y.H.; Shieh, T.M. Arecoline-regulated ataxia telangiectasia mutated expression level in oral cancer progression. Head Neck 2019, 41, 2525–2537. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.H.; Chiu, K.C.; Wang, T.H.; Lan, W.C.; Tsai, B.H.; Wu, L.J.; Hsia, S.M.; Shieh, T.M. Effects of melatonin to arecoline-induced reactive oxygen species production and DNA damage in oral squamous cell carcinoma. J. Formos. Med. Assoc. = Taiwan Yi Zhi 2020. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.H.; Hsia, S.M.; Shieh, T.M. Lysyl Oxidase and the Tumor Microenvironment. Int. J. Mol. Sci. 2016, 18, 62. [Google Scholar] [CrossRef] [Green Version]
- Shih, Y.H.; Chang, K.W.; Chen, M.Y.; Yu, C.C.; Lin, D.J.; Hsia, S.M.; Huang, H.L.; Shieh, T.M. Lysyl oxidase and enhancement of cell proliferation and angiogenesis in oral squamous cell carcinoma. Head Neck 2013, 35, 250–256. [Google Scholar] [CrossRef]
- Shieh, T.M.; Lin, S.C.; Liu, C.J.; Chang, S.S.; Ku, T.H.; Chang, K.W. Association of expression aberrances and genetic polymorphisms of lysyl oxidase with areca-associated oral tumorigenesis. Clin. Cancer Res. 2007, 13, 4378–4385. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.S.; Li, W.H.; Gao, Y.J.; Liu, Z.W.; Liu, L.; Tang, J.Q.; Ling, T.Y. Betel-quid and oral submucous fibrosis: A cross-sectional study in Hunan province, China. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2012, 41, 748–754. [Google Scholar] [CrossRef]
- Cai, X.; Yao, Z.; Liu, G.; Cui, L.; Li, H.; Huang, J. Oral submucous fibrosis: A clinicopathological study of 674 cases in China. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2019, 48, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Hazarey, V.K.; Erlewad, D.M.; Mundhe, K.A.; Ughade, S.N. Oral submucous fibrosis: Study of 1000 cases from central India. J. Oral Pathol. Med. 2007, 36, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Ko, Y.C.; Huang, H.L.; Chao, Y.Y.; Tsai, C.C.; Shieh, T.Y.; Lin, L.M. The precancer risk of betel quid chewing, tobacco use and alcohol consumption in oral leukoplakia and oral submucous fibrosis in southern Taiwan. Br. J. Cancer 2003, 88, 366–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, C.P.; Hsieh, R.P.; Chen, T.H.; Chang, Y.F.; Liu, B.Y.; Wang, J.T.; Sun, A.; Kuo, M.Y. High incidence of autoantibodies in Taiwanese patients with oral submucous fibrosis. J. Oral Pathol. Med. 2002, 31, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Aishwarya, K.M.; Reddy, M.P.; Kulkarni, S.; Doshi, D.; Reddy, B.S.; Satyanarayana, D. Effect of Frequency and Duration of Tobacco Use on Oral Mucosal Lesions—A Cross-Sectional Study among Tobacco Users in Hyderabad, India. Asian Pac. J. Cancer Prev. 2017, 18, 2233–2238. [Google Scholar] [CrossRef]
- Haider, S.M.; Merchant, A.T.; Fikree, F.F.; Rahbar, M.H. Clinical and functional staging of oral submucous fibrosis. Br. J. Oral Maxillofac. Surg. 2000, 38, 12–15. [Google Scholar] [CrossRef]
- Rajendran, R.; George, T. Morphohistometric analysis of advancing tumor fronts in malignancies associated with oral submucous fibrosis. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2003, 14, 194–205. [Google Scholar]
- Pindborg, J.J. Oral submucous fibrosis: A review. Ann. Acad. Med. Singap. 1989, 18, 603–607. [Google Scholar]
- Gondivkar, D.S.M.; Gadbail, D.A.R.; Sarode, D.S.C.; Gondivkar, D.R.S.; Patil, S.; Gaikwad, D.R.N.; Dinh-Toi, C.; Yuwanati, D.M. Treatment outcomes of laser therapy in oral submucous fibrosis-a systematic review. J. Oral Biol. Craniofac. Res. 2020, 10, 253–258. [Google Scholar] [CrossRef]
- Mezitis, M.; Rallis, G.; Zachariades, N. The Normal Range of Mouth Opening. J. Oral Maxil. Surg. 1989, 47, 1028–1029. [Google Scholar] [CrossRef]
- Reshma, V.; Varsha, B.K.; Rakesh, P.; Radhika, M.B.; Soumya, M.; D’Mello, S. Aggrandizing oral submucous fibrosis grading using an adjunct special stain: A pilot study. J. Oral Maxillofac. Pathol. 2016, 20, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Khanna, J.N.; Andrade, N.N. Oral submucous fibrosis: A new concept in surgical management. Report of 100 cases. Int. J. Oral Maxillofac. Surg. 1995, 24, 433–439. [Google Scholar] [CrossRef]
