Gene Expression Profiling in Huntington’s Disease: Does Comorbidity with Depressive Symptoms Matter?
Abstract
:1. Introduction
2. Results
2.1. Differential Gene Expression Analysis
2.2. Gene Ontology Analysis
2.3. Validation of Microarray Data by Real-Time qPCR
3. Discussion
4. Material and Methods
4.1. Subjects and Clinical Assessments
4.2. Blood Sampling
4.3. Gene Expression Analysis
4.4. Data Analysis
4.5. Gene Ontology Analysis
4.6. Real-Time Quantitative PCR
4.7. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- MacDonald, M.E.; Barnes, G.; Srinidhi, J.; Duyao, M.P.; Ambrose, C.M.; Myers, R.H.; Gray, J.; Conneally, P.M.; Young, A.; Penney, J.; et al. Gametic but not somatic instability of CAG repeat length in Huntington’s disease. J. Med. Genet. 1993, 30, 982–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorsey, E.R.; Beck, C.A.; Darwin, K.; Nichols, P.; Brocht, A.F.; Biglan, K.M.; Shoulson, I.; Huntington Study Group, C.I. Natural history of Huntington disease. JAMA Neurol. 2013, 70, 1520–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Testa, C.M.; Jankovic, J. Huntington disease: A quarter century of progress since the gene discovery. J. Neurol. Sci. 2019, 396, 52–68. [Google Scholar] [CrossRef] [PubMed]
- Nasir, J.; Floresco, S.B.; O’Kusky, J.R.; Diewert, V.M.; Richman, J.M.; Zeisler, J.; Borowski, A.; Marth, J.D.; Phillips, A.G.; Hayden, M.R. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 1995, 81, 811–823. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, P.; Shanmugasundaram, R.; Shuyu, E.; Dragatsis, I. Congenital hydrocephalus associated with abnormal subcommissural organ in mice lacking huntingtin in Wnt1 cell lineages. Hum. Mol. Genet. 2009, 18, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Taran, A.S.; Shuvalova, L.D.; Lagarkova, M.A.; Alieva, I.B. Huntington’s Disease-An Outlook on the Interplay of the HTT Protein, Microtubules and Actin Cytoskeletal Components. Cells 2020, 9, 1514. [Google Scholar] [CrossRef] [PubMed]
- Dragatsis, I.; Levine, M.S.; Zeitlin, S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat. Genet. 2000, 26, 300–306. [Google Scholar] [CrossRef]
- Zuccato, C.; Valenza, M.; Cattaneo, E. Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol. Rev. 2010, 90, 905–981. [Google Scholar] [CrossRef]
- Ross, C.A.; Reilmann, R.; Cardoso, F.; McCusker, E.A.; Testa, C.M.; Stout, J.C.; Leavitt, B.R.; Pei, Z.; Landwehrmeyer, B.; Martinez, A.; et al. Movement Disorder Society Task Force Viewpoint: Huntington’s Disease Diagnostic Categories. Mov. Disord. Clin. Pract. 2019, 6, 541–546. [Google Scholar] [CrossRef]
- Reedeker, W.; van der Mast, R.C.; Giltay, E.J.; Kooistra, T.A.; Roos, R.A.; van Duijn, E. Psychiatric disorders in Huntington’s disease: A 2-year follow-up study. Psychosomatics 2012, 53, 220–229. [Google Scholar] [CrossRef]
- Duff, K.; Paulsen, J.S.; Beglinger, L.J.; Langbehn, D.R.; Stout, J.C.; Predict, H.D.I.o.t.H.S.G. Psychiatric symptoms in Huntington’s disease before diagnosis: The predict-HD study. Biol. Psychiatry 2007, 62, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.K.; Gilbert, A.S.; Mason, S.L.; Goodman, A.O.; Barker, R.A. Health-related quality of life in Huntington’s disease: Which factors matter most? Mov. Disord. Off. J. Mov. Disord. Soc. 2009, 24, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, H.H.; Gehl, C.R.; Dellefave-Castillo, L.; Schiffman, J.F.; Shannon, K.M.; Paulsen, J.S.; Huntington Study Group. Suicidal ideation in Huntington disease: The role of comorbidity. Psychiatry Res. 2011, 188, 372–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrer, L.A. Suicide and attempted suicide in Huntington disease: Implications for preclinical testing of persons at risk. Am. J. Med Genet. 