In Vitro/Ex Vivo Models for the Study of Ischemia Reperfusion Injury during Kidney Perfusion
Abstract
:1. Introduction
2. New Challenges in Ex Vivo Perfusion
2.1. Oxygen
2.1.1. Gaseous Oxygen Supply
2.1.2. Oxygen Carriers
2.2. Alternative Preservation Temperatures
3. In Vitro Perfusion Models
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMPK | AMP-activated protein kinase |
ANG2 | Angiopoietin-2 |
AOCs | Artificial oxygen carriers |
ATP | Adenosine triphosphate |
bHb | Bovine hemoglobin |
COPE | Consortium for Organ Preservation in Europe |
COR | Controlled oxygenated rewarming |
CS | Cold storage |
DCD | Donation after circulatory death |
ECD | Extended criteria donor |
ELISA | Enzyme-linked immunosorbent assay |
EMS | Exsanguinous metabolic support |
eNOS | Endothelial NO synthase |
EVNP | Ex vivo normothermic perfusion |
FFP | Fresh frozen plasma |
Hb | Hemoglobin |
HbA | Adult hemoglobin |
HBOC | Hemoglobin-based oxygen carrier |
HMP | Hypothermic machine perfusion |
HO-1 | Heme oxygenase-1 |
HOPE | Hypothermic oxygenation after the preservation period |
ICAM-1 | Intercellular adhesion molecule 1 |
IR | Ischemia–reperfusion |
IRI | Ischemia–reperfusion injury |
KLF2 | Kruppel-like factor-2 |
NAD(P)H | Nicotinamide adenine dinucleotide phosphate |
NMP | Normothermic machine perfusion |
NO | Nitric oxide |
NRF2 | Nuclear factor (erythroid-derived 2)-like 2 |
PEG | Polyethylene glycol |
PPLC | Parallel plate-flow chamber |
PSCs | Pluripotent stem cells |
QO2 | Oxygen consumption |
RBC | Red blood cell |
ROS | Reactive oxygen species |
SMP | Sub-normothermic machine perfusion |
VCAM-1 | Vascular cell adhesion protein 1 |
References
- Tomsa, A.M.; Alexa, A.L.; Junie, M.L.; Rachisan, A.L.; Ciumarnean, L. Oxidative stress as a potential target in acute kidney injury. PeerJ 2019, 7, e8046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summers, D.M.; Ahmad, N.; Randle, L.V.; O’Sullivan, A.-M.; Johnson, R.J.; Collett, D.; Attia, M.; Clancy, M.; Tavakoli, A.; Akyol, M.; et al. Cold pulsatile machine perfusion versus static cold storage for kidneys donated after circulatory death: A multicenter randomized controlled trial. Transplantation 2019. [Google Scholar] [CrossRef] [PubMed]
- Chatauret, N.; Coudroy, R.; Delpech, P.O.; Vandebrouck, C.; Hosni, S.; Scepi, M.; Hauet, T. Mechanistic analysis of nonoxygenated hypothermic machine perfusion’s protection on warm ischemic kidney uncovers greater eNOS phosphorylation and vasodilation. Am. J. Transplant. 2014, 14, 2500–2514. [Google Scholar] [CrossRef] [PubMed]
- Groen, H.; Moers, C.; Smits, J.M.; Treckmann, J.; Monbaliu, D.; Rahmel, A.; Paul, A.; Pirenne, J.; Ploeg, R.J.; Buskens, E. Cost-effectiveness of hypothermic machine preservation versus static cold storage in renal transplantation. Am. J. Transplant. 2012, 12, 1824–1830. [Google Scholar] [CrossRef] [Green Version]
- Venema, L.H.; Brat, A.; Moers, C.; Hart, N.A.; Ploeg, R.J.; Hannaert, P.; Minor, T.; Leuvenink, A.H.G.D.; COPE Consortium. Effects of Oxygen during Long-term Hypothermic Machine Perfusion in a Porcine Model of Kidney Donation after Circulatory Death. Transplantation 2019, 103, 2057–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Schaik, T.G.; Jongkind, V.; Lindhout, R.J.; van der Reijden, J.; Wisselink, W.; van Leeuwen, P.A.M.; Musters, R.J.P.; Yeung, K.K. Cold Renal Perfusion During Simulation of Juxtarenal Aortic Aneurysm Repair Reduces Systemic Oxidative Stress and Sigmoid Damage in Rats. Eur. J. Vasc. Endovasc. Surg. 2019, 58, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Smith, T.B.; Neil, D.A.H.; Thakker, A.; Tsuchiya, Y.; Higgs, E.B.; Hodges, N.J.; Ready, A.R.; Nath, J.; Ludwig, C. The Effects of Oxygenation on Ex Vivo Kidneys Undergoing Hypothermic Machine Perfusion. Transplantation 2019, 103, 314–322. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Eckle, T. Ischemia and reperfusion--from mechanism to translation. Nat. Med. 2011, 17, 1391–1401. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, J.; Delpech, P.-O.; Kaaki-Hosni, S.; Promeyrat, X.; Hauet, T.; Hannaert, P. Oxygen Consumption by Warm Ischemia-Injured Porcine Kidneys in Hypothermic Static and Machine Preservation. J. Surg. Res. 2019, 242, 78–86. [Google Scholar] [CrossRef]