- Bhatt, P.; Manjunath, M.; Khakhla, D.; Gubrellay, P.; Bhargava, R.; Guruprasad, L. Assessment and correlation between functional and histological staging of oral submucous fibrosis: A clinicohistopathologic study. Natl. J. Maxillofac. Surg. 2019, 10, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, K.; Devi, M.U.; Joshua, E.; Kirankumar, K.; Saraswathi, T.R. Oral submucous fibrosis: A case-control study in Chennai, South India. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2004, 33, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Holla, V.A.; Chatra, L.K.; Shenai, P.; Shetty, D.; Baliga, A. A Study to Analyze Different Patterns of Quid Usage among Subjects with Oral Submucous Fibrosis in Mangalore Population. Adv. Med. 2016, 2016, 6124059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, Y.H.; Wang, T.H.; Shieh, T.M.; Tseng, Y.H. Oral Submucous Fibrosis: A Review on Etiopathogenesis, Diagnosis, and Therapy. Int. J. Mol. Sci. 2019, 20, 2940. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Rakshit, A.; Srivastava, S.; Suryawanshi, H.; Kumar, P.; Naik, R. Comparative evaluation of micronuclei in exfoliated oral epithelial cells in potentially malignant disorders and malignant lesions using special stains. J. Oral Maxillofac. Pathol. 2019, 23, 157. [Google Scholar] [CrossRef]
- Shridhar, K.; Walia, G.K.; Aggarwal, A.; Gulati, S.; Geetha, A.V.; Prabhakaran, D.; Dhillon, P.K.; Rajaraman, P. DNA methylation markers for oral pre-cancer progression: A critical review. Oral Oncol. 2016, 53, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Chen, L.; Mashrah, M.; Zhu, Y.; Liu, J.; Yang, X.; He, Z.; Wang, L.; Xiang, T.; Yao, Z.; et al. Deregulation of secreted frizzled-related proteins is associated with aberrant beta-catenin activation in the carcinogenesis of oral submucous fibrosis. Onco Targets 2015, 8, 2923–2931. [Google Scholar] [CrossRef] [Green Version]
- Zade, P.R.; Gosavi, S.R.; Hazarey, V.K.; Ganvir, S.M. Matrix metalloproteinases-3 gene-promoter polymorphism as a risk factor in oral submucous fibrosis in an Indian population: A pilot study. J. Investig. Clin. Dent. 2017, 8, e12228. [Google Scholar] [CrossRef]
- Rai, A.; Ahmad, T.; Parveen, S.; Parveen, S.; Faizan, M.I.; Ali, S. Expression of transforming growth factor beta in oral submucous fibrosis. J. Oral Biol. Craniofac. Res. 2020, 10, 166–170. [Google Scholar] [CrossRef]
- Liao, Y.W.; Yu, C.C.; Hsieh, P.L.; Chang, Y.C. miR-200b ameliorates myofibroblast transdifferentiation in precancerous oral submucous fibrosis through targeting ZEB2. J. Cell Mol. Med. 2018, 22, 4130–4138. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Hsieh, P.L.; Liao, Y.W.; Peng, C.Y.; Yu, C.C.; Lu, M.Y. Arctigenin Reduces Myofibroblast Activities in Oral Submucous Fibrosis by LINC00974 Inhibition. Int. J. Mol. Sci. 2019, 20, 1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.Y.; Yu, C.C.; Liao, Y.W.; Hsieh, P.L.; Lu, M.Y.; Lin, K.C.; Wu, C.Z.; Tsai, L.L. LncRNA LINC00974 activates TGF-beta/Smad signaling to promote oral fibrogenesis. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2019, 48, 151–158. [Google Scholar] [CrossRef]
- Lu, M.Y.; Yu, C.C.; Chen, P.Y.; Hsieh, P.L.; Peng, C.Y.; Liao, Y.W.; Yu, C.H.; Lin, K.H. miR-200c inhibits the arecoline-associated myofibroblastic transdifferentiation in buccal mucosal fibroblasts. J. Med. Assoc. 2018, 117, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Li, N.; Zeng, L.; Shen, Z.; Jiang, C. Pathogenesis investigation of miR-199-5p in oral submucous fibrosis based on bioinformatics analysis. Oral Dis. 2019, 25, 456–465. [Google Scholar] [CrossRef]
- Chen, J.; Liu, B.J.; Du, C.; Cao, Q.; Li, M.; Feng, H. [Target regulation of micro-RNA-203 to the expression of collagen type alpha 4 and its role in oral submucous fibrosis]. Zhonghua Kou Qiang Yi Xue Za Zhi = Zhonghua Kouqiang Yixue Zazhi = Chin. J. Stomatol. 2016, 51, 526–531. [Google Scholar] [CrossRef]
- Zheng, L.; Jian, X.; Guo, F.; Li, N.; Jiang, C.; Yin, P.; Min, A.J.; Huang, L. miR-203 inhibits arecoline-induced epithelial-mesenchymal transition by regulating secreted frizzled-related protein 4 and transmembrane-4 L six family member 1 in oral submucous fibrosis. Oncol. Rep. 2015, 33, 2753–2760. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Liao, Y.W.; Hsieh, P.L.; Yu, C.H.; Chueh, P.J.; Lin, T.; Yang, P.Y.; Yu, C.C.; Chou, M.Y. miR-1246 as a therapeutic target in oral submucosa fibrosis pathogenesis. J. Formos. Med. Assoc. = Taiwan Yi Zhi 2019, 118, 1093–1096. [Google Scholar] [CrossRef]
- Fang, C.Y.; Yu, C.C.; Liao, Y.W.; Hsieh, P.L.; Ohiro, Y.; Chu, P.M.; Huang, Y.C.; Yu, C.H.; Tsai, L.L. miR-10b regulated by Twist maintains myofibroblasts activities in oral submucous fibrosis. J. Formos. Med. Assoc. = Taiwan Yi Zhi 2020, 119, 1167–1173. [Google Scholar] [CrossRef]
- Lin, C.Y.; Liao, Y.W.; Hsieh, P.L.; Lu, M.Y.; Peng, C.Y.; Chu, P.M.; Yang, H.W.; Huang, Y.F.; Yu, C.C.; Yu, C.H. LncRNA GAS5-AS1 inhibits myofibroblasts activities in oral submucous fibrosis. J. Formos. Med. Assoc. = Taiwan Yi Zhi 2018, 117, 727–733. [Google Scholar] [CrossRef]
