MicroRNA Expression in the Aqueous Humor of Patients with Diabetic Macular Edema
Abstract
:1. Introduction
2. Results
2.1. miRNAs Downregulation in AH of DME Patients
2.2. miR-199a-3p and miR-365-3p Differential Expression in AH is Mirrored in Plasma Samples
2.3. miR-199a-3p and miR-200b-3p Are Involved in Retina-Vascular and Epithelial Cells Homeostasis
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. AH and Plasma Sample Collection and Processing
4.3. RNA Extraction
4.4. TaqMan Array miRNA Expression Profiling
4.5. Selection of Housekeeping miRNAs for AH Samples
4.6. miRNAs Single Assay RT-qPCR
4.7. Bioinformatic Analysis
4.8. Proquantum High-Sensitivity Immunoassay
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
miRNA | MicroRNA |
AH | Aqueous humor |
T2D | Type 2 diabetes mellitus |
DR | Diabetic retinopathy |
DME | Diabetic macular edema |
CTR | Control |
GO | Gene ontology |
T1D | Type 1 diabetes mellitus |
VEGFA | Vascular endothelial growth factor A |
PDR | Proliferative diabetic retinopathy |
NPDR | Non-proliferative diabetic retinopathy |
HbA1c | Glycosylated hemoglobin |
BMI | Body mass index |
BCVA | Best-corrected visual acuity |
LogMAR | Logarithm of the minimum angle of resolution |
OCT | Optical coherence tomography |
CST | Central subfield thickness |
SOP | Standard operating procedure |
Ct | Cycle threshold |
SRD | Serous retinal detachment |
TGFβ1 | Transforming growth factor β1 |
References
- International Council of Ophthalmology. ICO Guidelines for Diabetic Eye Care. Available online: http://www.icoph.org/downloads/ICOGuidelinesforDiabeticEyeCare.pdf (accessed on 1 December 2017).
- Daruich, A.; Matet, A.; Moulin, A.; Kowalczuk, L.; Nicolas, M.; Sellam, A.; Rothschild, P.R.; Omri, S.; Gélizé, E.; Jonet, L.; et al. Mechanisms of macular edema: Beyond the surface. Prog. Retin. Eye Res. 2018, 63, 20–68. [Google Scholar] [CrossRef] [PubMed]
- Hillier, R.J.; Ojaimi, E.; Wong, D.T.; Mak, M.Y.K.; Berger, A.R.; Kohly, R.P.; Kertes, P.J.; Forooghian, F.; Boyd, S.R.; Eng, K.; et al. Aqueous Humor Cytokine Levels and Anatomic Response to Intravitreal Ranibizumab in Diabetic Macular Edema. JAMA Ophthalmol. 2018, 136, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Figueras-Roca, M.; Sala-Puigdollers, A.; Zarranz-Ventura, J.; Alba-Linero, C.; Alforja, S.; Esquinas, C.; Molins, B.; Adán, A. Anatomic Response to Intravitreal Dexamethasone Implant and Baseline Aqueous Humor Cytokine Levels in Diabetic Macular Edema. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1336–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felfeli, T.; Juncal, V.R.; Hillier, R.J.; Mak, M.Y.K.; Wong, D.T.; Berger, A.R.; Kohly, R.P.; Kertes, P.J.; Eng, K.T.; Boyd, S.R.; et al. Aqueous Humor Cytokines and Long-Term Response to Anti-Vascular Endothelial Growth Factor Therapy in Diabetic Macular Edema. Am. J. Ophthalmol. 2019, 206, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jia, K.; Wu, H.; Sang, A.; Wang, L.; Shi, L.; Jiang, K.; Dong, J. A comprehensive competitive endogenous RNA network pinpoints key molecules in diabetic retinopathy. Mol. Med. Rep. 2019, 19, 851–860. [Google Scholar] [CrossRef] [Green Version]