- Peters, S.M.; Rauen, U.; Tijsen, M.J.; Bindels, R.J.; van Os, C.H.; de Groot, H.; Wetzels, J.F. Cold preservation of isolated rabbit proximal tubules induces radical-mediated cell injury. Transplantation 1998, 65, 625–632. [Google Scholar] [CrossRef]
- Thuillier, R.; Allain, G.; Celhay, O.; Hebrard, W.; Barrou, B.; Badet, L.; Leuvenink, H.; Hauet, T. Benefits of active oxygenation during hypothermic machine perfusion of kidneys in a preclinical model of deceased after cardiac death donors. J. Surg. Res. 2013, 184, 1174–1181. [Google Scholar] [CrossRef]
- Darius, T.; Gianello, P.; Vergauwen, M.; Mourad, N.; Buemi, A.; Meyer, M.D.; Mourad, M. The effect on early renal function of various dynamic preservation strategies in a preclinical pig ischemia–reperfusion autotransplant model. Am. J. Transplant. 2018. [Google Scholar] [CrossRef]
- Hoyer, D.P.; Gallinat, A.; Swoboda, S.; Wohlschlaeger, J.; Rauen, U.; Paul, A.; Minor, T. Influence of oxygen concentration during hypothermic machine perfusion on porcine kidneys from donation after circulatory death. Transplantation 2014, 98, 944–950. [Google Scholar] [CrossRef]
- Kasil, A.; Giraud, S.; Couturier, P.; Amiri, A.; Danion, J.; Donatini, G.; Matillon, X.; Hauet, T.; Badet, L. Individual and Combined Impact of Oxygen and Oxygen Transporter Supplementation during Kidney Machine Preservation in a Porcine Preclinical Kidney Transplantation Model. Int. J. Mol. Sci. 2019, 20, 1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kron, P.; Schlegel, A.; de Rougemont, O.; Oberkofler, C.E.; Clavien, P.-A.; Dutkowski, P. Short, Cool, and Well Oxygenated—HOPE for Kidney Transplantation in a Rodent Model. Ann. Surg. 2016, 264, 815–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharjee, R.N.; Patel, S.V.B.; Sun, Q.; Jiang, L.; Richard-Mohamed, M.; Ruthirakanthan, A.; Aquil, S.; Al-Ogaili, R.; Juriasingani, S.; Sener, A.; et al. Renal Protection Against Ischemia Perfusion Injury: Hemoglobin Based Oxygen Carrier-201 vs. Blood as an Oxygen Carrier in Ex vivo Subnormothermic Machine Perfusion. Transplantation 2019. [Google Scholar] [CrossRef]
- Mahboub, P.; Aburawi, M.; Karimian, N.; Lin, F.; Karabacak, M.; Fontan, F.; Tessier, S.N.; Markmann, J.; Yeh, H.; Uygun, K. The efficacy of HBOC-201 in ex situ gradual rewarming kidney perfusion in a rat model. Artif. Organs 2020, 44, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Sakai, H.; Tomiyama, K.I.; Sou, K.; Takeoka, S.; Tsuchida, E. Poly(ethylene glycol)-conjugation and deoxygenation enable long-term preservation of hemoglobin-vesicles as oxygen carriers in a liquid state. Bioconjug. Chem. 2000, 11, 425–432. [Google Scholar] [CrossRef]
- Jones, B.U.; Serna, D.L.; Smulowitz, P.; Connolly, P.; Farber, A.; Beckham, G.; Shrivastava, V.; Kahwaji, C.; Steward, E.; Purdy, R.E.; et al. Extended ex vivo myocardial preservation in the beating state using a novel polyethylene glycolated bovine hemoglobin perfusate based solution. ASAIO J. 2003, 49, 388–394. [Google Scholar]
- Wang, Y.; Wang, L.; Yu, W.; Gao, D.; You, G.; Li, P.; Zhang, S.; Zhang, J.; Hu, T.; Zhao, L.; et al. A PEGylated bovine hemoglobin as a potent hemoglobin-based oxygen carrier. Biotechnol. Prog. 2017, 33, 252–260. [Google Scholar] [CrossRef]