- Bazarsad, S.; Zhang, X.; Kim, K.Y.; Illeperuma, R.; Jayasinghe, R.D.; Tilakaratne, W.M.; Kim, J. Identification of a combined biomarker for malignant transformation in oral submucous fibrosis. J. Oral Pathol. Med. 2017, 46, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Keshav, R.; Narayanappa, U. Expression of Proliferating Cell Nuclear Antigen (PCNA) in Oral Submucous Fibrosis: An Immunohistochemical Study. J. Clin. Diagn. Res. 2015, 9, ZC20–ZC23. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Tao, D.; Fang, Y.; Deng, C.; Xu, Q.; Zhou, J. TNF-Alpha Promotes Invasion and Metastasis via NF-Kappa B Pathway in Oral Squamous Cell Carcinoma. Med. Sci. Monit. Basic Res. 2017, 23, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Hou, X.; Feng, H.; Liu, R.; Xu, H.; Gong, W.; Deng, J.; Sun, C.; Gao, Y.; Peng, J.; et al. Proteomic identification of cyclophilin A as a potential biomarker and therapeutic target in oral submucous fibrosis. Oncotarget 2016, 7, 60348–60365. [Google Scholar] [CrossRef]
- Xie, X.; Jiang, Y.; Yuan, Y.; Wang, P.; Li, X.; Chen, F.; Sun, C.; Zhao, H.; Zeng, X.; Jiang, L.; et al. MALDI imaging reveals NCOA7 as a potential biomarker in oral squamous cell carcinoma arising from oral submucous fibrosis. Oncotarget 2016, 7, 59987–60004. [Google Scholar] [CrossRef]
- Tsai, C.H.; Lee, S.S.; Chang, Y.C. Hypoxic regulation of plasminogen activator inhibitor-1 expression in human buccal mucosa fibroblasts stimulated with arecoline. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2015, 44, 669–673. [Google Scholar] [CrossRef]
- Pammar, C.; Nayak, R.S.; Kotrashetti, V.S.; Hosmani, J. Comparison of microvessel density using CD34 and CD105 in oral submucous fibrosis and its correlation with clinicopathological features: An immunohistochemical study. J. Cancer Res. 2018, 14, 983–988. [Google Scholar] [CrossRef]
- Bag, S.; Dutta, D.; Chaudhary, A.; Sing, B.C.; Pal, M.; Ray, A.K.; Banerjee, R.; Paul, R.R.; Basak, A.; Das, A.K.; et al. Identification of alpha-enolase as a prognostic and diagnostic precancer biomarker in oral submucous fibrosis. J. Clin. Pathol. 2018, 71, 228–238. [Google Scholar] [CrossRef]
- Jeyapradha, D.; Saraswathi, T.; Ranganathan, K.; Wilson, K. Comparison of the frequency of sister chromatid exchange in pan chewers and oral submucous fibrosis patients. J. Oral Maxillofac. Pathol. 2011, 15, 278–282. [Google Scholar] [CrossRef] [Green Version]
- Paulose, S.; Rangdhol, V.; Ramesh, R.; Jeelani, S.A.; Brooklyin, S. Estimation of serum malondialdehyde and assessment of DNA damage using comet assay in patients with oral submucous fibrosis. J. Investig. Clin. Dent. 2016, 7, 286–293. [Google Scholar] [CrossRef]
- Sivaramakrishnan, M.; Sivapathasundharam, B.; Jananni, M. Evaluation of lactate dehydrogenase enzyme activity in saliva and serum of oral submucous fibrosis patients. J. Oral Pathol. Med. 2015, 44, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Kritika, C.; Bajoria, A.A.; Choudhury, P.; Sahoo, S.K.; Sangamesh, N.C. Estimation of Salivary and Serum Lactate Dehydrogenase in Oral Submucous Fibrosis. J. Int. Soc. Prev. Community Dent. 2018, 8, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Gurudath, S.; Ganapathy, K.S.; Pai, A.; Ballal, S.; Asha, M.L. Estimation of superoxide dismutase and glutathione peroxidase in oral submucous fibrosis, oral leukoplakia and oral cancer--a comparative study. Asian Pac. J. Cancer Prev. 2012, 13, 4409–4412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- More, C.B.; Shah, P.H.; Venkatesh, R. Estimation of Serum Protein in Oral Potentially Malignant Disorders and Oral Malignancy—A Cross-Sectional Study. J. Clin. Diagn. Res. 2017, 11, ZC17–ZC19. [Google Scholar] [CrossRef] [PubMed]
- Hosthor, S.S.; Mahesh, P.; Priya, S.A.; Sharada, P.; Jyotsna, M.; Chitra, S. Quantitative analysis of serum levels of trace elements in patients with oral submucous fibrosis and oral squamous cell carcinoma: A randomized cross-sectional study. J. Oral Maxillofac. Pathol. 2014, 18, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Rathod, Y.G.; Kulkarni, S.P.; Khairnar, M.R.; Joshi, P.N.; Patle, B.K.; Pagare, J.S. Estimation of serum beta-carotene level in patients suffering from oral submucous fibrosis. J. Exp. Oncol. 2018, 12, 267–271. [Google Scholar]
- Raffat, M.A.; Hadi, N.I.; Hosein, M.; Zubairi, A.M.; Ikram, S.; Akram, Z. Differential expression of salivary S100A7 in oral submucous fibrosis. Saudi. Dent. J. 2019, 31, 39–44. [Google Scholar] [CrossRef]