- Gong, Q.; Su, G. Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci. Rep. 2017, 37. [Google Scholar] [CrossRef] [Green Version]
- Martinez, B.; Peplow, P.V. MicroRNAs as biomarkers of diabetic retinopathy and disease progression. Neural Regen. Res. 2019, 14, 1858–1869. [Google Scholar] [CrossRef]
- Mastropasqua, R.; Toto, L.; Cipollone, F.; Santovito, D.; Carpineto, P.; Mastropasqua, L. Role of microRNAs in the modulation of diabetic retinopathy. Prog. Retin. Eye Res. 2014, 43, 92–107. [Google Scholar] [CrossRef]
- Zhou, H.; Peng, C.; Huang, D.S.; Liu, L.; Guan, P. microRNA Expression Profiling Based on Microarray Approach in Human Diabetic Retinopathy: A Systematic Review and Meta-Analysis. DNA Cell Biol. 2020, 39, 441–450. [Google Scholar] [CrossRef]
- Mazzeo, A.; Beltramo, E.; Lopatina, T.; Gai, C.; Trento, M.; Porta, M. Molecular and functional characterization of circulating extracellular vesicles from diabetic patients with and without retinopathy and healthy subjects. Exp. Eye Res. 2018, 176, 69–77. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Liu, Y.; Wang, C.; Duan, D.; Lu, N.; Wang, K.; Zhang, L.; Gu, K.; Chen, S.; et al. Comparisons of serum miRNA expression profiles in patients with diabetic retinopathy and type 2 diabetes mellitus. Clin. Sao Paulo Braz. 2017, 72, 111–115. [Google Scholar] [CrossRef]
- Liu, H.N.; Cao, N.J.; Li, X.; Qian, W.; Chen, X.L. Serum microRNA-211 as a biomarker for diabetic retinopathy via modulating Sirtuin 1. Biochem. Biophys. Res. Commun. 2018, 505, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Qing, S.; Yuan, S.; Yun, C.; Hui, H.; Mao, P.; Wen, F.; Ding, Y.; Liu, Q. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2014, 34, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Zampetaki, A.; Willeit, P.; Burr, S.; Yin, X.; Langley, S.R.; Kiechl, S.; Klein, R.; Rossing, P.; Chaturvedi, N.; Mayr, M. Angiogenic microRNAs Linked to Incidence and Progression of Diabetic Retinopathy in Type 1 Diabetes. Diabetes 2016, 65, 216–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomaa, A.R.; Elsayed, E.T.; Moftah, R.F. MicroRNA-200b Expression in the Vitreous Humor of Patients with Proliferative Diabetic Retinopathy. Ophthalmic Res. 2017, 58, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Usui-Ouchi, A.; Ouchi, Y.; Kiyokawa, M.; Sakuma, T.; Ito, R.; Ebihara, N. Upregulation of Mir-21 Levels in the Vitreous Humor Is Associated with Development of Proliferative Vitreoretinal Disease. PLoS ONE 2016, 11, e0158043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirota, K.; Keino, H.; Inoue, M.; Ishida, H.; Hirakata, A. Comparisons of microRNA expression profiles in vitreous humor between eyes with macular hole and eyes with proliferative diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Graefes Arch. Klin. Exp. Ophthalmol. 