- Thuillier, R.; Dutheil, D.; Trieu, M.T.N.; Mallet, V.; Allain, G.; Rousselot, M.; Denizot, M.; Goujon, J.-M.; Zal, F.; Hauet, T. Supplementation with a New Therapeutic Oxygen Carrier Reduces Chronic Fibrosis and Organ Dysfunction in Kidney Static Preservation: A New O2 Therapeutic Molecule Improves Static Kidney Preservation. Am. J. Transplant. 2011, 11, 1845–1860. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, J.; Hannaert, P.; Kasil, A.; Thuillier, R.; Leize, E.; Delpy, E.; Steichen, C.; Goujon, J.M.; Zal, F.; Hauet, T. Efficacy of the natural oxygen transporter hemo2life® in cold preservation in a preclinical porcine model of donation after cardiac death. Transpl. Int. 2019. [Google Scholar] [CrossRef]
- Le Meur, Y. Evaluation of a Marine OXYgen Carrier (Hemo2Life®) for Organ Preservation: First Use in Kidney Transplantation in Humans—ATC Abstracts. Available online: https://atcmeetingabstracts.com/abstract/evaluation-of-a-marine-oxygen-carrier-hemo2life-for-organ-preservation-first-use-in-kidney-transplantation-in-humans/ (accessed on 6 March 2019).
- Pan, D.; Rogers, S.; Misra, S.; Vulugundam, G.; Gazdzinski, L.; Tsui, A.; Mistry, N.; Said, A.; Spinella, P.; Hare, G.; et al. Erythromer (EM), a Nanoscale Bio-Synthetic Artificial Red Cell: Proof of Concept and In Vivo Efficacy Results. Blood 2016, 128, 1027. [Google Scholar] [CrossRef]
- Mot, A.C.; Roman, A.; Lupan, I.; Kurtz, D.M.; Silaghi-Dumitrescu, R. Towards the development of hemerythrin-based blood substitutes. Protein J. 2010, 29, 387–393. [Google Scholar] [CrossRef]
- Maathuis, M.H.; Leuvenink, H.G.; Ploeg, R.J. Perspectives in organ preservation. Transplantation 2007, 83, 1289–1298. [Google Scholar] [CrossRef]
- Hendriks, K.D.W.; Brüggenwirth, I.M.A.; Maassen, H.; Gerding, A.; Bakker, B.; Porte, R.J.; Henning, R.H.; Leuvenink, H.G.D. Renal temperature reduction progressively favors mitochondrial ROS production over respiration in hypothermic kidney preservation. J. Transl. Med. 2019, 17, 265. [Google Scholar] [CrossRef] [PubMed]
- Steichen, C.; Giraud, S.; Bon, D.; Barrou, B.; Badet, L.; Salamé, E.; Kerforne, T.; Allain, G.; Roumy, J.; Jayle, C.; et al. Barriers and Advances in Kidney Preservation. BioMed Res. Int. 2018, 2018, 9206257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minor, T.; von Horn, C. Rewarming Injury after Cold Preservation. Int. J. Mol. Sci. 2019, 20, 2059. [Google Scholar] [CrossRef] [Green Version]
- Schopp, I.; Reissberg, E.; Lüer, B.; Efferz, P.; Minor, T. Controlled Rewarming after Hypothermia: Adding a New Principle to Renal Preservation. Clin. Transl. Sci. 2015, 8, 475–478. [Google Scholar] [CrossRef] [Green Version]
- Gallinat, A.; Lu, J.; von Horn, C.; Kaths, M.; Ingenwerth, M.; Paul, A.; Minor, T. Transplantation of Cold Stored Porcine Kidneys after Controlled Oxygenated Rewarming. Artif. Organs 2018, 42, 647–654. [Google Scholar] [CrossRef]
- Minor, T.; von Horn, C.; Gallinat, A.; Kaths, M.; Kribben, A.; Treckmann, J.; Paul, A. First-in-man controlled rewarming and normothermic perfusion with cell-free solution of a kidney prior to transplantation. Am. J. Transplant. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabry, G.; Doorschodt, B.M.; Grzanna, T.; Boor, P.; Elliott, A.; Stollenwerk, A.; Tolba, R.H.; Rossaint, R.; Bleilevens, C. Cold Preflush of Porcine Kidney Grafts Prior to Normothermic Machine Perfusion Aggravates Ischemia Reperfusion Injury. Sci. Rep. 2019, 9, 13897. [Google Scholar] [CrossRef] [Green Version]