1986, 24, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Robins Wahlin, T.B.; Backman, L.; Lundin, A.; Haegermark, A.; Winblad, B.; Anvret, M. High suicidal ideation in persons testing for Huntington’s disease. Acta Neurol. Scand. 2000, 102, 150–161. [Google Scholar] [CrossRef]
- Schoenfeld, M.; Myers, R.H.; Cupples, L.A.; Berkman, B.; Sax, D.S.; Clark, E. Increased rate of suicide among patients with Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 1984, 47, 1283–1287. [Google Scholar] [CrossRef] [Green Version]
- Fiedorowicz, J.G.; Mills, J.A.; Ruggle, A.; Langbehn, D.; Paulsen, J.S.; Group, P.-H.I.o.t.H.S. Suicidal behavior in prodromal Huntington disease. Neuro Degener. Dis. 2011, 8, 483–490. [Google Scholar] [CrossRef]
- Almqvist, E.W.; Brinkman, R.R.; Wiggins, S.; Hayden, M.R. Canadian Collaborative Study of Predictive, T. Psychological consequences and predictors of adverse events in the first 5 years after predictive testing for Huntington’s disease. Clin. Genet. 2003, 64, 300–309. [Google Scholar] [CrossRef]
- Van Duijn, E.; Kingma, E.M.; Timman, R.; Zitman, F.G.; Tibben, A.; Roos, R.A.; van der Mast, R.C. Cross-sectional study on prevalences of psychiatric disorders in mutation carriers of Huntington’s disease compared with mutation-negative first-degree relatives. J. Clin. Psychiatry 2008, 69, 1804–1810. [Google Scholar] [CrossRef]
- Berrios, G.E.; Wagle, A.C.; Markova, I.S.; Wagle, S.A.; Ho, L.W.; Rubinsztein, D.C.; Whittaker, J.; Ffrench-Constant, C.; Kershaw, A.; Rosser, A.; et al. Psychiatric symptoms and CAG repeats in neurologically asymptomatic Huntington’s disease gene carriers. Psychiatry Res. 2001, 102, 217–225. [Google Scholar] [CrossRef]
- Craufurd, D.; Thompson, J.C.; Snowden, J.S. Behavioral changes in Huntington Disease. Neuropsychiatry Neuropsychol. Behav. Neurol. 2001, 14, 219–226. [Google Scholar] [PubMed]
- Kingma, E.M.; van Duijn, E.; Timman, R.; van der Mast, R.C.; Roos, R.A. Behavioural problems in Huntington’s disease using the Problem Behaviours Assessment. Gen. Hosp. Psychiatry 2008, 30, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Pla, P.; Orvoen, S.; Saudou, F.; David, D.J.; Humbert, S. Mood disorders in Huntington’s disease: From behavior to cellular and molecular mechanisms. Front. Behav. Neurosci. 2014, 8, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleene, R.; Schachner, M. Glycans and neural cell interactions. Nat. Rev. Neurosci. 2004, 5, 195–208. [Google Scholar] [CrossRef]
- Morita, I.; Kizuka, Y.; Kakuda, S.; Oka, S. Expression and function of the HNK-1 carbohydrate. J. Biochem. 2008, 143, 719–724. [Google Scholar] [CrossRef]
- Jeffries, A.R.; Mungall, A.J.; Dawson, E.; Halls, K.; Langford, C.F.; Murray, R.M.; Dunham, I.; Powell, J.F. beta-1,3-Glucuronyltransferase-1 gene implicated as a candidate for a schizophrenia-like psychosis through molecular analysis of a balanced translocation. Mol. Psychiatry 2003, 8, 654–663. [Google Scholar] [CrossRef] [Green Version]
- Hamann, J.; Aust, G.; Arac, D.; Engel, F.B.; Formstone, C.; Fredriksson, R.; Hall, R.A.; Harty, B.L.; Kirchhoff, C.; Knapp, B.; et al. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol. Rev. 2015, 67, 338–367. [Google Scholar] [CrossRef]