2015, 253, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Mammadzada, P.; Bayle, J.; Gudmundsson, J.; Kvanta, A.; André, H. Identification of Diagnostic and Prognostic microRNAs for Recurrent Vitreous Hemorrhage in Patients with Proliferative Diabetic Retinopathy. J. Clin. Med. 2019, 8, 2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Yuan, M.; Liu, Y.; Zhao, X.; Lian, P.; Chen, Y.; Liu, B.; Lu, L. Landscape of microRNA in the aqueous humour of proliferative diabetic retinopathy as assessed by next-generation sequencing. Clin. Experiment. Ophthalmol. 2019, 47, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Vujosevic, S.; Simó, R. Local and Systemic Inflammatory Biomarkers of Diabetic Retinopathy: An Integrative Approach. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO68–BIO75. [Google Scholar] [CrossRef]
- Cho, H.; Hwang, M.; Hong, E.H.; Yu, H.; Park, H.; Koh, S.; Shin, Y.U. Micro- RNAs in the aqueous humour of patients with diabetic macular oedema. Clin. Experiment. Ophthalmol. 2020, 48, 624–635. [Google Scholar] [CrossRef] [PubMed]
- Pastukh, N.; Meerson, A.; Kalish, D.; Jabaly, H.; Blum, A. Serum miR-122 levels correlate with diabetic retinopathy. Clin. Exp. Med. 2019, 19, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Skyler, J.S.; Bakris, G.L.; Bonifacio, E.; Darsow, T.; Eckel, R.H.; Groop, L.; Groop, P.H.; Handelsman, Y.; Insel, R.A.; Mathieu, C.; et al. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes 2017, 66, 241–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragusa, M.; Barbagallo, C.; Statello, L.; Caltabiano, R.; Russo, A.; Puzzo, L.; Avitabile, T.; Longo, A.; Toro, M.D.; Barbagallo, D.; et al. miRNA profiling in vitreous humor, vitreal exosomes and serum from uveal melanoma patients: Pathological and diagnostic implications. Cancer Biol. Ther. 2015, 16, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Jayaram, H.; Phillips, J.I.; Lozano, D.C.; Choe, T.E.; Cepurna, W.O.; Johnson, E.C.; Morrison, J.C.; Gattey, D.M.; Saugstad, J.A.; Keller, K.E. Comparison of MicroRNA Expression in Aqueous Humor of Normal and Primary Open-Angle Glaucoma Patients Using PCR Arrays: A Pilot Study. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2884–2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunmire, J.J.; Lagouros, E.; Bouhenni, R.A.; Jones, M.; Edward, D.P. MicroRNA in aqueous humor from patients with cataract. Exp. Eye Res. 2013, 108, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Tsuda, S.; Kunikata, H.; Sato, J.; Kokubun, T.; Yasuda, M.; Nishiguchi, K.M.; Inada, T.; Nakazawa, T. Profiles of extracellular miRNAs in the aqueous humor of glaucoma patients assessed with a microarray system. Sci. Rep. 2014, 4, 5089. [Google Scholar] [CrossRef] [Green Version]
- Wecker, T.; Hoffmeier, K.; Plötner, A.; Grüning, B.A.; Horres, R.; Backofen, R.; Reinhard, T.; Schlunck, G. MicroRNA Profiling in Aqueous Humor of Individual Human Eyes by Next-Generation Sequencing. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1706–1713. [Google Scholar] [CrossRef]
