Impact of Trail Running Races on Blood Viscosity and Its Determinants: Effects of Distance
Abstract
:1. Introduction
2. Results
2.1. Subjects Characteristics
2.2. UTMB Caused a Decrease in Hematocrit, RBC Deformability, and Blood Viscosity, While MCC Increased Blood Viscosity
2.3. UTMB Promoted the Release of RBC Microparticles without Any Sign of Hemolysis, While MCC Promoted RBC Senescence without Any Increase in RBC Microparticles
2.4. Correlations Between the Changes in Hematocrit and Weight Loss or IL6 Variations
3. Discussion
4. Materials and Methods
4.1. Subjects and Protocol Design
4.2. Maximal Incremental Treadmill Test
4.3. Hematological and Hemorheological Analyses
4.4. IL-6 and Markers of RBC Damages and Senescence
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Abs | Absorbance |
CD235a | Glycophorin-A |
EI | Elongation Index |
Hct | Hematocrit |
IL-6 | Interleukin 6 |
MCC | Martigny-Combes à Chamonix |
MCHC | Mean Corpuscular Hemoglobin Concentration |
MCV | Mean Corpuscular Volume |
MFI | Mean Fluorescence Intensity |
MPs | Microparticles |
PS | Phosphatidylserine |
PVP | Polyvinylpyrrolidone |
RBC | Red Blood Cell |
RT | Room Temperature |
ROS | Reactive Oxygen Species |
UTMB | Ultra-Marathon of Mont Blanc |
VO2 max | Maximum oxygen consumption |
References
- Baskurt, O.K.; Meiselman, H.J. Blood rheology and hemodynamics. Semin. Thromb. Hemost. 2003, 29, 435–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connes, P.; Simmonds, M.J.; Brun, J.-F.; Baskurt, O.K. Exercise hemorheology: Classical data, recent findings and unresolved issues. Clin. Hemorheol. Microcirc. 2013, 53, 187–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simchon, S.; Jan, K.M.; Chien, S. Influence of reduced red cell deformability on regional blood flow. Am. J. Physiol. Heart Circ. Physiol. 1987. [Google Scholar] [CrossRef] [PubMed]
- Connes, P.; Alexy, T.; Detterich, J.; Romana, M.; Hardy-Dessources, M.-D.; Ballas, S.K. The role of blood rheology in sickle cell disease. Blood Rev. 2016, 30, 111–118. [Google Scholar] [CrossRef]
- Nader, E.; Skinner, S.; Romana, M.; Fort, R.; Lemonne, N.; Guillot, N.; Gauthier, A.; Antoine-Jonville, S.; Renoux, C.; Hardy-Dessources, M.-D.; et al. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Front. Physiol. 2019, 10, 1329. [Google Scholar] [CrossRef] [Green Version]
- Mairbäurl, H. Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells. Front. Physiol. 2013, 4, 332. [Google Scholar] [CrossRef] [Green Version]
- Hamlin, S.K.; Benedik, P.S. Basic concepts of hemorheology in microvascular hemodynamics. Crit. Care Nurs. Clin. N. Am. 2014, 26, 337–344. [Google Scholar] [CrossRef]
- Başkurt, O.K. Pathophysiological Significance of Blood Rheology. Turk. J. Med. Sci. 2003, 33, 347–355. [Google Scholar]
- Nader, E.; Monedero, D.; Robert, M.; Skinner, S.; Stauffer, E.; Cibiel, A.; Germain, M.; Hugonnet, J.; Scheer, A.; Joly, P.; et al. Impact of a 10 km running trial on eryptosis, red blood cell rheology, and electrophysiology in endurance trained athletes: A pilot study. Eur. J. Appl. Physiol. 2019. [Google Scholar] [CrossRef]
- Neuhaus, D.; Behn, C.; Gaehtgens, P. Haemorheology and exercise: Intrinsic flow properties of blood in marathon running. Int. J. Sports Med. 1992, 13, 506–511. [Google Scholar] [CrossRef]
- Tripette, J.; Hardy-Dessources, M.-D.; Beltan, E.; Sanouiller, A.; Bangou, J.; Chalabi, T.; Chout, R.; Hedreville, M.; Broquere, C.; Nebor, D.; et al. Endurance running trial in tropical environment: A blood rheological study. Clin. Hemorheol. Microcirc. 2011, 47, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Nader, E.; Guillot, N.; Lavorel, L.; Hancco, I.; Fort, R.; Stauffer, E.; Renoux, C.; Joly, P.; Germain, M.; Connes, P. Eryptosis and hemorheological responses to maximal exercise in athletes: Comparison between running and cycling. Scand. J. Med. Sci. Sports 2018, 28, 1532–1540. [Google Scholar] [CrossRef] [PubMed]
- Mastaloudis, A.; Leonard, S.W.; Traber, M.G. Oxidative stress in athletes during extreme endurance exercise. Free Radic. Biol. Med. 2001, 31, 911–922. [Google Scholar] [CrossRef]
- Mrakic-Sposta, S.; Gussoni, M.; Moretti, S.; Pratali, L.; Giardini, G.; Tacchini, P.; Dellanoce, C.; Tonacci, A.; Mastorci, F.; Borghini, A.; et al. Effects of Mountain Ultra-Marathon Running on ROS Production and Oxidative Damage by Micro-Invasive Analytic Techniques. PLoS ONE 2015, 10, e0141780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vollaard, N.B.J.; Shearman, J.P.; Cooper, C.E. Exercise-induced oxidative stress:myths, realities and physiological relevance. Sports Med. 2005, 35, 1045–1062. [Google Scholar] [CrossRef]
