Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications
Abstract
:1. Introduction
2. Health Benefits of Fruit Phytochemicals
3. Green Synthesis of Nanoparticles Mediated by Fruit Extracts
3.1. Copper Oxide Nanoparticles (Cu2ONPs)
3.2. Gold Nanoparticles (AuNPs)
3.3. Silver Nanoparticles (AgNPs)
3.4. Zinc Oxide Nanoparticles (ZnONPs)
4. Anticancer Activity of Fruit-Derived NPs
5. Antimicrobial Activity of Fruit-Derived NPs
6. Antioxidant Activity of Fruit-Derived NPs
7. Catalytic Activity of Fruit-Derived NPs
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bachheti, R.K.; Fikadu, A.; Bachheti, A.; Husen, A. Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: A review. Saudi J. Biol. Sci. 2020, 27, 2551–2562. [Google Scholar] [CrossRef] [PubMed]
- Kalia, A.; Singh, S. Myco-decontamination of azo dyes: Nano-augmentation technologies. 3 Biotech 2020, 10, 384. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Bhardwaj, K.; Kuča, K.; Kalia, A.; Nepovimova, E.; Verma, R.; Kumar, D. Flower-based green synthesis of metallic nanoparticles: Applications beyond fragrance. Nanomaterials 2020, 10, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, H.; Bhardwaj, K.; Sharma, R.; Nepovimova, E.; Kuča, K.; Dhanjal, D.S.; Verma, R.; Bhardwaj, P.; Sharma, S.; Kumar, D. Fruit and vegetable peels: Utilization of high value horticultural waste in novel industrial applications. Molecules 2020, 25, 2812. [Google Scholar] [CrossRef]
- Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arab J. Chem. 2019, 12, 3576–3600. [Google Scholar] [CrossRef] [Green Version]
- Khanna, P.; Kaur, A.; Goyal, D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J. Microbiol. Methods 2019, 163. [Google Scholar] [CrossRef]
- Nadagouda, M.N.; Varma, R.S. A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Cryst. Growth Des. 2007, 7, 2582–2587. [Google Scholar] [CrossRef]
- Nadagouda, M.N.; Varma, R.S. Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties. Cryst. Growth Des. 2007, 7, 686–690. [Google Scholar]
- Baruwati, B.; Polshettiwara, V.; Varma, R.S. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem. 2009, 11, 926–930. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Baruwati, B.; Varma, R.S. Self-assembly of metal oxides into three-dimensional nanostructures: Synthesis and application in catalysis. ACS Nano 2009, 3, 728–736. [Google Scholar] [CrossRef]
- Baruwati, B.; Nadagouda, M.N.; Varma, R.S. Bulk synthesis of monodisperse ferrite nanoparticles at water-organic interfaces under conventional and microwave hydrothermal treatment and their surface functionalization. J. Phys. Chem. C 2008, 112, 18399–18404. [Google Scholar] [CrossRef]
- Nadagouda, M.N.; Varma, R.S. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008, 10, 859–862. [Google Scholar] [CrossRef]
- Sidhu, J.S.; Zafar, T.A. Bioactive compounds in banana fruits and their health benefits. Food Qual. Saf. 2018, 2, 183–188. [Google Scholar] [CrossRef]
- WHO. Promoting Fruit and Vegetable Consumption Around the World. Available online: https://www.who.int/dietphysicalactivity/fruit/en/ (accessed on 8 June 2020).