- Tissier, R.; Chenoune, M.; Pons, S.; Zini, R.; Darbera, L.; Lidouren, F.; Ghaleh, B.; Berdeaux, A.; Morin, D. Mild hypothermia reduces per-ischemic reactive oxygen species production and preserves mitochondrial respiratory complexes. Resuscitation 2013, 84, 249–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoyer, D.P.; Gallinat, A.; Swoboda, S.; Wohlschläger, J.; Rauen, U.; Paul, A.; Minor, T. Subnormothermic machine perfusion for preservation of porcine kidneys in a donation after circulatory death model. Transpl. Int. 2014, 27, 1097–1106. [Google Scholar] [CrossRef]
- Brasile, L.; Stubenitsky, B.M.; Booster, M.H.; Haisch, C.; Kootstra, G. NOS: The underlying mechanism preserving vascular integrity and during ex vivo warm kidney perfusion. Am. J. Transplant. 2003, 3, 674–679. [Google Scholar] [CrossRef]
- Jochmans, I.; Akhtar, M.Z.; Nasralla, D.; Kocabayoglu, P.; Boffa, C.; Kaisar, M.; Brat, A.; O’Callaghan, J.; Pengel, L.H.M.; Knight, S.; et al. Past, Present, and Future of Dynamic Kidney and Liver Preservation and Resuscitation. Am. J. Transplant. 2016, 16, 2545–2555. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, M.L.; Hosgood, S.A. Renal Transplantation after Ex Vivo Normothermic Perfusion: The First Clinical Study. Am. J. Transplant. 2013, 13, 1246–1252. [Google Scholar] [CrossRef]
- DiRito, J.R.; Hosgood, S.A.; Tietjen, G.T.; Nicholson, M.L. The future of marginal kidney repair in the context of normothermic machine perfusion. Am. J. Transplant. 2018, 18, 2400–2408. [Google Scholar] [CrossRef]
- Hamar, M.; Urbanellis, P.; Kaths, M.J.; Kollmann, D.; Linares, I.; Ganesh, S.; Wiebe, A.; Cen, J.Y.; Yip, P.; John, R.; et al. Normothermic Ex Vivo Kidney Perfusion Reduces Warm Ischemic Injury of Porcine Kidney Grafts Retrieved After Circulatory Death. Transplantation 2018, 102, 1262–1270. [Google Scholar] [CrossRef]
- Metcalfe, M.S.; Waller, J.R.; Hosgood, S.A.; Shaw, M.; Hassanein, W.; Nicholson, M.L. A paired study comparing the efficacy of renal preservation by normothermic autologous blood perfusion and hypothermic pulsatile perfusion. Transplant. Proc. 2002, 34, 1473–1474. [Google Scholar] [CrossRef]
- Kaths, J.M.; Echeverri, J.; Chun, Y.M.; Cen, J.Y.; Goldaracena, N.; Linares, I.; Dingwell, L.S.; Yip, P.M.; John, R.; Bagli, D.; et al. Continuous Normothermic Ex Vivo Kidney Perfusion Improves Graft Function in Donation after Circulatory Death Pig Kidney Transplantation. Transplantation 2017, 101, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Weissenbacher, A.; Hunter, J. Normothermic machine perfusion of the kidney. Curr. Opin. Organ Transplant. 2017, 22, 571–576. [Google Scholar] [CrossRef]
- Weissenbacher, A.; Lo Faro, L.; Boubriak, O.; Soares, M.F.; Roberts, I.S.; Hunter, J.P.; Voyce, D.; Mikov, N.; Cook, A.; Ploeg, R.J.; et al. Twenty-four-hour normothermic perfusion of discarded human kidneys with urine recirculation. Am. J. Transplant. 2019, 19, 178–192. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, S.A.; Nicholson, M.L. First in man renal transplantation after ex vivo normothermic perfusion. Transplantation 2011, 92, 735–738. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Nicholson, M.L. The first clinical case of intermediate ex vivo normothermic perfusion in renal transplantation. Am. J. Transplant. 2014, 14, 1690–1692. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Barlow, A.D.; Hunter, J.P.; Nicholson, M.L. Ex vivo normothermic perfusion for quality assessment of marginal donor kidney transplants. Br. J. Surg. 2015, 102, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, S.A.; Barlow, A.D.; Dormer, J.; Nicholson, M.L. The use of ex-vivo normothermic perfusion for the resuscitation and assessment of human kidneys discarded because of inadequate in situ perfusion. J. Transl. Med. 2015, 13, 329. [Google Scholar] [CrossRef] [Green Version]