- Moreno, M.; Pedrosa, L.; Pare, L.; Pineda, E.; Bejarano, L.; Martinez, J.; Balasubramaniyan, V.; Ezhilarasan, R.; Kallarackal, N.; Kim, S.H.; et al. GPR56/ADGRG1 Inhibits Mesenchymal Differentiation and Radioresistance in Glioblastoma. Cell Rep. 2017, 21, 2183–2197. [Google Scholar] [CrossRef] [Green Version]
- Bahi-Buisson, N.; Poirier, K.; Boddaert, N.; Fallet-Bianco, C.; Specchio, N.; Bertini, E.; Caglayan, O.; Lascelles, K.; Elie, C.; Rambaud, J.; et al. GPR56-related bilateral frontoparietal polymicrogyria: Further evidence for an overlap with the cobblestone complex. Brain A J. Neurol. 2010, 133, 3194–3209. [Google Scholar] [CrossRef]
- Bae, B.I.; Tietjen, I.; Atabay, K.D.; Evrony, G.D.; Johnson, M.B.; Asare, E.; Wang, P.P.; Murayama, A.Y.; Im, K.; Lisgo, S.N.; et al. Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 2014, 343, 764–768. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Luo, R.; Jin, P.; Li, T.; Oak, H.C.; Giera, S.; Monk, K.R.; Lak, P.; Shoichet, B.K.; Piao, X. GAIN domain-mediated cleavage is required for activation of G protein-coupled receptor 56 (GPR56) by its natural ligands and a small-molecule agonist. J. Biol. Chem. 2019, 294, 19246–19254. [Google Scholar] [CrossRef] [PubMed]
- Piao, X.; Hill, R.S.; Bodell, A.; Chang, B.S.; Basel-Vanagaite, L.; Straussberg, R.; Dobyns, W.B.; Qasrawi, B.; Winter, R.M.; Innes, A.M.; et al. G protein-coupled receptor-dependent development of human frontal cortex. Science 2004, 303, 2033–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piao, X.; Chang, B.S.; Bodell, A.; Woods, K.; Benzeev, B.; Topcu, M.; Guerrini, R.; Goldberg-Stern, H.; Sztriha, L.; Dobyns, W.B.; et al. Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Ann. Neurol. 2005, 58, 680–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giera, S.; Deng, Y.; Luo, R.; Ackerman, S.D.; Mogha, A.; Monk, K.R.; Ying, Y.; Jeong, S.J.; Makinodan, M.; Bialas, A.R.; et al. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat. Commun. 2015, 6, 6121. [Google Scholar] [CrossRef] [Green Version]
- Giera, S.; Luo, R.; Ying, Y.; Ackerman, S.D.; Jeong, S.J.; Stoveken, H.M.; Folts, C.J.; Welsh, C.A.; Tall, G.G.; Stevens, B.; et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. Elife 2018, 7, e33385. [Google Scholar] [CrossRef]
- Wiatr, K.; Szlachcic, W.J.; Trzeciak, M.; Figlerowicz, M.; Figiel, M. Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells. Mol. Neurobiol. 2018, 55, 3351–3371. [Google Scholar] [CrossRef]
- Van der Plas, E.; Langbehn, D.R.; Conrad, A.L.; Koscik, T.R.; Tereshchenko, A.; Epping, E.A.; Magnotta, V.A.; Nopoulos, P.C. Abnormal brain development in child and adolescent carriers of mutant huntingtin. Neurology 2019, 93, e1021–e1030. [Google Scholar] [CrossRef]
- Cattaneo, E.; Zuccato, C.; Tartari, M. Normal huntingtin function: An alternative approach to Huntington’s disease. Nat. Rev. Neurosci. 2005, 6, 919–930. [Google Scholar] [CrossRef]
- Reiner, A.; Dragatsis, I.; Zeitlin, S.; Goldowitz, D. Wild-type huntingtin plays a role in brain development and neuronal survival. Mol. Neurobiol. 2003, 28, 259–276. [Google Scholar] [CrossRef]
- Nopoulos, P.C. Huntington disease: A single-gene degenerative disorder of the striatum. Dialogues Clin. Neurosci. 2016, 18, 91–98. [Google Scholar]
- Mehler, M.F.; Gokhan, S. Mechanisms underlying neural cell death in neurodegenerative diseases: Alterations of a developmentally-mediated cellular rheostat. Trends Neurosci. 2000, 23, 599–605. [Google Scholar] [CrossRef]