- Chen, L.; Vigneault, C.; Raghavan, G.S.V.; Kubow, S. Importance of the phytochemical content of fruits and vegetables to human health. Stewart Postharvest Rev. 2007, 3, 1–5. [Google Scholar]
- Mathews-Roth, M.M. Recent progress in the medical applications of carotenoids. Pure Appl. Chem. 1991, 63, 147–156. [Google Scholar] [CrossRef]
- Fraser, P.D.; Bramley, P.M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 2004, 43, 228–265. [Google Scholar] [CrossRef]
- Clinton, S.K. Lycopene: Chemistry, biology, and implications for human health and disease. Nutr. Rev. 1998, 56, 35–51. [Google Scholar] [CrossRef]
- Bramley, P.M. Is lycopene beneficial to human health? Phytochemistry 2000, 54, 233–236. [Google Scholar] [CrossRef]
- Giovannucci, E.; Ascherio, A.; Rimm, E.B.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C. Intake of carotenoids and retinol in relation to risk of prostate cancer. J. Natl. Cancer Inst. 1995, 87, 1767–1776. [Google Scholar] [CrossRef]
- De Stefani, E.; Oreggia, F.; Boffetta, P.; Deneo-Pellegrini, H.; Ronco, A.; Mendilaharsu, M. Tomatoes, tomato-rich foods, lycopene and cancer of the upper respiratory tract: A case control in Uruguay. Oral Oncol. 2000, 36, 47–53. [Google Scholar] [CrossRef]
- Knekt, P.; Jarvinen, R.; Reppanen, R.; Heliovaara, M.; Teppo, L.; Pukkala, E.; Aroma, A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am. J. Epidemiol. 1997, 146, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillman, M.W.; Cupples, L.A.; Gagnon, D.; Posner, B.M.; Ellison, R.C.; Castelli, W.P.; Wolf, P.A. Protective effect of fruits and vegetables on development of stroke in men. J. Am. Med. Assoc. 1995, 273, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Cox, B.D.; Whichelow, M.J.; Prevost, A.T. Seasonal consumption of salad vegetables and fresh fruit in relation to the development of cardiovascular disease and cancer. Public Health Nutr. 2000, 3, 19–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Variya, B.C.; Bakrania, A.K.; Patel, S.S. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol. Res. 2016, 111, 180–200. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 2018, 261, 75–86. [Google Scholar] [CrossRef]
- Yugandhar, P.; Vasavi, T.; Rao, Y.J.; Devi, P.U.M.; Narasimha, G.; Savithramma, N. Cost effective, green synthesis of copper oxide nanoparticles using fruit extract of Syzygium alternifolium (Wt.) Walp., characterization and evaluation of antiviral activity. J. Cluster Sci. 2018, 29, 743–755. [Google Scholar] [CrossRef]
- Khani, R.; Roostaei, B.; Bagherzade, G.; Moudi, M. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd: Application for adsorption of triphenylmethane dye and antibacterial assay. J. Mol. Liq. 2018, 255, 541–549. [Google Scholar] [CrossRef]
- Ebrahimi, K.; Shiravand, S.; Mahmoudvand, H. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. Marmara Pharm. J. 2017, 21, 866–871. [Google Scholar] [CrossRef]
- Hemmati, S.; Ahmeda, A.; Salehabadi, Y.; Zangeneh, A.; Zangeneh, M.M. Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of Strawberry fruit and L-Ascorbic acid. Polyhedron. 2020, 180, 114425. [Google Scholar] [CrossRef]
- Carloling, G.; Priyadharshini, M.N.; Vinodhini, E.; Ranjitham, A.M.; Shanthi, P. Biosynthesis of copper nanoparticles using aqueous guava extract-characterisation and study of antibacterial effects. Int. J. Pharm. Biol. Sci. 2015, 5, 25–43. [Google Scholar]
- Kaur, P.; Thakur, A.; Chaudhary, A. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem. Lett. Rev. 2016, 9, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, R.M.P.; Mitchell, S.; Solis, R.V. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008, 117, 1–27. [Google Scholar] [CrossRef]
- Chhikara, N.; Kour, R.; Jaglan, S.; Gupta, P.; Gat, Y.; Panghal, A. Citrus medica: Nutritional, phytochemical composition and health benefits-a review. Food Funct. 2018, 9, 1978–1992. [Google Scholar] [CrossRef]