- Zhou, G.; Xie, T.X.; Zhao, M.; Jasser, S.A.; Younes, M.N.; Sano, D.; Lin, J.; Kupferman, M.E.; Santillan, A.A.; Patel, V.; et al. Reciprocal negative regulation between S100A7/psoriasin and beta-catenin signaling plays an important role in tumor progression of squamous cell carcinoma of oral cavity. Oncogene 2008, 27, 3527–3538. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Matta, A.; Kak, I.; Srivastava, G.; Assi, J.; Leong, I.; Witterick, I.; Colgan, T.J.; Macmillan, C.; Siu, K.W.; et al. S100A7 overexpression is a predictive marker for high risk of malignant transformation in oral dysplasia. Int. J. Cancer 2014, 134, 1379–1388. [Google Scholar] [CrossRef]
- Kallalli, B.N.; Rawson, K.; Muzammil; Singh, A.; Awati, M.A.; Shivhare, P. Lactate dehydrogenase as a biomarker in oral cancer and oral submucous fibrosis. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2016, 45, 687–690. [Google Scholar] [CrossRef]
- Divyambika, C.V.; Sathasivasubramanian, S.; Vani, G.; Vanishree, A.J.; Malathi, N. Correlation of Clinical and Histopathological Grades in Oral Submucous Fibrosis Patients with Oxidative Stress Markers in Saliva. Indian J. Clin. Biochem. 2018, 33, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Politis, C.; Jacobs, R. Salivary 8-hydroxy-2-deoxyguanosine, malondialdehyde, vitamin C, and vitamin E in oral pre-cancer and cancer: Diagnostic value and free radical mechanism of action. Clin. Oral Investig. 2016, 20, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.J.; Kang, W.Y.; Yan, W.Y. [Advances of chemical constituents and pharmacological activities of Myristica genus]. Zhongguo Zhong Yao Za Zhi 2014, 39, 2438–2449. [Google Scholar] [PubMed]
- Bishen, K.A.; Radhakrishnan, R.; Satyamoorthy, K. The role of basic fibroblast growth factor in oral submucous fibrosis pathogenesis. J. Oral Pathol. Med. 2008, 37, 402–411. [Google Scholar] [CrossRef]
- Gabbiani, G.; Chaponnier, C.; Huttner, I. Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J. Cell Biol. 1978, 76, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Shinde, A.V.; Humeres, C.; Frangogiannis, N.G. The role of alpha-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 298–309. [Google Scholar] [CrossRef]
- Gosavi, S.R.; Torkadi, A.A. Serum C-reactive protein in oral submucous fibrosis and oral squamous cell carcinoma: A cross-sectional study. J. Oral Maxillofac. Pathol. 2020, 24, 46–51. [Google Scholar] [CrossRef]
- Shakunthala, G.K.; Annigeri, R.G.; Arunkumar, S. Role of oxidative stress in the pathogenesis of oral submucous fibrosis: A preliminary prospective study. Contemp. Clin. Dent. 2015, 6, S172–S174. [Google Scholar] [CrossRef]
- Rajendran, R.; Rajeesh, M.P.; Shaikh, S.; Shanthi; Pillai, M.R. Expression of matrix metalloproteinases (MMP-1, MMP-2 and MMP-9) and their inhibitors (TIMP-1 and TIMP-2) in oral submucous fibrosis. Indian J. Dent. Res. 2006, 17, 161–166. [Google Scholar] [CrossRef]
- Lee, I.T.; Lin, C.C.; Wu, Y.C.; Yang, C.M. TNF-alpha induces matrix metalloproteinase-9 expression in A549 cells: Role of TNFR1/TRAF2/PKCalpha-dependent signaling pathways. J. Cell Physiol. 2010, 224, 454–464. [Google Scholar] [CrossRef]
- Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 1975, 72, 3666–3670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Investig. Derm. 2007, 127, 526–537. [Google Scholar] [CrossRef]
- Davalli, P.; Mitic, T.; Caporali, A.; Lauriola, A.; D’Arca, D. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxid. Med. Cell. Longev. 2016, 2016, 3565127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bautista-Nino, P.K.; Portilla-Fernandez, E.; Vaughan, D.E.; Danser, A.H.; Roks, A.J. DNA Damage: A Main Determinant of Vascular Aging. Int. J. Mol. Sci. 2016, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnott, J.A.; Lambi, A.G.; Mundy, C.; Hendesi, H.; Pixley, R.A.; Owen, T.A.; Safadi, F.F.; Popoff, S.N. The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis. Crit. Rev. Eukaryot. Gene Exp. 2011, 21, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Lipson, K.E.; Wong, C.; Teng, Y.; Spong, S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012, 5, S24. [Google Scholar] [CrossRef] [Green Version]
- Opsahl, W.; Zeronian, H.; Ellison, M.; Lewis, D.; Rucker, R.B.; Riggins, R.S. Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. J. Nutr. 1982, 112, 708–716. [Google Scholar] [CrossRef]
- Tom, A.; Baghirath, V.; Krishna, B.; Ganepalli, A.; Kumar, J.V.; Mohan, S.P. Ultrastructural Changes of Collagen in Different Histopathological Grades of Oral Submucous Fibrosis. J. Pharm. Bioallied. Sci. 2019, 11, S309–S313. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, L.; Misra, N.; Deepak, U.; Shiv Kumar, G.C. Estimation of serum zinc, copper, and iron in the patients of oral submucous fibrosis. Natl. J. Maxillofac. Surg. 2015, 6, 190–193. [Google Scholar] [CrossRef]