- Awate, S.P.; Win, L.; Yushkevich, P.; Schultz, R.T.; Gee, J.C. 3D cerebral cortical morphometry in autism: Increased folding in children and adolescents in frontal, parietal, and temporal lobes. Med. Image Comput. Comput. Assist. Interv. 2008, 11, 559–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubera, K.M.; Schmitgen, M.M.; Hirjak, D.; Wolf, R.C.; Orth, M. Cortical neurodevelopment in pre-manifest Huntington’s disease. Neuroimage Clin. 2019, 23, 101913. [Google Scholar] [CrossRef] [PubMed]
- Harrison, O.J.; Vendome, J.; Brasch, J.; Jin, X.; Hong, S.; Katsamba, P.S.; Ahlsen, G.; Troyanovsky, R.B.; Troyanovsky, S.M.; Honig, B.; et al. Nectin ectodomain structures reveal a canonical adhesive interface. Nat. Struct. Mol. Biol. 2012, 19, 906–915. [Google Scholar] [CrossRef] [Green Version]
- Dalva, M.B.; McClelland, A.C.; Kayser, M.S. Cell adhesion molecules: Signalling functions at the synapse. Nat. Rev. Neurosci. 2007, 8, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, L. Self-recognition at the atomic level: Understanding the astonishing molecular diversity of homophilic Dscams. Neuron 2007, 56, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Parrish, J.Z.; Emoto, K.; Kim, M.D.; Jan, Y.N. Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu. Rev. Neurosci. 2007, 30, 399–423. [Google Scholar] [CrossRef]
- Mizutani, K.; Takai, Y. Nectin spot: A novel type of nectin-mediated cell adhesion apparatus. Biochem. J. 2016, 473, 2691–2715. [Google Scholar] [CrossRef]
- Audet, M.C.; Anisman, H. Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses. Front. Cell. Neurosci. 2013, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- Jamain, S.; Quach, H.; Betancur, C.; Rastam, M.; Colineaux, C.; Gillberg, I.C.; Soderstrom, H.; Giros, B.; Leboyer, M.; Gillberg, C.; et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 2003, 34, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Kirov, G.; Gumus, D.; Chen, W.; Norton, N.; Georgieva, L.; Sari, M.; O’Donovan, M.C.; Erdogan, F.; Owen, M.J.; Ropers, H.H.; et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum. Mol. Genet. 2008, 17, 458–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandi, C. Stress, cognitive impairment and cell adhesion molecules. Nat. Rev. Neurosci. 2004, 5, 917–930. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Oliveira, G.; Coutinho, A.; Yang, C.; Feng, J.; Katz, C.; Sram, J.; Bockholt, A.; Jones, I.R.; Craddock, N.; et al. Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol. Psychiatry 2005, 10, 329–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, B.S.; Wang, Z.; Horga, G.; Warner, V.; Rutherford, B.; Klahr, K.W.; Graniello, B.; Wickramaratne, P.; Garcia, F.; Yu, S.; et al. Discriminating risk and resilience endophenotypes from lifetime illness effects in familial major depressive disorder. JAMA Psychiatry 2014, 71, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Gee, D.G.; Casey, B.J. The Impact of Developmental Timing for Stress and Recovery. Neurobiol. Stress 2015, 1, 184–194. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, K.A.; Koenen, K.C.; Bromet, E.J.; Karam, E.G.; Liu, H.; Petukhova, M.; Ruscio, A.M.; Sampson, N.A.; Stein, D.J.; Aguilar-Gaxiola, S.; et al. Childhood adversities and post-traumatic stress disorder: Evidence for stress sensitisation in the World Mental Health Surveys. Br. J. Psychiatry J. Ment. Sci. 2017, 211, 280–288. [Google Scholar] [CrossRef] [Green Version]