- Dash, S.S.; Bag, B.G. Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity. Appl. Nanosci. 2014, 4, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.F.; Yuan, Q.; Wei, Y.; Khan, S.U.; Tahir, K.; Khna, Z.U.H.; Ahmad, A.; Ali, F.; Ali, S.; Nazir, S. Longan fruit juice mediated synthesis of uniformly dispersed spherical AuNPs: Cytotoxicity against human breast cancer cell line MCF-7, antioxidant and fluorescent properties. RSC Adv. 2016, 6, 23775–23782. [Google Scholar] [CrossRef]
- Gubitosa, J.; Rizzi, V.; Lopedota, A.; Fini, P.; Laurenzana, A.; Fibbi, G.; Fanelli, F.; Petrella, A.; Laquintana, V.; Denora, N.; et al. One pot environmental friendly synthesis of gold nanoparticles using Punica Granatum juice: A novel antioxidant agent for future dermatological and cosmetic applications. J. Colloid Interface Sci. 2018, 521, 50–61. [Google Scholar] [CrossRef]
- Yu, J.; Xu, D.; Guan, H.N.; Wang, C.; Huang, L.K.; Chi, D.F. Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater. Lett. 2016, 166, 110–112. [Google Scholar] [CrossRef]
- Patra, J.K.; Baek, K.H. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int. J. Nanomed. 2015, 10, 7253–7264. [Google Scholar]
- Dauthal, P.; Mukhopadhyay, M. Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Ind. Eng. Chem. Res. 2012, 51, 13014–13020. [Google Scholar] [CrossRef]
- Jassim, A.M.N.; Mohammed, M.T.; Farhan, S.A.; Dadoosh, R.M.; Majeed, Z.N.; Abdula, A.M. Green synthesis of silver nanoparticles using Carica papaya juice and study of their biochemical application. J. Pharm. Sci. Res. 2019, 11, 1025–1034. [Google Scholar]
- Edison, T.J.I.; Sethuraman, M.G. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Proc. Biochem. 2012, 47, 1351–1357. [Google Scholar] [CrossRef]
- Ramesh, P.S.; Kokila, T.; Geetha, D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica Officinalis fruit extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 142, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Masum, M.M.I.; Siddiqa, M.M.; Ali, K.A.; Zhang, Y.; Abdallah, Y.; Ibrahim, E.; Qiu, W.; Yan, C.; Li, B. Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Front. Microbiol. 2019, 10, 820. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.J.P.; Prasad, V.L.S.; Sivasankar, S.; Muralidharan, P. Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica screening for its anticancer activity and toxicity in animal models. Food Chem. Toxicol. 2017, 109, 951–956. [Google Scholar] [CrossRef]
- Renuka, R.; Devi, K.R.; Sivakami, M.; Thilagavathi, T.; Uthrakumar, R. Biosynthesis of silver nanoparticles using Phyllanthus emblica fruit extract for antimicrobial application. Biocatal. Agric. Biotechnol. 2020, 24, 101567. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Naghizadeh, A.; Amiri, O.; Shirzadi-Ahodashti, M. Mortazavi-Derazkola, S. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg. Chem. 2020, 94, 103425. [Google Scholar] [CrossRef]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) phenomenon-A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Soto, M.L.; Falqué, E.; Domínguez, H. Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics. Cosmetics 2015, 2, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, Z.; Nawaz, A.; Mukhtar, H.; Haq, I. Bromelain: Methods of extraction, purification and therapeutic applications. Braz. Arch. Biol. Technol. 2016, 59, e16150010. [Google Scholar] [CrossRef] [Green Version]
- Parate, A.M.; Bajpai, N.D.; Walke, D.D. Role of Syzygium cumini (Jamun) in cosmetic. Int. J. Sci. Dev. Res. 2019, 4, 193–201. [Google Scholar]
- Aminuzzaman, M.; Ying, L.P.; Goh, W.S.; Watanabe, A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull. Mater. Sci. 2018, 41, 50. [Google Scholar] [CrossRef] [Green Version]
- Timoszyk, A. A review of the biological synthesis of gold nanoparticles using fruit extracts: Scientific potential and application. Bull. Mater. Sci. 2018, 41, 154. [Google Scholar] [CrossRef] [Green Version]
- Shende, S.; Ingle, A.P.; Gade, A.; Rai, M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 2015, 31, 865–873. [Google Scholar] [CrossRef]