- Mohiuddin, S.; Fatima, N.; Hosein, S.; Hosein, M. High risk of malignant transformation of oral submucous fibrosis in Pakistani females: A potential national disaster. J. Pak. Med. Assoc. 2016, 66, 1362–1366. [Google Scholar]
- Bari, S.; Metgud, R.; Vyas, Z.; Tak, A. An update on studies on etiological factors, disease progression, and malignant transformation in oral submucous fibrosis. J. Cancer Res. 2017, 13, 399–405. [Google Scholar] [CrossRef]
- Anila Namboodiripad, P.C. Cystatin C: Its role in pathogenesis of OSMF. J. Oral Biol. Craniofac. Res. 2014, 4, 42–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamurthy, V.K.P.S.R. Transforming growth factor beta 1 in oral submucous fibrosis: An immunohistochemical study—Understanding the pathogenesis. J. Dent. Res. Rev. 2014, 1, 75. [Google Scholar]
- Pandiar, D.; Shameena, P. Immunohistochemical expression of CD34 and basic fibroblast growth factor (bFGF) in oral submucous fibrosis. J. Oral Maxillofac. Pathol. 2014, 18, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Udupa, R.; Hallikeri, K.; Trivedi, D.J. The comet assay a method to measure DNA damage in oral submucous fibrosis patients: A case-control study. Clin. Cancer Investig. J. 2014, 3, 299–304. [Google Scholar]
- Shrestha, A.; Carnelio, S. Evaluation of matrix metalloproteinases-2 (MMP-2) and tissue inhibitors of metalloproteinases-2 (TIMP-2) in oral submucous fibrosis and their correlation with disease severity. Kathmandu Univ. Med. J. (Kumj) 2013, 11, 274–281. [Google Scholar] [CrossRef]
- Ranganathan, K.; Kavitha, R.; Sawant, S.S.; Vaidya, M.M. Cytokeratin expression in oral submucous fibrosis--an immunohistochemical study. J. Oral Pathol. Med. 2006, 35, 25–32. [Google Scholar] [CrossRef]
- Divya, V.C.; Sathasivasubramanian, S. Estimation of serum and salivary immunoglobulin G and immunoglobulin A in oral pre-cancer: A study in oral submucous fibrosis and oral lichen planus. J. Nat. Sci. Biol. Med. 2014, 5, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Zhu, Y.; He, Z.; Zhang, D.; Guo, F.; Jian, X.; Zhang, C. Long Non-Coding RNA Expression Profile Associated with Malignant Progression of Oral Submucous Fibrosis. J. Oncol. 2019, 2019, 6835176. [Google Scholar] [CrossRef] [Green Version]
- Colak, S.; Ten Dijke, P. Targeting TGF-beta Signaling in Cancer. Trends Cancer 2017, 3, 56–71. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharm. Sin. 2008, 29, 1275–1288. [Google Scholar] [CrossRef] [Green Version]
- Mishev, G.; Deliverska, E.; Hlushchuk, R.; Velinov, N.; Aebersold, D.; Weinstein, F.; Djonov, V. Prognostic value of matrix metalloproteinases in oral squamous cell carcinoma. Biotechnol. Biotechnol. Equip. 2014, 28, 1138–1149. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, I.A.; Sanna, V.; Ahmad, N.; Sechi, M.; Mukhtar, H. Resveratrol nanoformulation for cancer prevention and therapy. Ann. N. Y. Acad. Sci. 2015, 1348, 20–31. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr. Eval. Carcinog. Risks Hum. 2004, 85, 1–334. [Google Scholar]
- Murgod, V.V.; Kale, A.D.; Angadi, P.V.; Hallikerimath, S. Morphometric analysis of the mucosal vasculature in oral submucous fibrosis and its comparison with oral squamous cell carcinoma. J. Oral Sci. 2014, 56, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Martin-Hernan, F.; Sanchez-Hernandez, J.G.; Cano, J.; Campo, J.; del Romero, J. Oral cancer, HPV infection and evidence of sexual transmission. Med. Oral Patol. Oral Cir. Bucal. 2013, 18, e439–e444. [Google Scholar] [CrossRef]
- Jalouli, J.; Ibrahim, S.O.; Mehrotra, R.; Jalouli, M.M.; Sapkota, D.; Larsson, P.A.; Hirsch, J.M. Prevalence of viral (HPV, EBV, HSV) infections in oral submucous fibrosis and oral cancer from India. Acta Otolaryngol. 2010, 130, 1306–1311. [Google Scholar] [CrossRef]
- Huang, S.; Ling, T.; Wu, H. [Experimental study on aqueous areca nut extracts inducing oral submucous fibrosis in rats. I. Observation of histomorphology]. Hua Xi Kou Qiang Yi Xue Za Zhi 1997, 15, 91–93, 96. [Google Scholar]
- Yang, B.; Fu, M.F.; Tang, Z.G. [Rat model with oral submucous fibrosis induced by arecoline and mechanical stimulation]. Hua Xi Kou Qiang Yi Xue Za Zhi 2019, 37, 260–264. [Google Scholar] [CrossRef]
- Maria, S.; Kamath, V.V.; Satelur, K.; Rajkumar, K. Evaluation of transforming growth factor beta1 gene in oral submucous fibrosis induced in Sprague-Dawley rats by injections of areca nut and pan masala (commercial areca nut product) extracts. J. Cancer Res. 2016, 12, 379–385. [Google Scholar] [CrossRef]
- Chang, N.W.; Pei, R.J.; Tseng, H.C.; Yeh, K.T.; Chan, H.C.; Lee, M.R.; Lin, C.; Hsieh, W.T.; Kao, M.C.; Tsai, M.H.; et al. Co-treating with arecoline and 4-nitroquinoline 1-oxide to establish a mouse model mimicking oral tumorigenesis. Chem. Biol. Interact. 2010, 183, 231–237. [Google Scholar] [CrossRef]