- Hirjak, D.; Huber, M.; Kirchler, E.; Kubera, K.M.; Karner, M.; Sambataro, F.; Freudenmann, R.W.; Wolf, R.C. Cortical features of distinct developmental trajectories in patients with delusional infestation. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2017, 76, 72–79. [Google Scholar] [CrossRef]
- Oostermeijer, S.; Whittle, S.; Suo, C.; Allen, N.B.; Simmons, J.G.; Vijayakumar, N.; van de Ven, P.M.; Jansen, L.M.; Yucel, M.; Popma, A. Trajectories of adolescent conduct problems in relation to cortical thickness development: A longitudinal MRI study. Transl. Psychiatry 2016, 6, e899. [Google Scholar] [CrossRef] [Green Version]
- Vijayakumar, N.; Allen, N.B.; Youssef, G.; Dennison, M.; Yucel, M.; Simmons, J.G.; Whittle, S. Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume. Hum. Brain Mapp. 2016, 37, 2027–2038. [Google Scholar] [CrossRef]
- Zilles, K.; Palomero-Gallagher, N.; Amunts, K. Development of cortical folding during evolution and ontogeny. Trends Neurosci. 2013, 36, 275–284. [Google Scholar] [CrossRef]
- Schmaal, L.; Hibar, D.P.; Samann, P.G.; Hall, G.B.; Baune, B.T.; Jahanshad, N.; Cheung, J.W.; van Erp, T.G.M.; Bos, D.; Ikram, M.A.; et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 2017, 22, 900–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkovich, A.J.; Guerrini, R.; Kuzniecky, R.I.; Jackson, G.D.; Dobyns, W.B. A developmental and genetic classification for malformations of cortical development: Update 2012. Brain A J. Neurol. 2012, 135, 1348–1369. [Google Scholar] [CrossRef] [PubMed]
- Misson, J.P.; Austin, C.P.; Takahashi, T.; Cepko, C.L.; Caviness, V.S., Jr. The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system. Cereb. Cortex 1991, 1, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Jossin, Y.; Lee, M.; Klezovitch, O.; Kon, E.; Cossard, A.; Lien, W.H.; Fernandez, T.E.; Cooper, J.A.; Vasioukhin, V. Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells. Dev. Cell 2017, 41, 481–495. e485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beattie, R.; Hippenmeyer, S. Mechanisms of radial glia progenitor cell lineage progression. FEBS Lett. 2017, 591, 3993–4008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsingh, A.I.; Manley, K.; Rong, Y.; Reilly, A.; Messer, A. Transcriptional dysregulation of inflammatory/immune pathways after active vaccination against Huntington’s disease. Hum. Mol. Genet. 2015, 24, 6186–6197. [Google Scholar] [CrossRef] [Green Version]
- Colpo, G.D.; Leboyer, M.; Dantzer, R.; Trivedi, M.H.; Teixeira, A.L. Immune-based strategies for mood disorders: Facts and challenges. Expert Rev. Neurother. 2017, 18, 139–152. [Google Scholar] [CrossRef]
Variables | Control Group (n = 8) | HD without Depression (n = 8) | HD with Depression (n = 8) | Statistic |
---|---|---|---|---|
Female sex | 5 (62.5%) | 5 (62.5%) | 5 (62.5%) | χ2(1) = 0 p = 1 |
Age | 51.91 (10.59) | 38.17 (8.44) | 48.27 (13.81) | F (2, 21) = 3.12 p = 0.067 |
Years of education | 15.93 (4.82) | 15.57 (3.59) | 14.25 (2.96) | F (2, 21) = 0.4078 p = 0.6703 |
BMI | 30.86 (8.09) | 29.04 (7.15) | 29.39 (6.18) | F (2, 20) = 0.3627 p = 0.7003 |
Gene ID | Gene Name | log2FoldChange | Stat | p Value | padj |
---|---|---|---|---|---|
ENSG00000109956 | B3GAT1 | 1.484 | 4.332 | 0.000 | 0.019415 |
ENSG00000205336 | ADGRG1 | 1.293 | 4.605 | 0.000 | 0.019415 |
ENSG00000165568 | AKR1E2 | −1.007 | −4.185 | 0.000 | 0.026784 |