- Majumdar, M.; Biswas, S.C.; Choudhury, R.; Upadhyay, P.; Adhikary, A.; Roy, D.N.; Misra, T.K. Synthesis of gold nanoparticles using Citrus macroptera fruit extract: Anti-biofilm and anticancer activity. ChemistrySelect 2019, 4, 5714–5723. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Ibrahiem, A.A.; Dalloul, T.R. Biosynthesis of silver nanoparticles using pomegranate juice extract and its antibacterial activity. Int. J. Appl. Sci. Biotechnol. 2016, 4, 254–258. [Google Scholar] [CrossRef] [Green Version]
- Gnanajobitha, G.; Paulkumar, K.; Vanaja, M.; Rajeshkumar, S.; Malarkodi, C.; Annadurai, G.; Kannan, C. Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J. Nanostruct. Chem. 2013, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Zafar, S.; Zafar, A. Biosynthesis and characterization of silver nanoparticles using Phoenix dactylifera fruits extract and their in vitro antimicrobial and cytotoxic effects. Open Biotechnol. J. 2019, 13, 37–46. [Google Scholar] [CrossRef]
- Farhadi, S.; Ajerloo, B.; Mohammadi, A. Green biosynthesis of spherical silver nanoparticles by using date palm (Phoenix dactylifera) fruit extract and study of their antibacterial and catalytic activities. Acta Chim. Slov. 2017, 64, 129–143. [Google Scholar] [CrossRef]
- Ali, Z.A.; Yahya, R.; Sekaran, S.D.; Puteh, R. Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv. Mater. Sci. Eng. 2016, 2016, 4102196. [Google Scholar] [CrossRef] [Green Version]
- Shanmugavadivu, M.; Kuppusamy, S.; Ranjithkumar, R. Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity. Am. J. Adv. Drug Deliv. 2014, 2, 174–182. [Google Scholar]
- Ibrahim, H.M.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 2015, 8, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Kokila, T.; Ramesh, P.S.; Geetha, D. Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: A novel biological approach. Appl. Nanosci. 2015, 5, 911–920. [Google Scholar] [CrossRef] [Green Version]
- Kahrilas, G.A.; Wally, L.M.; Fredrick, S.J.; Hiskey, M.; Prieto, A.L.; Owens, J.E. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain. Chem. Eng. 2014, 2, 367–376. [Google Scholar] [CrossRef]
- Ajmal, N.; Saraswat, K.; Sharma, V.; Zafar, M.E. Synthesis and antibacterial activity of silver nanoparticles from Prunus armeniaca (Apricot) fruit peel extract. Bull. Environ. Pharmacol. Life Sci. 2016, 5, 91–94. [Google Scholar]
- Devanesan, S.; AlSalh, M.S.; Balaji, R.V.; Ranjitsingh, A.J.A.; Ahamed, A.; Alfuraydi, A.A.; AlQahtani, F.Y.; Aleanizy, F.S.; Othman, A.H. Antimicrobial and cytotoxicity effects of synthesized silver nanoparticles from Punica granatum peel extract. Nanoscale Res. Lett. 2018, 13, 315. [Google Scholar] [CrossRef] [Green Version]
- Das, G.; Patra, J.Y.; Debnath, D.; Ansari, A.; Shin, H.S. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Du, Z.; Ma, S.; Cheng, S.; Jiang, S.; Liu, Y.; Li, D.; Huang, H.; Zhang, K.; Zheng, X. Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (pc-3) cells of silver nanoparticles using Dimocarpus longan Lour. peel extract. Nanoscale Res. Lett. 2016, 11, 300. [Google Scholar] [CrossRef] [Green Version]
- Pavithra, N.S.; Lingaraju, K.; Raghu, G.K.; Nagaraju, G. Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: Applications to photocatalytic, electrochemical sensor and antibacterial activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 185, 11–19. [Google Scholar] [CrossRef]
- Sukri, S.N.A.M.; Shameli, K.; Wong, M.M.T.; Teow, S.Y.; Chew, J.; Ismail, N.F. Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract. J. Mol. Struct. 2019, 1189, 57–65. [Google Scholar] [CrossRef]
- Ahmad, R.A.R.; Harun, Z.; Othman, M.H.D.; Basri, H.; Yunos, M.Z.; Ahmad, A.; Akhair, S.H.M.; Rashid, A.Q.A.; Azhar, F.H.; Alias, S.S.; et al. Biosynthesis of zinc oxide nanoparticles by using fruits extracts of Ananas comosus and its antibacterial activity. Malays. J. Fund. Appl. Sci. 2019, 15, 268–273. [Google Scholar] [CrossRef]
- Verma, N.; Kumar, N. Synthesis and biomedical applications of copper oxide nanoparticles: An expanding horizon. ACS Biomater. Sci. Eng. 2019, 5, 1170–1188. [Google Scholar] [CrossRef]