- Huang, J.L.; Lu, H.H.; Lu, Y.N.; Hung, P.S.; Lin, Y.J.; Lin, C.C.; Yang, C.C.; Wong, T.Y.; Lu, S.Y.; Lin, C.S. Enhancement of the genotoxicity of benzo[a]pyrene by arecoline through suppression of DNA repair in HEp-2 cells. Toxicol. Vitr. 2016, 33, 80–87. [Google Scholar] [CrossRef]
- Tseng, C.H. Betel nut chewing is associated with hypertension in Taiwanese type 2 diabetic patients. Hypertens. Res. 2008, 31, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Sumeth Perera, M.W.; Gunasinghe, D.; Perera, P.A.; Ranasinghe, A.; Amaratunga, P.; Warnakulasuriya, S.; Kaluarachchi, K. Development of an in vivo mouse model to study oral submucous fibrosis. J. Oral Pathol. Med. 2007, 36, 273–280. [Google Scholar] [CrossRef]
- Chiang, M.H.; Chen, P.H.; Chen, Y.K.; Chen, C.H.; Ho, M.L.; Wang, Y.H. Characterization of a Novel Dermal Fibrosis Model Induced by Areca Nut Extract that Mimics Oral Submucous Fibrosis. PLoS ONE 2016, 11, e0166454. [Google Scholar] [CrossRef] [Green Version]
- Wen, Q.T.; Wang, T.; Yu, D.H.; Wang, Z.R.; Sun, Y.; Liang, C.W. Development of a mouse model of arecoline-induced oral mucosal fibrosis. Asian Pac. J. Trop. Med. 2017, 10, 1177–1184. [Google Scholar] [CrossRef]
- Tilakaratne, W.M.; Ekanayaka, R.P.; Herath, M.; Jayasinghe, R.D.; Sitheeque, M.; Amarasinghe, H. Intralesional corticosteroids as a treatment for restricted mouth opening in oral submucous fibrosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, 224–231. [Google Scholar] [CrossRef]
- Haque, M.F.; Meghji, S.; Nazir, R.; Harris, M. Interferon gamma (IFN-gamma) may reverse oral submucous fibrosis. J. Oral Pathol. Med. 2001, 30, 12–21. [Google Scholar] [CrossRef]
- Lin, H.J.; Lin, J.C. Treatment of oral submucous fibrosis by collagenase: Effects on oral opening and eating function. Oral Dis. 2007, 13, 407–413. [Google Scholar] [CrossRef]
- James, L.; Shetty, A.; Rishi, D.; Abraham, M. Management of Oral Submucous Fibrosis with Injection of Hyaluronidase and Dexamethasone in Grade III Oral Submucous Fibrosis: A Retrospective Study. J. Int. Oral Health 2015, 7, 82–85. [Google Scholar]
- Maher, R.; Aga, P.; Johnson, N.W.; Sankaranarayanan, R.; Warnakulasuriya, S. Evaluation of multiple micronutrient supplementation in the management of oral submucous fibrosis in Karachi, Pakistan. Nutr. Cancer 1997, 27, 41–47. [Google Scholar] [CrossRef]
- Borle, R.M.; Borle, S.R. Management of oral submucous fibrosis: A conservative approach. J. Oral Maxillofac. Surg. 1991, 49, 788–791. [Google Scholar] [CrossRef]
- Angadi, P.V. Drug treatment for oral submucous fibrosis. Evid. Based Dent. 2010, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, R.; Rani, V.; Shaikh, S. Pentoxifylline therapy: A new adjunct in the treatment of oral submucous fibrosis. Indian J. Dent. Res. 2006, 17, 190–198. [Google Scholar] [CrossRef]
- Dani, V.B.; Patel, S.H. The effectiveness of therapeutic ultrasound in patients with oral submucosal fibrosis. Indian J. Cancer 2018, 55, 248–250. [Google Scholar] [CrossRef]
- Li, Y.H.; Chang, W.C.; Chiang, T.E.; Lin, C.S.; Chen, Y.W. Mouth-opening device as a treatment modality in trismus patients with head and neck cancer and oral submucous fibrosis: A prospective study. Clin. Oral Investig. 2019, 23, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Patil, P.G.; Patil, S.P. Novel mouth-exercising device for oral submucous fibrosis. J. Prosthodont. 2012, 21, 556–560. [Google Scholar] [CrossRef]
- Gondivkar, S.M.; Gadbail, A.R.; Sarode, S.C.; Gondivkar, R.S.; Patil, S.; Gaikwad, R.N.; Yuwanati, M. Clinical efficacy of mouth exercising devices in oral submucous fibrosis: A systematic review. J. Oral Biol. Craniofac. Res. 2020, 10, 315–320. [Google Scholar] [CrossRef]
- van der Geer, S.J.; Reintsema, H.; Kamstra, J.I.; Roodenburg, J.L.N.; Dijkstra, P.U. The use of stretching devices for treatment of trismus in head and neck cancer patients: A randomized controlled trial. Support Care Cancer 2020, 28, 9–11. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.H.; Liu, C.C.; Chiang, T.E.; Chen, Y.W. EZBite open-mouth device: A new treatment option for oral submucous fibrosis-related trismus. J. Dent. Sci. 2018, 13, 80–81. [Google Scholar] [CrossRef]
- Cox, S.; Zoellner, H. Physiotherapeutic treatment improves oral opening in oral submucous fibrosis. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2009, 38, 220–226. [Google Scholar] [CrossRef]
- Kapre, M.; Sudhanshu, K. (Eds.) Surgery of Trismus in Oral Submucous Fibrosis. 2018. Available online: https://www.springer.com/gp/book/9789811048906 (accessed on 31 August 2020).