- Hosgood, S.A.; Saeb-Parsy, K.; Hamed, M.O.; Nicholson, M.L. Successful Transplantation of Human Kidneys Deemed Untransplantable but Resuscitated by Ex Vivo Normothermic Machine Perfusion. Am. J. Transplant. 2016, 16, 3282–3285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hameed, A.M.; Lu, D.B.; Patrick, E.; Xu, B.; Hu, M.; Chew, Y.V.; Keung, K.; P’ng, C.H.; Gaspi, R.; Zhang, C.; et al. Brief Normothermic Machine Perfusion Rejuvenates Discarded Human Kidneys. Transplant. Direct 2019, 5, e502. [Google Scholar] [CrossRef] [Green Version]
- Chadha, R.; Ayaz, M.; Bagul, A. Optimising organs for transplantation: Is normothermic machine perfusion the answer? Expert Rev. Med. Devices 2016. [Google Scholar] [CrossRef] [Green Version]
- Matton, A.P.M.; Burlage, L.C.; van Rijn, R.; de Vries, Y.; Karangwa, S.A.; Nijsten, M.W.; Gouw, A.S.H.; Wiersema-Buist, J.; Adelmeijer, J.; Westerkamp, A.C.; et al. Normothermic machine perfusion of donor livers without the need for human blood products. Liver Transpl. 2018, 24, 528–538. [Google Scholar] [CrossRef]
- Laing, R.W.; Bhogal, R.H.; Wallace, L.; Boteon, Y.; Neil, D.A.H.; Smith, A.; Stephenson, B.T.F.; Schlegel, A.; Hübscher, S.G.; Mirza, D.F.; et al. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion. Transplantation 2017, 101, 2746–2756. [Google Scholar] [CrossRef] [PubMed]
- Aburawi, M.M.; Fontan, F.M.; Karimian, N.; Eymard, C.; Cronin, S.; Pendexter, C.; Nagpal, S.; Banik, P.; Ozer, S.; Mahboub, P.; et al. Synthetic hemoglobin-based oxygen carriers are an acceptable alternative for packed red blood cells in normothermic kidney perfusion. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2019, 19, 2814–2824. [Google Scholar] [CrossRef] [PubMed]
- Weissenbacher, A.; Vrakas, G.; Nasralla, D.; Ceresa, C.D.L. The future of organ perfusion and re-conditioning. Transpl. Int. Off. J. Eur. Soc. Organ Transplant. 2019, 32, 586–597. [Google Scholar] [CrossRef] [Green Version]
- Ravikumar, R.; Leuvenink, H.; Friend, P.J. Normothermic liver preservation: A new paradigm? Transpl. Int. Off. J. Eur. Soc. Organ Transplant. 2015, 28, 690–699. [Google Scholar] [CrossRef]
- Abaci, H.E.; Shen, Y.-I.; Tan, S.; Gerecht, S. Recapitulating physiological and pathological shear stress and oxygen to model vasculature in health and disease. Sci. Rep. 2014, 4, 4951. [Google Scholar] [CrossRef] [Green Version]
- Parmar, K.M.; Larman, H.B.; Dai, G.; Zhang, Y.; Wang, E.T.; Moorthy, S.N.; Kratz, J.R.; Lin, Z.; Jain, M.K.; Gimbrone, M.A.; et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J. Clin. Investig. 2006, 116, 49–58. [Google Scholar] [CrossRef]
- Menu, P.; Longrois, D.; Faivre, B.; Donner, M.; Labrude, P.; Stoltz, J.F.; Vigneron, C. Rheological behaviour of red blood cells suspended in hemoglobin solutions. In vitro study comparing dextran-benzene-tetra-carboxylate hemoglobin, stroma free hemoglobin and plasma expanders. Transfus. Sci. 1999, 20, 5–16. [Google Scholar] [CrossRef]
- Koutsiaris, A.G.; Tachmitzi, S.V.; Batis, N.; Kotoula, M.G.; Karabatsas, C.H.; Tsironi, E.; Chatzoulis, D.Z. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology 2007, 44, 375–386. [Google Scholar] [PubMed]
- Estrada, R.; Giridharan, G.A.; Nguyen, M.-D.; Roussel, T.J.; Shakeri, M.; Parichehreh, V.; Prabhu, S.D.; Sethu, P. Endothelial cell culture model for replication of physiological profiles of pressure, flow, stretch, and shear stress in vitro. Anal. Chem. 2011, 83, 3170–3177. [Google Scholar] [CrossRef] [PubMed]
- Meza, D.; Musmacker, B.; Steadman, E.; Stransky, T.; Rubenstein, D.A.; Yin, W. Endothelial Cell Biomechanical Responses are Dependent on Both Fluid Shear Stress and Tensile Strain. Cell. Mol. Bioeng. 2019, 12, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Szulcek, R.; Bogaard, H.J.; van Nieuw Amerongen, G.P. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility. J. Vis. Exp. 2014. [Google Scholar] [CrossRef] [Green Version]