- Kumar, H.; Bhardwaj, K.; Nepovimova, E.; Kučca, K.; Dhanjal, D.S.; Bhardwaj, S.; Bhatia, S.K.; Verma, R.; Kumar, D. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials 2020, 10, 1334. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, J.G.; Akila, S.; Nadar, M.S.A.M.; Narendhirakannan, R.T.; Chatterjee, S. Biosynthesized Vitis vinifera seed gold nanoparticles induce apoptotic cell death in A431 skin cancer cells. RSC Adv. 2016, 6, 82205–82218. [Google Scholar] [CrossRef]
- Nirmala, J.G.; Akila, S.; Nadar, M.S.A.M.; Narendhirakannan, R.T.; Chatterjee, S. Vitis vinifera peel polyphenols stabilized gold nanoparticles induce cytotoxicity and apoptotic cell death in A431 skin cancer cell lines. Adv. Powder Technol. 2017, 28, 1170–1184. [Google Scholar] [CrossRef]
- Agarwal, H.; Kumar, S.V.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles -An eco-friendly approach. Res. Effic. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- Jayaseelan, C.; Rahuman, A.A.; Kirthi, A.V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Guarav, K.; Karthik, L.; Rao, K.V. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 90, 78–84. [Google Scholar] [CrossRef]
- Pulit-prociak, J.; Chwastowski, J.; Kucharski, A.; Banach, M. Applied surface science functionalization of textiles with silver and zinc oxide nanoparticles. Appl. Surf. Sci. 2016, 385, 543–553. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Cragg, G.M.; Newman, D.J. Plants as a source of anticancer agents. J. Ethnopharmacol. 2005, 100, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef]
- Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 2003, 23, 519–534. [Google Scholar] [CrossRef]
- Hu, M.L. Dietary polyphenols as antioxidants and anticancer agents: More questions than answers. Chang. Gung Med. J. 2011, 34, 449–460. [Google Scholar] [PubMed]
- Dzubak, P.; Hajduch, M.; Vydra, D.; Hustova, A.; Kvasnica, M.; Biedermann, D.; Markova, L.; Urban, M.; Sarek, J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep. 2006, 23, 394–411. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010, 62, 90–99. [Google Scholar] [CrossRef]
- Ratan, Z.A.; Haidere, M.F.; Nurunnabi, M.; Shahriar, S.M.; Ahammad, A.J.S.; Shim, Y.Y.; Reaney, M.J.T.; Cho, J.Y. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancer 2020, 12, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesniak, A.; Salvati, A.; Santos-Martinez, M.J.; Radomski, M.W.; Dawson, K.A.; Åberg, C. Nanoparticle adhesion to the cell membrane and its effect on nano particle uptake efficiency. J. Am. Chem. Soc. 2013, 135, 1438–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxidenanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
- Panigrahi, S.; Basu, S.; Praharaj, S.; Pande, S.; Jana, S.; Pal, A.; Ghosh, S.K.; Pal, T. Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process. J. Phys. Chem. C 2007, 111, 4596–4605. [Google Scholar] [CrossRef]
- Woo, Y.; Lai, D.Y. Aromatic amino and nitro-amino compounds and their halogenated derivatives. In Patty’s Toxicology; Bingham, E., Cohrssen, B., Powell, C.H., Eds.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Sharma, J.K.; Akhtar, M.S.; Ameen, S.; Srivastva, P.; Singh, G. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloys Compd. 2015, 632, 321–325. [Google Scholar] [CrossRef]
- Lim, S.H.; Ahn, E.Y.; Park, Y. Green synthesis and catalytic activity of gold nanoparticles synthesized by Artemisia capillaries water extract. Nanoscale Res. Lett. 2016, 11, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostami-Vartooni, A.; Nasrollahzadeh, M.; Alizadeh, M. Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and congo red. J. Alloys Compd. 2016, 680, 309–314. [Google Scholar] [CrossRef]
- Gopalakrishnan, R.; Loganathan, B.; Dinesh, S.; Raghu, K. Strategic green synthesis, characterization and catalytic application to 4-nitrophenol reduction of palladium nanoparticles. J. Clust. Sci. 2017, 28, 2123–2131. [Google Scholar] [CrossRef]
- Senobari, S.; Nezamzadeh-Ejhieh, A. A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: Designing the experiments. J. Mol. Liq. 2018, 261, 208–217. [Google Scholar] [CrossRef]