- Lai, D.R.; Chen, H.R.; Lin, L.M.; Huang, Y.L.; Tsai, C.C. Clinical-Evaluation of Different Treatment Methods for Oral Submucous Fibrosis—a 10-Year Experience with 150 Cases. J. Oral Pathol. Med. 1995, 24, 402–406. [Google Scholar] [CrossRef]
- Kholakiya, Y.; Jose, A.; Rawat, A.; Nagori, S.A.; Jacob, S.; Roychoudhury, A. Surgical management of oral submucous fibrosis with “Seagull-nasolabial flap” combined with short-term oral pentoxifylline for preventing relapse. J. Stomatol. Oral Maxillofac. Surg. 2020. [Google Scholar] [CrossRef]
- Panta, P.; Sarode, S.C.; Sarode, G.S.; Patil, S. New Directions for Oral Submucous Fibrosis Research: Whole Evaluation for Holistic Rehabilitation! J. Contemp. Dent. Pr. 2018, 19, 901–903. [Google Scholar]
- Maia, A.V.; Furlan, R.; Moraes, K.O.; Amaral, M.S.; Medeiros, A.M.; Motta, A.R. Tongue strength rehabilitation using biofeedback: A case report. Codas 2019, 31, e20180163. [Google Scholar] [CrossRef]
Clinical Stage | Functional Stage |
---|---|
Stage I: faucial bands only | Stage A: mouth opening >20 mm |
Stage II: faucial and buccal bands | Stage B: mouth opening 11–19 mm |
Stage III: faucial, buccal and labial bands | Stage C: mouth opening <10 mm |
Group | Histological Features |
---|---|
Group I-very early | Fine fibrillar collagen network interspersed with marked edema, blood vessels dilated and congested, large aggregate of plump fibroblasts with abundant cytoplasm, inflammatory cells mainly PMN with few eosinophils. Epithelium normal, with occasional hyperplasia |
Group II-early | Juxta-epithelial hyalinization with collagen present as thickened but separate bundles, blood vessels dilated and congested, moderate number of young fibroblasts, inflammatory cells mainly PMN, eosinophils, and occasional plasma cells. Epithelium shows flattening/shortening of rete pegs with varying degree of keratinization |
Group III-moderately advanced | Juxta-epithelial hyalinization is present. Faintly discernible collagen bundles separated by very slight, residual edema. Muscle fibers interspersed within collagen fibers reveal the beginning of degeneration and irregularity of striae. Blood vessels constricted, mature fibrocytes with scanty cytoplasm, and spindle-shaped nuclei. Inflammatory cells, mainly lymphocytes and plasma cells. Epithelium markedly atrophic with total loss of rete pegs |
Group IV-advanced | Collagen hyalinized as a smooth sheet eliminating all evidence of individual bundles. Extensive fibrosis obliterating the mucosal blood vessels and eliminating melanocytes. Fibroblasts markedly absent within hyalinized zones. Extensive degeneration of muscle fibers. Total loss of rete pegs with mild-to-moderate atypia |
Specimens | Upregulation | Downregulation | |
---|---|---|---|
Cells | Cytology | micronuclei in exfoliated buccal cells [66] | |
Tissues | DNA | hyper-methylated loci reported in three or more studies included p16, p14, MGMT and DAPK [67] | |
Wnt inhibitory factor-1 promoter methylation [35] | |||
secreted frizzled-related proteins (SFRP-1) and SFRP-5 [68] | |||
Matrix metalloproteinases-3 (MMP3) polymorphism [69] | |||
RNA | transforming growth factor beta receptor (TGF-βR1) and TGF-βR2 [70] | miR-200b [71] | |
LncRNA LINC00974 [72,73] | miR-200c [74] | ||
miR-199-5p [75] | miR-203 [76,77] | ||
miR-1246 [78]; miR10-b [79] | LncRNA GAS5-AS1 [80] | ||
Protein | TGF-βR1 and TGF-βR2 [70] | β-catenin [81] | |
proliferating cell nuclear antigen (PCNA) [82] | Wnt inhibitory factor-1 (WIF1) [35] | ||
cyclophilin A [83,84] | SFRP-1 and SFRP-5 [68] | ||
nuclear coactivator 7 (NCOA7) [85] | |||
hypoxia-inducible factor 1α (HIF-1α) and plasminogen activator inhibitor-1 (PAI-1) [86] | |||
endoglin (CD105) [87] | |||
Ki67, cyclin D1, mesenchymal-epithelial transition factor (c-Met), insulin-like growth factor II mRNA binding protein 3 (IMP3) [81] | |||
β-catenin [68] | |||
α-enolase [88] | |||
Zinc finger E-box-binding homeobox 1 (ZEB1) [74] | |||
ZEB2 [71] | |||
Serum | Cytology | sister chromatid exchange in lymphocytes [89] | |
DNA damage in lymphocyte [90] | |||
Protein | lactate dehydrogenase (LDH) [91,92] | superoxide dismutase (SOD) and glutathione peroxidase (GPx) [93] | |
malondialdehyde (MDA) [90] | serum protein, globulin [94] | ||