- Zhou, Q.; Frost, R.J.A.; Anderson, C.; Zhao, F.; Ma, J.; Yu, B.; Wang, S. let-7 Contributes to Diabetic Retinopathy but Represses Pathological Ocular Angiogenesis. Mol. Cell. Biol. 2017, 37. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Wang, N.; Shen, Y.; Zhang, Z.; Gu, Q.; Xu, X.; Qin, Q.; Liu, Y. Pro-apoptotic effects of micro-ribonucleic acid-365 on retinal neurons by targeting insulin-like growth factor-1 in diabetic rats: An in vivo and in vitro study. J. Diabetes Investig. 2018, 9, 1041–1051. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, J.; Chen, X.; Yang, Y.; Wang, F.; Li, W.; Awuti, M.; Sun, Y.; Lian, C.; Li, Z.; et al. miR-365 promotes diabetic retinopathy through inhibiting Timp3 and increasing oxidative stress. Exp. Eye Res. 2018, 168, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Z.; Tang, Q. Reduced expression of microRNA-199a-3p is associated with vascular endothelial cell injury induced by type 2 diabetes mellitus. Exp. Ther. Med. 2018, 16, 3639–3645. [Google Scholar] [CrossRef] [PubMed]
- Tosi, G.M.; Orlandini, M.; Galvagni, F. The Controversial Role of TGF-β in Neovascular Age-Related Macular Degeneration Pathogenesis. Int. J. Mol. Sci. 2018, 19, 3363. [Google Scholar] [CrossRef] [Green Version]
- Tosi, G.M.; Neri, G.; Caldi, E.; Fusco, F.; Bacci, T.; Tarantello, A.; Nuti, E.; Marigliani, D.; Baiocchi, S.; Traversi, C.; et al. TGF-β concentrations and activity are down-regulated in the aqueous humor of patients with neovascular age-related macular degeneration. Sci. Rep. 2018, 8, 8053. [Google Scholar] [CrossRef] [PubMed]
- Mandell, K.J.; Berglin, L.; Severson, E.A.; Edelhauser, H.F.; Parkos, C.A. Expression of JAM-A in the human corneal endothelium and retinal pigment epithelium: Localization and evidence for role in barrier function. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3928–3936. [Google Scholar] [CrossRef] [PubMed]
- Aiello, L.P.; Avery, R.L.; Arrigg, P.G.; Keyt, B.A.; Jampel, H.D.; Shah, S.T.; Pasquale, L.R.; Thieme, H.; Iwamoto, M.A.; Park, J.E. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 1994, 331, 1480–1487. [Google Scholar] [CrossRef]
- Giocanti-Aurégan, A.; Hrarat, L.; Qu, L.M.; Sarda, V.; Boubaya, M.; Levy, V.; Chaine, G.; Fajnkuchen, F. Functional and Anatomical Outcomes in Patients with Serous Retinal Detachment in Diabetic Macular Edema Treated With Ranibizumab. Investig. Ophthalmol. Vis. Sci. 2017, 58, 797–800. [Google Scholar] [CrossRef]
- Otani, T.; Kishi, S.; Maruyama, Y. Patterns of diabetic macular edema with optical coherence tomography. Am. J. Ophthalmol. 1999, 127, 688–693. [Google Scholar] [CrossRef]
- Shereef, H.; Comyn, O.; Sivaprasad, S.; Hykin, P.; Cheung, G.; Narendran, N.; Yang, Y.C. Differences in the topographic profiles of retinal thickening in eyes with and without serous macular detachment associated with diabetic macular oedema. Br. J. Ophthalmol. 2014, 98, 182–187. [Google Scholar] [CrossRef]
- Ventriglia, G.; Mancarella, F.; Sebastiani, G.; Cook, D.P.; Mallone, R.; Mathieu, C.; Gysemans, C.; Dotta, F. miR-409-3p is reduced in plasma and islet immune infiltrates of NOD diabetic mice and is differentially expressed in people with type 1 diabetes. Diabetologia 2020, 63, 124–136. [Google Scholar] [CrossRef]
