The Impact of Drosophila Awd/NME1/2 Levels on Notch and Wg Signaling Pathways
Abstract
:1. Introduction
2. Results
2.1. Effects of Awd Silencing in the Larval Wing Disc
2.2. awdi Induced Cell Death is p53 Independent
2.3. Awd Gene Function is Required for Wg/Wnt Signaling
3. Discussion
4. Materials and Methods
4.1. Drosophila Stocks
4.2. Immunofluorescence Microscopy
4.3. Total RNA Extraction, cDNA Synthesis and Real Time PCR
4.4. Measure of Posterior Compartment
4.5. Statistical Analyses
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
awdi | RNA interference (RNAi)-mediated awd silencing |
CIN | Chromosomal Instability |
DDR | DNA Damage Response |
DSBs | Double-Strand DNA Breaks |
DV | Dorso-Ventral |
ER | Endoplasmic Reticulum |
JNK | Jun amino-terminal kinases |
MMP1 | Matrix Metalloproteinase 1 |
NDK-1 | Nucleoside Diphosphate Kinase-1 |
SAC | Spindle Assembly Checkpoint |
TGN | Trans Golgi Network |
References
- Rosengard, A.M.; Krutzsch, H.C.; Shearn, A.; Biggs, J.R.; Barker, E.; Margulies, I.M.; King, C.R.; Liotta, L.A.; Steeg, P.S. Reduced Nm23/Awd protein in tumour metastasis and aberrant Drosophila development. Nature 1989, 342, 177–180. [Google Scholar] [CrossRef]
- Steeg, P.S.; Bevilacqua, G.; Kopper, L.; Thorgeirsson, U.P.; Talmadge, J.E.; Liotta, L.A.; Sobel, M.E. Evidence for a novel gene associated with low tumor metastatic potential. J. Natl. Cancer Inst. 1988, 80, 200–204. [Google Scholar] [CrossRef]
- Desvignes, T.; Pontarotti, P.; Fauvel, C.; Bobe, J. Nme protein family evolutionary history, a vertebrate perspective. BMC Evol. Biol. 2009, 9, 256. [Google Scholar] [CrossRef] [Green Version]
- Hartsough, M.T.; Steeg, P.S. Nm23/nucleoside diphosphate kinase in human cancers. J. Bioenerg. Biomembr. 2000, 32, 301–308. [Google Scholar] [CrossRef]
- Leone, A.; Seeger, R.C.; Hong, C.M.; Hu, Y.Y.; Arboleda, M.J.; Brodeur, G.M.; Stram, D.; Slamon, D.J.; Steeg, P.S. Evidence for nm23 RNA overexpression, DNA amplification and mutation in aggressive childhood neuroblastomas. Oncogene 1993, 8, 855–865. [Google Scholar] [PubMed]
- Niitsu, N.; Okabe-Kado, J.; Okamoto, M.; Takagi, T.; Yoshida, T.; Aoki, S.; Hirano, M.; Honma, Y. Serum nm23-H1 protein as a prognostic factor in aggressive non-Hodgkin lymphoma. Blood J. Am. Soc. Hematol. 2001, 97, 1202–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romani, P.; Ignesti, M.; Gargiulo, G.; Hsu, T.; Cavaliere, V. Extracellular NME proteins: A player or a bystander? Lab. Investig. 2018, 98, 248–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nallamothu, G.; Dammai, V.; Hsu, T. Developmental function of Nm23/awd: A mediator of endocytosis. Mol. Cell. Biochem. 2009, 329, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Dammai, V.; Adryan, B.; Lavenburg, K.R.; Hsu, T. Drosophila awd, the homolog of human nm23, regulates FGF receptor levels and functions synergistically with shi/dynamin during tracheal development. Genes Dev. 2003, 17, 2812–2824. [Google Scholar] [CrossRef] [Green Version]
- Ignesti, M.; Barraco, M.; Nallamothu, G.; Woolworth, J.A.; Duchi, S.; Gargiulo, G.; Cavaliere, V.; Hsu, T. Notch signaling during development requires the function of awd, the Drosophila homolog of human metastasis suppressor gene Nm23. BMC Biol. 2014, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Nallamothu, G.; Woolworth, J.A.; Dammai, V.; Hsu, T. awd, the homolog of metastasis suppressor gene Nm23, regulates Drosophila epithelial cell invasion. Mol. Cell. Biol. 2008, 28, 1964–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.; Gril, B.; Steeg, P.S. Metastasis Suppressors NME1 and NME2 Promote Dynamin 2 Oligomerization and Regulate Tumor Cell Endocytosis, Motility, and Metastasis. Cancer Res. 2019, 79, 4689–4702. [Google Scholar] [CrossRef] [PubMed]
- Mátyási, B.; Farkas, Z.; Kopper, L.; Sebestyén, A.; Boissan, M.; Mehta, A.; Takács-Vellai, K. The Function of NM23-H1/NME1 and Its Homologs in Major Processes Linked to Metastasis. Pathol. Oncol. Res. 2020, 26, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Conery, A.R.; Sever, S.; Harlow, E. Nucleoside diphosphate kinase Nm23-H1 regulates chromosomal stability by activating the GTPase dynamin during cytokinesis. Proc. Natl. Acad. Sci. USA 2010, 107, 15461–15466. [Google Scholar] [CrossRef] [Green Version]