- Altalhi, W.; Sun, X.; Sivak, J.M.; Husain, M.; Nunes, S.S. Diabetes impairs arterio-venous specification in engineered vascular tissues in a perivascular cell recruitment-dependent manner. Biomaterials 2017, 119, 23–32. [Google Scholar] [CrossRef]
- Skuli, N.; Majmundar, A.J.; Krock, B.L.; Mesquita, R.C.; Mathew, L.K.; Quinn, Z.L.; Runge, A.; Liu, L.; Kim, M.N.; Liang, J.; et al. Endothelial HIF-2α regulates murine pathological angiogenesis and revascularization processes. J. Clin. Investig. 2012, 122, 1427–1443. [Google Scholar] [CrossRef]
- Wang, L.; Bao, H.; Wang, K.-X.; Zhang, P.; Yao, Q.-P.; Chen, X.-H.; Huang, K.; Qi, Y.-X.; Jiang, Z.-L. Secreted miR-27a Induced by Cyclic Stretch Modulates the Proliferation of Endothelial Cells in Hypertension via GRK6. Sci. Rep. 2017, 7, 41058. [Google Scholar] [CrossRef]
- Bianchi, E.; Molteni, R.; Pardi, R.; Dubini, G. Microfluidics for in vitro biomimetic shear stress-dependent leukocyte adhesion assays. J. Biomech. 2013, 46, 276–283. [Google Scholar] [CrossRef]
- Kendall, A.C.; Whatmore, J.L.; Winyard, P.G.; Smerdon, G.R.; Eggleton, P. Hyperbaric oxygen treatment reduces neutrophil-endothelial adhesion in chronic wound conditions through S-nitrosation. Wound Repair Regen. 2013, 21, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Abaci, H.E.; Truitt, R.; Luong, E.; Drazer, G.; Gerecht, S. Adaptation to oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor cells, and umbilical vein endothelial cells. Am. J. Physiol. Cell Physiol. 2010, 298, C1527–C1537. [Google Scholar] [CrossRef] [PubMed]
- Keeley, T.P.; Siow, R.C.M.; Jacob, R.; Mann, G.E. A PP2A-mediated feedback mechanism controls Ca2+-dependent NO synthesis under physiological oxygen. FASEB J. 2017, 31, 5172–5183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SenBanerjee, S.; Lin, Z.; Atkins, G.B.; Greif, D.M.; Rao, R.M.; Kumar, A.; Feinberg, M.W.; Chen, Z.; Simon, D.I.; Luscinskas, F.W.; et al. KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med. 2004, 199, 1305–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallinat, A.; Fox, M.; Lüer, B.; Efferz, P.; Paul, A.; Minor, T. Role of pulsatility in hypothermic reconditioning of porcine kidney grafts by machine perfusion after cold storage. Transplantation 2013, 96, 538–542. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, Z.; Lan, J.; Li, M.; Wang, W.; Yang, J.; Tang, C.; Wang, J.; Ye, S.; Xiong, Y.; et al. Mechanisms of Hypothermic Machine Perfusion to Decrease Donation After Cardiac Death Graft Inflammation: Through the Pathway of Upregulating Expression of KLF2 and Inhibiting TGF-β Signaling. Artif. Organs 2017, 41, 82–88. [Google Scholar] [CrossRef]
- Ali, F.; Zakkar, M.; Karu, K.; Lidington, E.A.; Hamdulay, S.S.; Boyle, J.J.; Zloh, M.; Bauer, A.; Haskard, D.O.; Evans, P.C.; et al. Induction of the cytoprotective enzyme heme oxygenase-1 by statins is enhanced in vascular endothelium exposed to laminar shear stress and impaired by disturbed flow. J. Biol. Chem. 2009, 284, 18882–18892. [Google Scholar] [CrossRef] [Green Version]
- Gracia-Sancho, J.; Villarreal, G.; Zhang, Y.; Yu, J.X.; Liu, Y.; Tullius, S.G.; García-Cardeña, G. Flow cessation triggers endothelial dysfunction during organ cold storage conditions: Strategies for pharmacologic intervention. Transplantation 2010, 90, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Giraud, S.; Favreau, F.; Chatauret, N.; Thuillier, R.; Maiga, S.; Hauet, T. Contribution of large pig for renal ischemia-reperfusion and transplantation studies: The preclinical model. J. Biomed. Biotechnol. 2011, 2011, 532127. [Google Scholar] [CrossRef] [Green Version]