Others | Copper [95] | β-carotene [96] | |
Saliva | RNA | S100A7 [97,98,99] | |
Protein | LDH [91,92,100] | GPx and SOD [101] | |
Others | 8-hydroxy-2-deoxyguanosine (8-OHdG) and MDA [102] | vitamin C and vitamin E [102] |
Author/Year/Country | Animal Type | Methods | Outcomes | Ref. |
---|---|---|---|---|
Drug, Dosage, Control, Observed Time Point | Phenotypes or Markers | |||
M.W. Sumeth Perera/2007/Sri Lanka | Female BALB/c 10–12 weeks of age Weighing 28–30 g | Topical application of aqueous areca nut extracts 256 mg/mL on buccal mucosa twice daily 6 days per week Control group: apply 50 mM NaCl. Observed at 300th, 350th, 450th and 600th day | Epithelial atrophy, Increased cellularity of fibroblasts, Fibrosis of connective tissue, Focal infiltration of inflammatory cells, Muscle atrophy. | [144] |
M.H. Chiang/2016/Taiwan | Specific pathogen-free male BALB/C mice 6-week weeks of age Weighing 20 g | Subcutaneous (SC) injection of 100μL ANE, 10mg/mL and 20 mg/mL on mice shaving back once per 2 day. Control group, PBS injection Observed on 3rd, 7th, 14th,30th day | Increased dermal thickness Collagen deposition, Elevated biomarkers: α-SMA, and connective tissue growth factor (CTGF) | [145] |
Shilpa Maria/2016/India | Sprague-Dawley rats Weighing 120–150 g | Inject o.2ml supernatant of o.2 g/6 mL water areca nut extract to buccal mucosa every alternate day for 48 weeks Control group: inject 0.2 mL saline Observed duration: every 6 weeks | OSF-like lesions: Atrophic epithelium, Inflammation and accumulation of dense bundles of collagen fibers Upregulation of TGF-β1 | [140] |
Qi-Tao Wen/2017/China | Male BALB/c mouse (6 weeks old) | Mice were allowed to drink distilled water containing1000 mg/mL arecoline Control group: drinking distilled water Replace water bottle once a week Observed every 2 weeks to 20 weeks | Epithelium atrophy, Elevated collagen type I and angiogenesis | [146] |
Bo Yang/2019/China | Male SD rat Weighing 325.4±22.7 g | Arecoline 0.5, 2, 8 mg/mL dissolved in normal saline and wiping on oral mucosa with cotton bud plus mechanical stimulation Control group, w/o mechanical stimulation Once per 2 days Observed at 16th week. | Mouth openings were significantly reduced, and the expression levels of type Ⅲ collagen and TGF-β1 were significantly increased. Mechanical stimulation can increase the three indexes of mucosa, no pathological change and difference in the mouth opening was observed. | [139] |
Drug Name | Drug Type | Effect | Reference |
---|---|---|---|
Hydrocortisone, Triamcinolone, Dexamethasone Betamethasone | Corticosteroid | Anti-inflammation | [147] |
IFN-γ | Cytokines | Anti-inflammation | [148] |
Collagenase, Hyaluronidase | Enzymes | Breaking down the ground substance in connective tissue | [149] [150] |
Pentoxifylline | Vasodilator | Hampered mucosal vascularity | [154] |
Isoxsuprine | |||
Vitamin A, B, C, D, E | Adjuvant | Deactivate free radicals | [151] |
Iron, | Adjuvant | Relief the symptom | [25] |
Items | Drug Treatments | Mouth Exercising Devices | Elective Surgery |
---|---|---|---|
Long recovery time for wound | + | + | +++ |
Increase mouth opening | + | ++ | +++ |
Side effect | ++ | + | +++ |
Cost | ++ | + | +++ |
Need for patient cooperation | + | +++ | ++ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.-W.; Shih, Y.-H.; Fuh, L.-J.; Shieh, T.-M. Oral Submucous Fibrosis: A Review on Biomarkers, Pathogenic Mechanisms, and Treatments. Int. J. Mol. Sci. 2020, 21, 7231. https://doi.org/10.3390/ijms21197231
Shen Y-W, Shih Y-H, Fuh L-J, Shieh T-M. Oral Submucous Fibrosis: A Review on Biomarkers, Pathogenic Mechanisms, and Treatments. International Journal of Molecular Sciences. 2020; 21(19):7231. https://doi.org/10.3390/ijms21197231
Chicago/Turabian StyleShen, Yen-Wen, Yin-Hwa Shih, Lih-Jyh Fuh, and Tzong-Ming Shieh. 2020. "Oral Submucous Fibrosis: A Review on Biomarkers, Pathogenic Mechanisms, and Treatments" International Journal of Molecular Sciences 21, no. 19: 7231. https://doi.org/10.3390/ijms21197231
APA StyleShen, Y. -W., Shih, Y. -H., Fuh, L. -J., & Shieh, T. -M. (2020). Oral Submucous Fibrosis: A Review on Biomarkers, Pathogenic Mechanisms, and Treatments. International Journal of Molecular Sciences, 21(19), 7231. https://doi.org/10.3390/ijms21197231