- Romani, P.; Duchi, S.; Gargiulo, G.; Cavaliere, V. Evidence for a novel function of Awd in maintenance of genomic stability. Sci. Rep. 2017, 7, 16820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Celis, J.F.; Garcia-Bellido, A.; Bray, S.J. Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc. Development 1996, 122, 359–369. [Google Scholar]
- Dekanty, A.; Barrio, L.; Muzzopappa, M.; Auer, H.; Milan, M. Aneuploidy-induced delaminating cells drive tumorigenesis in Drosophila epithelia. Proc. Natl. Acad. Sci. USA 2012, 109, 20549–20554. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, M.H.; Weinert, B.T.; Tsang, G.; Rong, Y.S.; McGinnis, N.M.; Golic, K.G.; Rio, D.C.; Rubin, G.M. Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol. Cell. Biol. 2004, 24, 1219–1231. [Google Scholar] [CrossRef] [Green Version]
- Pagliarini, R.A.; Xu, T. A genetic screen in Drosophila for metastatic behavior. Science 2003, 302, 1227–1231. [Google Scholar] [CrossRef]
- Brand, A.H.; Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118, 401–415. [Google Scholar]
- Tabata, T.; Schwartz, C.; Gustavson, E.; Ali, Z.; Kornberg, T.B. Creating a Drosophila wing de novo, the role of engrailed, and the compartment border hypothesis. Development 1995, 121, 3359–3369. [Google Scholar] [PubMed]
- Wells, B.S.; Johnston, L.A. Maintenance of imaginal disc plasticity and regenerative potential in Drosophila by p53. Dev. Biol. 2012, 361, 263–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekanty, A.; Barrio, L.; Milan, M. Contributions of DNA repair, cell cycle checkpoints and cell death to suppressing the DNA damage-induced tumorigenic behavior of Drosophila epithelial cells. Oncogene 2015, 34, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Dekanty, A.; Milán, M. Aneuploidy, cell delamination and tumorigenesis in Drosophila epithelia. Cell Cycle 2013, 12, 728–731. [Google Scholar] [CrossRef] [Green Version]
- Ollmann, M.; Young, L.M.; Di Como, C.J.; Karim, F.; Belvin, M.; Robertson, S.; Whittaker, K.; Demsky, M.; Fisher, W.W.; Buchman, A.; et al. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 2000, 101, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Furriols, M.; Bray, S. A model Notch response element detects Suppressor of Hairless-dependent molecular switch. Curr. Biol. 2001, 11, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Perkins, L.A.; Holderbaum, L.; Tao, R.; Hu, Y.; Sopko, R.; McCall, K.; Yang-Zhou, D.; Flockhart, I.; Binari, R.; Shim, H.S.; et al. The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. Genetics 2015, 201, 843–852. [Google Scholar] [CrossRef]
- Saj, A.; Arziman, Z.; Stempfle, D.; van Belle, W.; Sauder, U.; Horn, T.; Durrenberger, M.; Paro, R.; Boutros, M.; Merdes, G. A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network. Dev. Cell 2010, 18, 862–876. [Google Scholar] [CrossRef] [Green Version]
- Strigini, M.; Cohen, S.M. Wingless gradient formation in the Drosophila wing. Curr. Biol. 2000, 10, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Nolo, R.; Abbott, L.A.; Bellen, H.J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 2000, 102, 349–362. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, K.S.; Rikhy, R.; Rao, S.; Shivalkar, M.; Mosko, M.; Narayanan, R.; Etter, P.; Estes, P.S.; Ramaswami, M. Nucleoside diphosphate kinase, a source of GTP, is required for dynamin-dependent synaptic vesicle recycling. Neuron 2001, 30, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Bartscherer, K.; Pelte, N.; Ingelfinger, D.; Boutros, M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 2006, 125, 523–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buechling, T.; Chaudhary, V.; Spirohn, K.; Weiss, M.; Boutros, M. p24 proteins are required for secretion of Wnt ligands. EMBO Rep. 2011, 12, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chia, J.; Canning, C.A.; Jones, C.M.; Bard, F.A.; Virshup, D.M. WLS retrograde transport to the endoplasmic reticulum during Wnt secretion. Dev. Cell 2014, 29, 277–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belenkaya, T.Y.; Wu, Y.; Tang, X.; Zhou, B.; Cheng, L.; Sharma, Y.V.; Yan, D.; Selva, E.M.; Lin, X. The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev. Cell 2008, 14, 120–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franch-Marro, X.; Wendler, F.; Guidato, S.; Griffith, J.; Baena-Lopez, A.; Itasaki, N.; Maurice, M.M.; Vincent, J.P. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat. Cell Biol. 2008, 10, 170–177. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Palmer, L.; Alexandre, C.; Kakugawa, S.; Beckett, K.; Gaugue, I.; Palmer, R.H.; Vincent, J.P. Godzilla-dependent transcytosis promotes Wingless signalling in Drosophila wing imaginal discs. Nat. Cell Biol. 2016, 18, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Mbom, B.C.; Nelson, W.J.; Barth, A. beta-catenin at the centrosome: Discrete pools of beta-catenin communicate during mitosis and may co-ordinate centrosome functions and cell cycle progression. Bioessays 2013, 35, 804–809. [Google Scholar] [CrossRef] [Green Version]
- Weiner, A.T.; Seebold, D.Y.; Torres-Gutierrez, P.; Folker, C.; Swope, R.D.; Kothe, G.O.; Stoltz, J.G.; Zalenski, M.K.; Kozlowski, C.; Barbera, D.J.; et al. Endosomal Wnt signaling proteins control microtubule nucleation in dendrites. PLoS Biol. 2020, 18, e3000647. [Google Scholar] [CrossRef] [Green Version]
- Zeigerer, A.; Gilleron, J.; Bogorad, R.L.; Marsico, G.; Nonaka, H.; Seifert, S.; Epstein-Barash, H.; Kuchimanchi, S.; Peng, C.G.; Ruda, V.M.; et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 2012, 485, 465–470. [Google Scholar] [CrossRef]
- Hsu, T.; Steeg, P.S.; Zollo, M.; Wieland, T. Progress on Nme (NDP kinase/Nm23/Awd) gene family-related functions derived from animal model systems: Studies on development, cardiovascular disease, and cancer metastasis exemplified. Naunyn Schmiedebergs Arch. Pharmacol. 2015, 388, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Routledge, D.; Scholpp, S. Mechanisms of intercellular Wnt transport. Development 2019, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezzofanti, E.; Ignesti, M.; Hsu, T.; Gargiulo, G.; Cavaliere, V. Vps28 Is Involved in the Intracellular Trafficking of Awd, the Drosophila Homolog of NME1/2. Front. Physiol. 2019, 10, 983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavaliere, V.; Lattanzi, G.; Andrenacci, D. Silencing of Euchromatic Transposable Elements as a Consequence of Nuclear Lamina Dysfunction. Cells 2020, 9, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ignesti, M.; Andrenacci, D.; Fischer, B.; Cavaliere, V.; Gargiulo, G. Comparative Expression Profiling of Wild Type Drosophila Malpighian Tubules and von Hippel-Lindau Haploinsufficient Mutant. Front. Physiol. 2019, 10, 619. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serafini, G.; Giordani, G.; Grillini, L.; Andrenacci, D.; Gargiulo, G.; Cavaliere, V. The Impact of Drosophila Awd/NME1/2 Levels on Notch and Wg Signaling Pathways. Int. J. Mol. Sci. 2020, 21, 7257. https://doi.org/10.3390/ijms21197257
Serafini G, Giordani G, Grillini L, Andrenacci D, Gargiulo G, Cavaliere V. The Impact of Drosophila Awd/NME1/2 Levels on Notch and Wg Signaling Pathways. International Journal of Molecular Sciences. 2020; 21(19):7257. https://doi.org/10.3390/ijms21197257
Chicago/Turabian StyleSerafini, Giulia, Giorgia Giordani, Luca Grillini, Davide Andrenacci, Giuseppe Gargiulo, and Valeria Cavaliere. 2020. "The Impact of Drosophila Awd/NME1/2 Levels on Notch and Wg Signaling Pathways" International Journal of Molecular Sciences 21, no. 19: 7257. https://doi.org/10.3390/ijms21197257
APA StyleSerafini, G., Giordani, G., Grillini, L., Andrenacci, D., Gargiulo, G., & Cavaliere, V. (2020). The Impact of Drosophila Awd/NME1/2 Levels on Notch and Wg Signaling Pathways. International Journal of Molecular Sciences, 21(19), 7257. https://doi.org/10.3390/ijms21197257