ENSG00000206172 | HBA1 | −1.208 | −3.890 | 0.000 | 0.038152 |
ENSG00000110203 | FOLR3 | −1.687 | −3.265 | 0.001 | 0.059707 |
ENSG00000234389 | AC007278.1 | −1.262 | −3.162 | 0.002 | 0.068408 |
ENSG00000137267 | TUBB2A | −1.591 | −2.213 | 0.027 | 0.192338 |
ENSG00000196565 | HBG2 | −1.006 | −2.166 | 0.030 | 0.201445 |
ENSG00000239839 | DEFA3 | 1.101 | 2.017 | 0.044 | 0.234289 |
ENSG00000237973 | MTCO1P12 | 2.565 | 3.763 | 0.000 | NA |
ENSG00000248527 | MTATP6P1 | 1.036 | 3.042 | 0.002 | NA |
ENSG00000162631 | NTNG1 | −1.102 | −2.618 | 0.009 | NA |
ENSG00000196539 | OR2T3 | −1.329 | −3.064 | 0.002 | NA |
ENSG00000200488 | RN7SKP203 | −1.059 | −2.842 | 0.004 | NA |
ENSG00000071909 | MYO3B | 1.142 | 2.789 | 0.005 | NA |
ENSG00000144485 | HES6 | −1.141 | −3.027 | 0.002 | NA |
ENSG00000144908 | ALDH1L1 | −1.288 | −2.189 | 0.029 | NA |
ENSG00000145362 | ANK2 | −1.017 | −1.961 | 0.050 | NA |
ENSG00000178636 | AC092656.1 | −1.233 | −3.359 | 0.001 | NA |
ENSG00000247199 | AC091948.1 | −1.128 | −4.107 | 0.000 | NA |
ENSG00000230202 | AL450405.1 | 2.670 | 4.467 | 0.000 | NA |
ENSG00000260997 | AC004847.1 | 1.032 | 3.541 | 0.000 | NA |
ENSG00000075213 | SEMA3A | −1.025 | −2.605 | 0.009 | NA |
ENSG00000279483 | AC090498.1 | −1.257 | −2.763 | 0.006 | NA |
ENSG00000276819 | TRBV15 | −1.360 | −3.558 | 0.000 | NA |
ENSG00000201098 | RNY1 | −1.164 | −2.702 | 0.007 | NA |
ENSG00000234449 | FAM239A | −2.310 | −2.901 | 0.004 | NA |
ENSG00000215374 | FAM66B | −1.026 | −4.054 | 0.000 | NA |
ENSG00000240905 | RN7SL798P | 1.118 | 3.315 | 0.001 | NA |
ENSG00000184350 | MRGPRE | −1.929 | −2.127 | 0.033 | NA |
ENSG00000006071 | ABCC8 | −1.368 | −2.151 | 0.031 | NA |
ENSG00000170959 | DCDC1 | −1.127 | −2.440 | 0.015 | NA |
ENSG00000156113 | KCNMA1 | −1.153 | −2.707 | 0.007 | NA |
ENSG00000235602 | POU5F1P3 | 1.022 | 3.920 | 0.000 | NA |
ENSG00000225231 | LINC02470 | −1.765 | −2.060 | 0.039 | NA |
ENSG00000177359 | AC024940.2 | −1.687 | −3.254 | 0.001 | NA |
ENSG00000273824 | AC008033.3 | 1.148 | 2.862 | 0.004 | NA |
ENSG00000123201 | GUCY1B2 | −1.532 | −3.138 | 0.002 | NA |
ENSG00000102837 | OLFM4 | 1.081 | 2.248 | 0.025 | NA |
ENSG00000139926 | FRMD6 | −1.146 | −3.784 | 0.000 | NA |
ENSG00000021645 | NRXN3 | −1.020 | −2.433 | 0.015 | NA |
ENSG00000189419 | SPATA41 | −1.037 | −3.232 | 0.001 | NA |
ENSG00000205918 | PDPK2P | 1.111 | 3.006 | 0.003 | NA |
ENSG00000261245 | AC093520.2 | 1.096 | 2.797 | 0.005 | NA |
ENSG00000270124 | AC092127.2 | 1.040 | 3.505 | 0.000 | NA |
ENSG00000262074 | SNORD3B-2 | −1.154 | −2.194 | 0.028 | NA |
ENSG00000276241 | AC243829.2 | 1.579 | 3.073 | 0.002 | NA |
ENSG00000274512 | TBC1D3L | 1.021 | 2.304 | 0.021 | NA |
ENSG00000142449 | FBN3 | −1.148 | −1.982 | 0.047 | NA |
ENSG00000187244 | BCAM | −1.063 | −2.163 | 0.031 | NA |
ENSG00000262874 | C19orf84 | 1.224 | 3.628 | 0.000 | NA |
ENSG00000233493 | TMEM238 | −1.064 | −4.849 | 0.000 | NA |
ENSG00000179954 | SSC5D | −1.192 | −2.558 | 0.011 | NA |
ENSG00000196263 | ZNF471 | −1.153 | −3.938 | 0.000 | NA |
ENSG00000211659 | IGLV3-25 | −1.369 | −3.483 | 0.000 | NA |
ENSG00000264063 | MIR3687-2 | −1.068 | −2.784 | 0.005 | NA |
ENSG00000215533 | LINC00189 | 1.417 | 2.738 | 0.006 | NA |
ENSG00000236056 | GAPDHP14 | 1.401 | 2.836 | 0.005 | NA |
ENSG00000255568 | BRWD1-AS2 | −1.119 | −3.732 | 0.000 | NA |
ENSG00000210049 | MT-TF | 1.037 | 2.638 | 0.008 | NA |
Gene ID | Gene Name | log2FoldChange | Stat | p Value | padj |
---|---|---|---|---|---|
ENSG00000130202 | NECTIN2 | −1.20871551 | −2.27773 | 0.022743 | 0.999462 |