- Marabita, F.; de Candia, P.; Torri, A.; Tegnér, J.; Abrignani, S.; Rossi, R.L. Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. Brief. Bioinform. 2016, 17, 204–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, J.R.; Dawes, J.M.; McMahon, S.B.; Bennett, D.L.H.; Orengo, C.; Kohl, M. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq) data. BMC Genom. 2012, 13, 296. [Google Scholar] [CrossRef] [Green Version]
- Grieco, G.E.; Cataldo, D.; Ceccarelli, E.; Nigi, L.; Catalano, G.; Brusco, N.; Mancarella, F.; Ventriglia, G.; Fondelli, C.; Guarino, E.; et al. Serum Levels of miR-148a and miR-21-5p Are Increased in Type 1 Diabetic Patients and Correlated with Markers of Bone Strength and Metabolism. Non-Coding RNA 2018, 4. [Google Scholar] [CrossRef] [Green Version]
Characteristics | CTR | D | DME |
---|---|---|---|
Demographic, n = | 10 | 8 | 12 |
Age, mean (SD; range), years | 71 (4.8; 65–78) | 72 (5,1; 65–78) | 69 (4.9; 57–79) |
Sex, No. (%) | |||
Male | 7 (70%) | 6 (75%) | 8 (67%) |
Female | 3 (30%) | 2 (33%) | 4 (33%) |
BMI, mean (SD; range) | 25 (3.2; 22–33) | 28 (2.6, 26–34) | 27 (1.8; 23–30) |
Comorbidities, No. (%) | |||
No comorbidities | 2 (20%) | - | - |
HTN | 4 (40%) | 8 (100%) | 12 (100%) |
BPH | 2 (20%) | 3 (37%) | - |
MI | 1 (10%) | - | 2 (17%) |
DLP | 2 (20%) | 2 (25%) | 3 (25%) |
Others | 2 (20%) | 2 (25%) | 2 (17%) |
Treatment, No. (%) | |||
Metformin | - | 5 (62%) | 5 (42%) |
Insulin | - | 2 (25%) | 7 (58%) |
Other diabetic drugs | - | 3 (37%) | 3 (25%) |
HTN drugs | 5 (50%) | 7 (87%) | 11 (92%) |
Antiplatelet drugs | 1 (10%) | 3 (37%) | 3 (25%) |
BPH drugs | 2 (20%) | 2 (25%) | - |
DLP drugs | 2 (20%) | 2 (25%) | 3 (25%) |
Others | 2 (20%) | 3 (37%) | 3 (25%) |
Laterality, No. (%) | |||
Right | 4 (40%) | 4 (50%) | 5 (42%) |
Left | 6 (60%) | 4 (50%) | 7 (58%) |
Best-corrected Visual Acuity | |||
Snellen, mean (range) | 20/40 (20/25–20/50) | 20/40 (20/32–20/63) | 20/40 (20/25–20/100) |
LogMAR, mean (SD; range) | 0.3 (0.1; 0.1–0.4) | 0.3 (0.1; 0.2–0.5) | 0.3 (0.2; 0.1–0.7) |
OCT Features | |||
Central subfield thickness, mean (SD; range), µm | 272.4 (12.3; 251–289) | 275 (8.2; 263–289) | 447.7 (86.6; 319–604) |
Grading of Diabetic Retinopathy, No. (%) | |||
Mild | Not applicable | absent | 6 |
Moderate | Not applicable | absent | 6 |
Severe | Not applicable | absent | absent |
Duration of diabetes, mean (SD; range), years | Not applicable | 7 (1.5; 5–10) | 6 (2.7; 1–11) |
HbA1c, mean (SD; range) | Not applicable | 7 (0.3; 6.9–7.8) | 8.0 (1.23; 6.6–10.2) |
Expressed miRNAs | DME Vs. CTR | DME Vs. D |
---|---|---|
Downregulated miRNAs | hsa-let-7c-5p | hsa-let-7c-5p |
hsa-miR-193a-5p | hsa-miR-193a-5p | |
hsa-miR-19b-3p | hsa-miR-19b-3p | |
hsa-miR-200b-3p | hsa-miR-200b-3p | |
hsa-miR-204-5p | hsa-miR-204-5p | |
hsa-miR-365-3p | hsa-miR-365-3p | |
hsa-miR-100-5p | hsa-miR-199a-3p | |
hsa-miR-429 | hsa-miR-20b-5p | |
hsa-miR-211-5p | ||
hsa-miR-532-5p | ||
mmu-miR-140-5p | ||