- Warabi, E.; Wada, Y.; Kajiwara, H.; Kobayashi, M.; Koshiba, N.; Hisada, T.; Shibata, M.; Ando, J.; Tsuchiya, M.; Kodama, T.; et al. Effect on endothelial cell gene expression of shear stress, oxygen concentration, and low-density lipoprotein as studied by a novel flow cell culture system. Free Radic. Biol. Med. 2004, 37, 682–694. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.; Mylroie, H.; Thornton, C.C.; Calay, D.; Birdsey, G.M.; Kiprianos, A.P.; Wilson, G.K.; Soares, M.P.; Yin, X.; Mayr, M.; et al. Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis. Sci. Rep. 2016, 6, 29417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, G.; Vaughn, S.; Zhang, Y.; Wang, E.T.; Garcia-Cardena, G.; Gimbrone, M.A. Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ. Res. 2007, 101, 723–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gremmels, H.; de Jong, O.G.; Hazenbrink, D.H.; Fledderus, J.O.; Verhaar, M.C. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions. Stem Cells Int. 2017, 2017, 4680612. [Google Scholar] [CrossRef] [Green Version]
- Le Pape, F.; Bossard, M.; Dutheil, D.; Rousselot, M.; Polard, V.; Férec, C.; Leize, E.; Delépine, P.; Zal, F. Advancement in recombinant protein production using a marine oxygen carrier to enhance oxygen transfer in a CHO-S cell line. Artif. Cells Nanomed. Biotechnol. 2015, 43, 186–195. [Google Scholar] [CrossRef]
- Gaucher-Di Stasio, C.; Paternotte, E.; Prin-Mathieu, C.; Reeder, B.J.; Poitevin, G.; Labrude, P.; Stoltz, J.-F.; Cooper, C.E.; Menu, P. The importance of the effect of shear stress on endothelial cells in determining the performance of hemoglobin based oxygen carriers. Biomaterials 2009, 30, 445–451. [Google Scholar] [CrossRef]
- Giraud, S.; Steichen, C.; Couturier, P.; Tillet, S.; Mallet, V.; Coudroy, R.; Goujon, J.-M.; Hannaert, P.; Hauet, T. Influence of Hypoxic Preservation Temperature on Endothelial Cells and Kidney Integrity. BioMed Res. Int. 2019, 2019, 8572138. [Google Scholar] [CrossRef]
- Steichen, C.; Giraud, S.; Hauet, T. Kidney organoids. Med. Sci. Paris 2019, 35, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, H.; Deng, P.; Chen, W.; Guo, Y.; Tao, T.; Qin, J. In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system. Lab Chip 2018, 18, 3606–3616. [Google Scholar] [CrossRef]
- Lee, F.; Iliescu, C.; Yu, F.; Yu, H. Constrained spheroids/organoids in perfusion culture. Methods Cell Biol. 2018, 146, 43–65. [Google Scholar] [CrossRef]
- Andreoni, C.; Orsi, G.; De Maria, C.; Montemurro, F.; Vozzi, G. In silico models for dynamic connected cell cultures mimicking hepatocyte-endothelial cell-adipocyte interaction circle. PLoS ONE 2014, 9, e111946. [Google Scholar] [CrossRef]
- Cortesi, M.; Liverani, C.; Mercatali, L.; Ibrahim, T.; Giordano, E. An in-silico study of cancer cell survival and spatial distribution within a 3D microenvironment. Sci. Rep. 2020, 10, 12976. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, Y.; Kino-Oka, M. An in silico prediction tool for the expansion culture of human skeletal muscle myoblasts. R. Soc. Open Sci. 2016, 3, 160500. [Google Scholar] [CrossRef] [Green Version]
Number | Acronym | Title | Conditions | Study | Sponsors and Collaborators | Phase |
---|---|---|---|---|---|---|
ISRCTN32967929 | COPE-COMPARE | Cold oxygenated machine preservation of aged renal donation after cardiovascular death transplants | Injury, occupational diseases, poisoning | A multicentre, double-blind, randomised, parallel-group, paired trial to compare the effect of hypothermic machine perfusion preservation with and without the addition of oxygen in transplantation of Maastricht category III kidneys donated after circulatory death from donors aged 50 years or older | Abdominal Transplant Surgery, University Hospitals Leuven, Belgium; University of Oxford, United Kingdom | N/A |