ENSG00000235169 | SMIM1 | 1.286216213 | 2.0662 | 0.03881 | 0.999462 |
ENSG00000163646 | CLRN1 | −1.417542862 | −2.08074 | 0.037458 | 0.999462 |
ENSG00000233058 | LINC00884 | −1.037747878 | −2.89202 | 0.003828 | 0.999462 |
ENSG00000010030 | ETV7 | 1.070004254 | 2.301148 | 0.021383 | 0.999462 |
ENSG00000215018 | COL28A1 | −1.217119591 | −2.50457 | 0.01226 | 0.999462 |
ENSG00000175445 | LPL | 1.308483772 | 2.189831 | 0.028537 | 0.999462 |
ENSG00000178860 | MSC | −1.100681038 | −2.98191 | 0.002865 | 0.999462 |
ENSG00000159247 | TUBBP5 | −1.267966389 | −2.35356 | 0.018595 | 0.999462 |
ENSG00000196565 | HBG2 | −1.350354678 | −2.52451 | 0.011586 | 0.999462 |
ENSG00000251381 | LINC00958 | 2.26201877 | 2.3048 | 0.021178 | 0.999462 |
ENSG00000254789 | AC073172.1 | −1.332994545 | −2.7906 | 0.005261 | 0.999462 |
ENSG00000255508 | AP002990.1 | −1.058759746 | −3.49951 | 0.000466 | 0.999462 |
ENSG00000078114 | NEBL | 2.623958542 | 3.216931 | 0.001296 | 0.999462 |
ENSG00000200830 | RN7SKP134 | −1.036440243 | −2.74592 | 0.006034 | 0.999462 |
ENSG00000135116 | HRK | −1.007746896 | −2.79251 | 0.00523 | 0.999462 |
ENSG00000124107 | SLPI | −1.250074721 | −2.10266 | 0.035496 | 0.999462 |
ENSG00000226025 | AC005515.1 | 1.025633489 | 2.438544 | 0.014747 | 0.999462 |
ENSG00000160233 | LRRC3 | −1.09935177 | −2.93576 | 0.003327 | 0.999462 |
Genes | Process_Name | Significant_ Genes_Count | Total_Genes_ Group_Count | Percent_ Significant_Genes | p-Value | padj-Value |
---|---|---|---|---|---|---|
HBG2; HBA1; | GO:0015671~oxygen transport | 2 | 14 | 14.286 | 0.00013 | 0.013186 |
ANK2; ABCC8; | GO:0043268~positive regulation of potassium ion transport | 2 | 10 | 20.000 | 0.00007 | 0.013186 |
ANK2; SEMA3A; | GO:0002027~regulation of heart rate | 2 | 31 | 6.452 | 0.00058 | 0.026314 |
FRMD6; | GO:0003383~apical constriction | 1 | 3 | 33.333 | 0.00427 | 0.026314 |
ABCC8; KCNMA1; | GO:0006813~potassium ion transport | 2 | 78 | 2.564 | 0.00337 | 0.026314 |
SSC5D; IGLV3-25; HBA1; | GO:0006898~receptor-mediated endocytosis | 3 | 185 | 1.622 | 0.00110 | 0.026314 |
ALDH1L1; | GO:0009258~10-formyltetrahydrofolate catabolic process | 1 | 2 | 50.000 | 0.00321 | 0.026314 |
ADGRG1; | GO:0010573~vascular endothelial growth factor production | 1 | 3 | 33.333 | 0.00427 | 0.026314 |
ADGRG1; | GO:0021801~cerebral cortex radial glia guided migration | 1 | 2 | 50.000 | 0.00321 | 0.026314 |
SEMA3A; | GO:0021828~gonadotrophin-releasing hormone neuronal migration to the hypothalamus | 1 | 2 | 50.000 | 0.00321 | 0.026314 |
FRMD6; | GO:0032970~regulation of actin filament-based process | 1 | 2 | 50.000 | 0.00321 | 0.026314 |
ANK2; | GO:0033292~T-tubule organization | 1 | 3 | 33.333 | 0.00427 | 0.026314 |
KCNMA1; | GO:0034465~response to carbon monoxide | 1 | 3 | 33.333 | 0.00427 | 0.026314 |
ANK2; FRMD6; | GO:0034613~cellular protein localization | 2 | 40 | 5.000 | 0.00094 | 0.026314 |
ANK2; | GO:0036309~protein localization to M-band | 1 | 2 | 50.000 | 0.00321 | 0.026314 |
ANK2; | GO:0036371~protein localization to T-tubule | 1 | 1 | 100.000 | 0.00214 | 0.026314 |
SEMA3A; | GO:0036486~ventral trunk neural crest cell migration | 1 | 3 | 33.333 | 0.00427 | 0.026314 |
SSC5D; | GO:0042494~detection of bacterial lipoprotein | 1 | 1 | 100.000 | 0.00214 | 0.026314 |
SEMA3A; | GO:0048880~sensory system development | 1 | 3 | 33.333 | 0.00427 | 0.026314 |
SSC5D; DEFA3; | GO:0050830~defense response to Gram-positive bacterium | 2 | 66 | 3.030 | 0.00245 | 0.026314 |