- Begum, R.; Najeeb, J.; Sattar, A.; Naseem, K.; Irfan, A.; Al-Sehemi, A.G.; Farooqi, Z.H. Chemical reduction of methylene blue in the presence of nanocatalysts: A critical review. Rev. Chem. Eng. 2019, 36. [Google Scholar] [CrossRef]
Fruit Verities | Phytochemicals | Role | Types of Metallic Nanoparticles | Phytochemicals as Capping Agents | References |
---|---|---|---|---|---|
Banana, Amla, Pomegranate | Trans-β carotene, β-Sitosterol, Caffeic acid, Gallagic acid | Anticancer | Copper oxide | Phenols, Primary amines, Polyphenols, Sterols, Fatty acids, Hydroxyl, Carbonyl, Terpenoids, Proteins | [13,25,26,27,28,29,30,31,32] |
Banana, Amla, Pomegranate, Guava, Citron | p-Coumaric acid, Vitamin C, Emblicanin-A, Catechin, Guavin-B, β-Bisabolene | Antioxidants | Gold | Carboxyl, Aliphatic amines, Phenols, Flavonoids, Terpenes, Vitamins, Lycopene, Glycosides, Amino acids | [13,25,26,33,34,35,36,37,38,39,40] |
Banana, Amla, Guava, Citron | Ferulic acid, 1,6-bis-O-galloyl-beta-d-glucose, Gallic acid, Avicularin, Citral B, Limonene, | Antimicrobial | Silver | Phenols, Alkaloids, Vitamins, Polyphenols, Amino acids, Carbohydrates, Proteins, Flavonoids | [13,25,33,34,41,42,43,44,45,46,47] |
Pomegranate, Lemon, Grape, Pineapple, Jamun | Punicic acid, Β-pinene, Stilbenoid, Malic acid, Bromelain | Skincare | Zinc oxide | Phenols, Flavonoids, Xanthones, Anthocyanin | [26,48,49,50,51,52] |
Fruit Common Name | Scientific Name | Biological Extract | Types of NPs synthesized | Reaction Temperature/Time | Morphology | Size | Stability | References |
---|---|---|---|---|---|---|---|---|
North Arcot | Syzygium alternifolium (Wt.) Walp | Whole fruit | Copper oxide | 50 °C/2 h | Sphere | 2–69 nm | Nd | [27] |
Christ’s thorn jujube | Ziziphus spina-christi (L.)Willd | Pulp | Copper oxide | 80 °C/ND | Sphere | 5–20 nm | Nd | [28] |
Caperberry | Capparis spinosa | Whole fruit | Copper oxide | 60 °C/24 h | Sphere | 17–41 nm | Nd | [29] |
Citron | Citrus medica Linn. | Juice | Copper oxide | 60–100 °C/ND | ND | 10–60 nm | Nd | [54] |
Strawberry | Fragaria ananassa | Whole fruit | Copper oxide | RT/1 h | Sphere | 10–30 nm | Nd | [30] |
Guava | Psidium guajava L | Whole fruit | Copper oxide | 80 °C/2 h | Flakes | 15–30 nm | 15 days | [31] |
Pomegranate | Punica granatum | Peel | Copper oxide | 80 °C/10 min | Sphere | 15–20 nm | Nd | [32] |
Pomegranate | Punica granatum | Juice | Gold | RT/ND | Triangular, Pentagonal, Hexagonal and Sphere | 23–36 nm | Nd | [35] |
Wild orange | Citrus macroptera | Juice | Gold | 40–50 °C/90 min | Sphere | 7–25 nm | Nd | [55] |
Longan | Euphoria longana Lam. | Juice | Gold | 30 °C/30 min | Sphere | 25 nm | Nd | [36] |
Pomegranate | Punica granatum | Juice | Gold | RT/20 min | Irregular | 100 nm | Nd | [37] |
Pomelo | Citrus maxima | Juice | Gold | RT/5 min | Rod and Sphere | 25.7 nm | Nd | [38] |
Watermelon | Citrullus lanatus | Rind | Gold | RT/1 h | Sphere | 20–140 nm | 1 month | [39] |
Plum | Prunus domestica | Whole fruit | Gold | RT/4 h | Sphere | 4–38 nm | Nd | [40] |
Pomegranate | Punica granatum | Juice | Silver | 65 °C/1 min | Cubic | 23 nm | Nd | [56] |
Papaya | Carica papaya | Juice | Silver | NS | Sphere | 75.68 nm | Nd | [41] |
Chebulic myrobalan | Terminalia chebula | Whole fruit | Silver | RT/ND | Cubic | 25 nm | Nd | [42] |
Grape | Vitis vinifera | Whole fruit | Silver | RT/4 h | Sphere | 30–40 nm | Nd | [57] |
Indian gooseberry | Emblica officinalis | Pulp | Silver | RT/30 min | Sphere | 15 nm | Nd | [43] |
Indian gooseberry | Phyllanthus emblica | Pulp | Silver | 65 °C/20 min | Sphere | 19.8–92.8 nm | Nd | [44] |
Fig | Ficus carica | Whole fruit | Silver | RT/24 h | Sphere | 54–89 nm | Nd | [45] |
Indian gooseberry | Phyllanthus emblica | Pulp | Silver | RT/ND | Cubic | 19–45 nm | Nd | [46] |
Black hawthorn | Crataegus pentagyna | Pulp | Silver | RT/2 h | Sphere | 25–45 nm | Nd | [47] |
Date palm | Phoenix dactylifera | Pulp | Silver | 60 °C/20 min | Sphere | 20–100 nm | Nd | [58] |
Date palm | Phoenix dactylifera | Pulp | Silver | 55 °C/10 min | Sphere | 25–60 nm | Nd | [59] |
Apple | Malus pumila | Pulp | Silver | 80 °C/ND | Sphere | 30.25 nm | Nd | [60] |