NCT03378817 | N/A | Hypothermic oxygenated machine perfusion of extended criteria kidney allografts from brain death donors | Reperfusion injury, hypothermic oxygenated machine perfusion | The present trial is an investigator-initiated pilot study on the effects of hypothermic oxygenated perfusion (HOPE) on expanded criteria donor (ECD) allografts in donation after brain death (DBD) kidney transplantation. Fifteen kidney allografts will be submitted to 2 h of HOPE before implantation, and are going to be compared to a case-matched group transplanted after conventional cold storage (CCS). | University Hospital, Aachen, Germany | N/A |
ISRCTN63852508 | COPE-POMP | COPE-POMP: “in house”, pre-implantation, oxygenated, hypothermic machine perfusion reconditioning after cold storage versus cold storage alone in expanded criteria donor (ECD) kidneys from brain-dead donors | Surgery Machine perfusion preservation techniques for ECD kidneys | A prospective, randomised, parallel group, single-blinded, controlled, multi-center, non-paired superiority trial to compare the effect of short-term “in-house” oxygenated, hypothermic machine perfusion preservation after static cold storage to static cold storage alone in the transplantation of expanded criteria donor (ECD) kidneys donated after brain death | Department of General Visceral and Transplant Surgery, University Hospital Essen, Germany; University of Oxford, United Kingdom | Phase II |
ISRCTN15821205 | N/A | Improving function of transplanted kidneys | Urological and genital diseases | This is a United Kingdom-based, phase II, multicentre, randomised controlled trial of ex vivo normothermic perfusion versus static cold storage in a donation after circulatory death renal transplantation | Department of Surgery, University of Cambridge; Addenbrooke’s Hospital, Cambridge, United Kingdom | Phase II |
NTR5972 (Trial NL5817) | DHOPE-COR-NMP | A single center clinical trial to assess viability of high-risk donor livers using hypothermic and normothermic machine perfusion with rewarming phase prior to transplantation | Normothermic machine preservation, normothermic machine perfusion, ex situ viability testing, liver transplantation | Each high-risk donor liver accepted for this study will undergo machine perfusion. First, dual hypothermic oxygenated machine perfusion (DHOPE) will take place, before gradually rewarming the donor liver to a normothermic temperature. Secondly, after rewarming, NMP will be performed to allow graft assessment. | University Medical Center Groningen; Department of Surgery Groningen, the Netherlands | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giraud, S.; Thuillier, R.; Cau, J.; Hauet, T. In Vitro/Ex Vivo Models for the Study of Ischemia Reperfusion Injury during Kidney Perfusion. Int. J. Mol. Sci. 2020, 21, 8156. https://doi.org/10.3390/ijms21218156
Giraud S, Thuillier R, Cau J, Hauet T. In Vitro/Ex Vivo Models for the Study of Ischemia Reperfusion Injury during Kidney Perfusion. International Journal of Molecular Sciences. 2020; 21(21):8156. https://doi.org/10.3390/ijms21218156
Chicago/Turabian StyleGiraud, Sebastien, Raphaël Thuillier, Jérome Cau, and Thierry Hauet. 2020. "In Vitro/Ex Vivo Models for the Study of Ischemia Reperfusion Injury during Kidney Perfusion" International Journal of Molecular Sciences 21, no. 21: 8156. https://doi.org/10.3390/ijms21218156
APA StyleGiraud, S., Thuillier, R., Cau, J., & Hauet, T. (2020). In Vitro/Ex Vivo Models for the Study of Ischemia Reperfusion Injury during Kidney Perfusion. International Journal of Molecular Sciences, 21(21), 8156. https://doi.org/10.3390/ijms21218156