Upregulated miRNAs | hsa-miR-34a-5p | hsa-miR-34a-5p |
hsa-miR-374-5p | hsa-miR-374-5p |
Signaling Pathway | Genes Count | Genes % | Genes ID | p-Value | Fold Enrichment | Fisher Exact Test |
---|---|---|---|---|---|---|
arterial endothelial cell differentiation | 3 | 0.2 | DDL1, NOTCH1, RBPJ | 8.90 × 10−2 | 5.8 | 1.10 × 10−2 |
regulation of endothelial cell chemotaxis | 6 | 0.4 | MET, FGFR1, KDR, NOTCH1, THBS1, VEGFA | 1.20 × 10−2 | 4.1 | 2.20 × 10−3 |
positive regulation of blood vessel endothelial cell migration | 8 | 0.5 | AKT1, AMOTL1, NFE2L2, PLCG1, PTGS2,THBS1, TGFB1, VEGFA | 4.30 × 10−3 | 3.7 | 8.80 × 10−4 |
regulation of blood vessels endothelial cell migration | 14 | 0.9 | AKT1, EPHA2, KLF4, AMOTL1, EFNA1, NOTCH1, NFE2L2, PLCG1, PDCD10, PTGS2, RHOA, THBS1, TGFB1, VEGFA | 3.70 × 10−4 | 3.1 | 9.50 × 10−5 |
establishment of endothelial barrier | 9 | 0.6 | F11R, RAP1B, RAP2B, RAP2C, RAPGEF2, RAPGEF6, AFDN, MSN, RDX | 8.70 × 10−3 | 3 | 2.40 × 10−3 |
vascular endothelial growth factor receptor signaling pathway | 19 | 1.2 | AXL, CRK, NCKAP1, ACTG1, CDC42, ELMO1, ELMO2, FLT1, ITGAV, KDR, NEDD4, PAK2, PIK3CB, PIK3R1, PRKCB, PTK2, RHOA, RAC1, VEGFA | 6.10 × 10−4 | 2.4 | 2.10 × 10−4 |
blood vessel endothelial cell migration | 14 | 0.9 | AKT1, KLF4, AMOTL1, GREM1, KDR, NOTCH1, NFE2L2, PLCG1, PDCD10, PTGS2, RHOA, THBS1, TGFB1, VEGFA | 5.70 × 10−3 | 2.3 | 2.10 × 10−3 |
positive regulation of epithelial cell migration | 20 | 1.2 | ADAM9, AKT1, ETS1, JUN, MET, SOX9, WNT5A, AMOTL1, CAPN7 CLASP1, DOCK5, FGFR1, KDR, NFE2L2, PLCG1 PTGS2, THBS1, TGFB1, VEGFA, ZNF580 | 1.60 × 10−3 | 2.2 | 6.10 × 10−4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grieco, G.E.; Sebastiani, G.; Eandi, C.M.; Neri, G.; Nigi, L.; Brusco, N.; D'Aurizio, R.; Posarelli, M.; Bacci, T.; De Benedetto, E.; et al. MicroRNA Expression in the Aqueous Humor of Patients with Diabetic Macular Edema. Int. J. Mol. Sci. 2020, 21, 7328. https://doi.org/10.3390/ijms21197328
Grieco GE, Sebastiani G, Eandi CM, Neri G, Nigi L, Brusco N, D'Aurizio R, Posarelli M, Bacci T, De Benedetto E, et al. MicroRNA Expression in the Aqueous Humor of Patients with Diabetic Macular Edema. International Journal of Molecular Sciences. 2020; 21(19):7328. https://doi.org/10.3390/ijms21197328
Chicago/Turabian StyleGrieco, Giuseppina Emanuela, Guido Sebastiani, Chiara Maria Eandi, Giovanni Neri, Laura Nigi, Noemi Brusco, Romina D'Aurizio, Matteo Posarelli, Tommaso Bacci, Elena De Benedetto, and et al. 2020. "MicroRNA Expression in the Aqueous Humor of Patients with Diabetic Macular Edema" International Journal of Molecular Sciences 21, no. 19: 7328. https://doi.org/10.3390/ijms21197328
APA StyleGrieco, G. E., Sebastiani, G., Eandi, C. M., Neri, G., Nigi, L., Brusco, N., D'Aurizio, R., Posarelli, M., Bacci, T., De Benedetto, E., Fruschelli, M., Orlandini, M., Galvagni, F., Dotta, F., & Tosi, G. M. (2020). MicroRNA Expression in the Aqueous Humor of Patients with Diabetic Macular Edema. International Journal of Molecular Sciences, 21(19), 7328. https://doi.org/10.3390/ijms21197328