Pomegranate | Punica granatum | Peel | Silver | RT/24 h | ND | 5–50 nm | Nd | [61] |
Banana | Musa paradisiaca | Peel | Silver | 30 °C/ND | Sphere | 23.7 nm | Nd | [62] |
Banana | Musa paradisiaca | Peel | Silver | RT/30 min | Grain | 34 nm | Nd | [63] |
Orange | Citrus sinensis | Peel | Silver | 90 °C/15 min | Sphere | 7.36 nm | Nd | [64] |
Apricot | Prunus armeniaca | Peel | Silver | NS | Rod | 50 nm | Nd | [65] |
Pomegranate | Punica granatum | Peel | Silver | RT/24 h | Sphere | 20–40 nm | Nd | [66] |
Pineapple | Ananas comosus | Peel | Silver | RT/24 h | Sphere | ND | Nd | [67] |
Logan | Dimocarpus Longan Lour | Peel | Silver | 80 °C/5 h | Cubic | 9–32 nm | 6 months | [68] |
Pomelo | Citrus maxima | Juice | Zinc oxide | 400 °C/5–10 min | Agglomerated | 10–20 nm | Nd | [69] |
Purple mangosteen | Garcinia mangostana | Pulp | Zinc oxide | 70–80 °C/ND | Sphere | 21 nm | Nd | [52] |
Pomegranate | Punica granatum | Peel | Zinc oxide | 80 °C/ND | Sphere and Hexagonal | 32–81 nm | Nd | [70] |
Pineapple | Ananas comosus | Juice | Zinc oxide | 240 °C/5 min | ND | 30–57 nm | Nd | [71] |
Family | Fruit Verity | Applications | References |
---|---|---|---|
Myrtaceae | Syzygium alternifolium (Wt.) Walp. | Antiviral activity against Newcastle Disease Virus (NDV) | [27] |
Rhamnaceae | Ziziphus spina-christi (L.)Willd | Adequate adsorption capacity to the removal of crystal violet (CV), from aqueous solution; Antibacterial activity against Escherichia coli and Staphylococcus aureus | [28] |
Capparaceae | Capparis spinosa | Antibacterial activity against S. aureus, Bacillus cereus | [29] |
Rutaceae | Citrus medica Linn. | Antibacterial activity against E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Propionibacterium acnes and Salmonella typhi; Antifungal activity against Fusarium culmorum, F. oxysporum and F. graminearum | [54] |
Rosaceae | Fragaria ananassa | Antibacterial activity against S. aureus, S. saprophyticus, Bacillus subtilis, Streptococcus pneumoniae, E. coli O157: H7, S. typhimurium, Proteus mirabilis, and P. aeruginosa; Antifungal activity against Candida guilliermondii, C. parapsilosis, C. albicans, C. krusei, and C. glabrata; Antioxidant activity; Cutaneous wound healing ability | [30] |
Myrtaceae | Psidium guajava L | Antibacterial activity against E. coli and S. aureus | [31] |
Lythraceae | Punica granatum | Antibacterial activity against Micrococcus luteus MTCC 1809, P. aeruginosa MTCC 424, Salmonella enterica MTCC 1253 and Enterobacter aerogenes MTCC 2823 | [32] |
Family | Fruit Verity | Applications | References |
---|---|---|---|
Lythraceae | Punica granatum | Catalytic activity against 4-nitrophenol | [35] |
Rutaceae | Citrus macroptera | Antibiofilm activity against Pseudomonas aeruginosa; Cytotoxic effect against HepG2 (liver cancer cell line) | [55] |
Sapindaceae | Euphoria longana Lam. | Cytotoxicity against human breast cancer cell lines MCF-7; Antioxidant activity | [36] |
Lythraceae | Punica granatum | Antioxidant activity | [37] |
Rutaceae | Citrus maxima | Catalytic activity against 4-nitrophenol | [38] |
Cucurbitaceae | Citrullus lanatus | Antibacterial activity against Bacillus cereus ATCC 13061, Escherichia coli ATCC 43890, Listeria monocytogenes ATCC 19115, Staphylococcus aureus ATCC 49444, Salmonella typhimurium ATCC 43174; Antioxidant activity; Anti-proteasome inhibitory potential | [39] |
Rosaceae | Prunus domestica | Catalytic activity against 4-nitrophenol | [40] |
Vitaceae | Vtis vinifera | Apoptotic activity against human epidermoid carcinoma A431 cell line | [74,75] |
Family | Fruit Verity | Applications | References |
---|---|---|---|
Combretaceae | Terminalia chebula | Catalytic activity against methylene blue | [42] |
Vitaceae | Vitis vinifera | Antibacterial activity against Bacillus subtilis and Klebsiella planticola | [57] |
Phyllanthaceae | Emblica officinalis | Antibacterial activity against Staphylococcus aureus, B. subtilis, Escherichia coli and Klebsiella pneumoniae | [43] |
Phyllanthaceae | Phyllanthus emblica | Antibacterial activity against Acidovorax oryzae strain RS-2 | [44] |