Genes | Process_Name | Significant_ Genes_Count | Total_Genes_ Group_Count | Percent_ Significant_Genes | p-Value | padj-Value |
---|---|---|---|---|---|---|
NECTIN2; | GO:0002891~positive regulation of immunoglobulin mediated immune response | 1 | 3 | 33.3333 | 0.00136 | 0.008475 |
SLPI; COL28A1; | GO:0010951~negative regulation of endopeptidase activity | 2 | 124 | 1.6129 | 0.00084 | 0.008475 |
MSC; | GO:0014707~branchiomeric skeletal muscle development | 1 | 3 | 33.3333 | 0.00136 | 0.008475 |
NECTIN2; | GO:0030382~sperm mitochondrion organization | 1 | 2 | 50.0000 | 0.00102 | 0.008475 |
NECTIN2; | GO:0032990~cell part morphogenesis | 1 | 1 | 100.0000 | 0.00068 | 0.008475 |
NECTIN2; | GO:0033005~positive regulation of mast cell activation | 1 | 2 | 50.0000 | 0.00102 | 0.008475 |
LPL; | GO:0034371~chylomicron remodeling | 1 | 3 | 33.3333 | 0.00136 | 0.008475 |
NECTIN2; | GO:0044406~adhesion of symbiont to host | 3 | 33.3333 | 0.00136 | 0.008475 | |
NECTIN2; | GO:0046814~coreceptor-mediated virion attachment to host cell | 1 | 1 | 100.0000 | 0.00068 | 0.008475 |
NECTIN2; | GO:0051654~establishment of mitochondrion localization | 1 | 2 | 50.0000 | 0.00102 | 0.008475 |
NECTIN2; | GO:0060370~susceptibility to T cell mediated cytotoxicity | 1 | 3 | 33.3333 | 0.00136 | 0.008475 |
NEBL; | GO:0071691~cardiac muscle thin filament assembly | 1 | 1 | 100.0000 | 0.00068 | 0.008475 |
NECTIN2; | GO:0042271~susceptibility to natural killer cell mediated cytotoxicity | 1 | 4 | 25.0000 | 0.00169 | 0.009079 |
NECTIN2; | GO:0046596~regulation of viral entry into host cell | 1 | 4 | 25.0000 | 0.00169 | 0.009079 |
NECTIN2; | GO:0002860~positive regulation of natural killer cell mediated cytotoxicity directed against tumor cell target | 1 | 7 | 14.2857 | 0.00271 | 0.009770 |
NECTIN2; | GO:0007289~spermatid nucleus differentiation | 1 | 8 | 12.5000 | 0.00305 | 0.009770 |
LPL; | GO:0010886~positive regulation of cholesterol storage | 1 | 7 | 14.2857 | 0.00271 | 0.009770 |
LPL; | GO:0010890~positive regulation of sequestering of triglyceride | 1 | 7 | 14.2857 | 0.00271 | 0.009770 |
NECTIN2; | GO:0019064~fusion of virus membrane with host plasma membrane | 1 | 8 | 12.5000 | 0.00305 | 0.009770 |
HRK; | GO:0032464~positive regulation of protein homooligomerization | 1 | 8 | 12.5000 | 0.00305 | 0.009770 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colpo, G.D.; Rocha, N.P.; Furr Stimming, E.; Teixeira, A.L. Gene Expression Profiling in Huntington’s Disease: Does Comorbidity with Depressive Symptoms Matter? Int. J. Mol. Sci. 2020, 21, 8474. https://doi.org/10.3390/ijms21228474
Colpo GD, Rocha NP, Furr Stimming E, Teixeira AL. Gene Expression Profiling in Huntington’s Disease: Does Comorbidity with Depressive Symptoms Matter? International Journal of Molecular Sciences. 2020; 21(22):8474. https://doi.org/10.3390/ijms21228474
Chicago/Turabian StyleColpo, Gabriela Delevati, Natalia Pessoa Rocha, Erin Furr Stimming, and Antonio Lucio Teixeira. 2020. "Gene Expression Profiling in Huntington’s Disease: Does Comorbidity with Depressive Symptoms Matter?" International Journal of Molecular Sciences 21, no. 22: 8474. https://doi.org/10.3390/ijms21228474
APA StyleColpo, G. D., Rocha, N. P., Furr Stimming, E., & Teixeira, A. L. (2020). Gene Expression Profiling in Huntington’s Disease: Does Comorbidity with Depressive Symptoms Matter? International Journal of Molecular Sciences, 21(22), 8474. https://doi.org/10.3390/ijms21228474