Moraceae | Ficus carica | Cytotoxicity against human breast cancer cell lines MCF-7 | [45] |
Phyllanthaceae | Phyllanthus emblica | Antibacterial activity against S. aureus, K. pneumoniae | [46] |
Rosaceae | Crataegus pentagyna | Antibacterial activity against E. coli, S. aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Acinetobacter baumannii; Photocatalytic action against rhodamine b, eosin and methylene blue | [47] |
Arecaceae | Phoenix dactylifera | Antibacterial activity against E. coli, S. aureus, E. faecalis, P. aeruginosa; Antifungal activity against Candida albicans; Cytotoxicity against human breast cancer cell lines MCF-7 | [58] |
Arecaceae | Phoenix dactylifera | Antibacterial activity against S. aureus, S. epidermidis, K. pneumoniae, and E. coli; Catalytic activity against 4-nitrophenol | [59] |
Rosaceae | Malus pumila | Antibacterial activity against E. coli, S. aureus, P. aeruginosa and methicillin-resistant S. aureus | [60] |
Lythraceae | Punica granatum | Antibacterial activity against E. coli, S. aureus, P. aeruginosa | [61] |
Musaceae | Musa paradisiaca | Antibacterial activity against E. coli, S. aureus, P. aeruginosa, B. subtilis; Antifungal activity against Candida albicans | [62] |
Musaceae | Musa paradisiaca | Antibacterial activity against E. coli, K. pneumoniae, S. aureus, B. subtilis; Antioxidant activity | [63] |
Rosaceae | Prunus armeniaca | Antibacterial activity against E. coli, S. aureus, P. aeruginosa, B. subtilis | [65] |
Lythraceae | Punica granatum | Antibacterial activity against E. coli, S. aureus, S. epidermidis, P. aeruginosa, Proteus vulgaris, Salmonella typhi, K. pneumoniae; Cytotoxicity against colon cancer cell line (RKO: ATCC® CRL-2577™) | [66] |
Bromeliaceae | Ananas comosus | Antioxidant activity; Cytotoxic effect against HepG2 (liver cancer cell line); Anti-diabetic activity; Antibacterial activity against Bacillus cereus KCTC 3624, Listeria monocytogenes ATCC 19111, Enterococcus faecium DB01, and S. aureus ATCC 13565 | [67] |
Sapindaceae | Dimocarpus Longan Lour | Antibacterial activity against E. coli, S. aureus, P. aeruginosa, B. subtilis; Antifungal activity against Candida albicans; Cytotoxicity against PC-3 (prostate cancer cell line) | [68] |
Family | Fruit Verity | Applications | References |
---|---|---|---|
Rutaceae | Citrus maxima | Photocatalytic activity against methylene blue; Antibacterial activity against Klebsiella aerogenes, E. coli, S. aureus; Sensor activity towards dopamine | [69] |
Clusiaceae | Garcinia mangostana | Photocatalytic activity against malachite green | [52] |
Lythraceae | Punica granatum | Antibacterial activity against Escherichia coli and Enterococcus faecalis; Cytotoxicity against HCT116 (colorectal cancer cell line) | [70] |
Bromeliaceae | Ananas comosus | Antibacterial activity against E. coli | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, H.; Bhardwaj, K.; Dhanjal, D.S.; Nepovimova, E.; Șen, F.; Regassa, H.; Singh, R.; Verma, R.; Kumar, V.; Kumar, D.; et al. Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications. Int. J. Mol. Sci. 2020, 21, 8458. https://doi.org/10.3390/ijms21228458
Kumar H, Bhardwaj K, Dhanjal DS, Nepovimova E, Șen F, Regassa H, Singh R, Verma R, Kumar V, Kumar D, et al. Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications. International Journal of Molecular Sciences. 2020; 21(22):8458. https://doi.org/10.3390/ijms21228458
Chicago/Turabian StyleKumar, Harsh, Kanchan Bhardwaj, Daljeet Singh Dhanjal, Eugenie Nepovimova, Fatih Șen, Hailemeleak Regassa, Reena Singh, Rachna Verma, Vinod Kumar, Dinesh Kumar, and et al. 2020. "Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications" International Journal of Molecular Sciences 21, no. 22: 8458. https://doi.org/10.3390/ijms21228458
APA StyleKumar, H., Bhardwaj, K., Dhanjal, D. S., Nepovimova, E., Șen, F., Regassa, H., Singh, R., Verma, R., Kumar, V., Kumar, D., Bhatia, S. K., & Kuča, K. (2020). Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications. International Journal of Molecular Sciences, 21(22), 8458. https://doi.org/10.3390/ijms21228458