- Qadri, S.M.; Bissinger, R.; Solh, Z.; Oldenborg, P.-A. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev. 2017, 31, 349–361. [Google Scholar] [CrossRef]
- Robach, P.; Boisson, R.-C.; Vincent, L.; Lundby, C.; Moutereau, S.; Gergelé, L.; Michel, N.; Duthil, E.; Féasson, L.; Millet, G.Y. Hemolysis induced by an extreme mountain ultra-marathon is not associated with a decrease in total red blood cell volume. Scand. J. Med. Sci. Sports 2014, 24, 18–27. [Google Scholar] [CrossRef]
- Neuhaus, D.; Gaehtgens, P. Haemorrheology and long term exercise. Sports Med. 1994, 18, 10–21. [Google Scholar] [CrossRef]
- McVey, M.J.; Kuebler, W.M.; Orbach, A.; Arbell, D.; Zelig, O.; Barshtein, G.; Yedgar, S. Reduced deformability of stored red blood cells is associated with generation of extracellular vesicles. Transfus. Apher. Sci. 2020, 102851. [Google Scholar] [CrossRef]
- Bigdelou, P.; Farnoud, A.M. Induction of Eryptosis in Red Blood Cells Using a Calcium Ionophore. J. Vis. Exp. 2020. [Google Scholar] [CrossRef]
- Wood, B.L.; Gibson, D.F.; Tait, J.F. Increased erythrocyte phosphatidylserine exposure in sickle cell disease: Flow-cytometric measurement and clinical associations. Blood 1996, 88, 1873–1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Shi, J.; Yu, H.; Hou, J.; Zhou, J. Procoagulant activity of long-term stored red blood cells due to phosphatidylserine exposure. Transfus. Med. 2011, 21, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Bosman, G.J.C.G.M.; Cluitmans, J.C.A.; Groenen, Y.A.M.; Werre, J.M.; Willekens, F.L.A.; Novotný, V.M.J. Susceptibility to hyperosmotic stress-induced phosphatidylserine exposure increases during red blood cell storage. Transfusion 2011, 51, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Burger, P.; Kostova, E.; Bloem, E.; Hilarius-Stokman, P.; Meijer, A.B.; van den Berg, T.K.; Verhoeven, A.J.; de Korte, D.; van Bruggen, R. Potassium leakage primes stored erythrocytes for phosphatidylserine exposure and shedding of pro-coagulant vesicles. Br. J. Haematol. 2013, 160, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Burger, P.; Hilarius-Stokman, P.; de Korte, D.; van den Berg, T.K.; van Bruggen, R. CD47 functions as a molecular switch for erythrocyte phagocytosis. Blood 2012, 119, 5512–5521. [Google Scholar] [CrossRef] [Green Version]
- Oldenborg, P.-A. Role of CD47 as a Marker of Self on Red Blood Cells. Science 2000, 288, 2051–2054. [Google Scholar] [CrossRef] [PubMed]
- Meiselman, H.J.; Neu, B.; Rampling, M.W.; Baskurt, O.K. RBC aggregation: Laboratory data and models. Indian J. Exp. Biol. 2007, 45, 9–17. [Google Scholar] [PubMed]
- Samocha-Bonet, D.; Lichtenberg, D.; Tomer, A.; Deutsch, V.; Mardi, T.; Goldin, Y.; Abu-Abeid, S.; Shenkerman, G.; Patshornik, H.; Shapira, I.; et al. Enhanced erythrocyte adhesiveness/aggregation in obesity corresponds to low-grade inflammation. Obes. Res. 2003, 11, 403–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solá, E.; Vayá, A.; Martínez, M.; Moscardó, A.; Corella, D.; Santaolaria, M.-L.; España, F.; Hernández-Mijares, A. Erythrocyte membrane phosphatidylserine exposure in obesity. Obesity (Silver Spring) 2009, 17, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Jakubowska-Solarska, B.; Solski, J. Sialic acids of young and old red blood cells in healthy subjects. Med. Sci Monit. 2000, 6, 871–874. [Google Scholar]
- Gondelaud, F.; Connes, P.; Nader, E.; Renoux, C.; Fort, R.; Gauthier, A.; Joly, P.; Ricard-Blum, S. Sialic acids rather than glycosaminoglycans affect normal and sickle red blood cell rheology by binding to four major sites on fibrinogen. Am. J. Hematol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, S.; Saldanha, C. An overview about erythrocyte membrane. Clin. Hemorheol. Microcirc. 2010, 44, 63–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knechtle, B.; Knechtle, P.; Rüst, C.A.; Gnädinger, M.; Imoberdorf, R.; Kohler, G.; Rosemann, T.; Ballmer, P. Regulation of electrolyte and fluid metabolism in multi-stage ultra-marathoners. Horm. Metab. Res. 2012, 44, 919–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fellmann, N.; Ritz, P.; Ribeyre, J.; Beaufrère, B.; Delaître, M.; Coudert, J. Intracellular hyperhydration induced by a 7-day endurance race. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 353–359. [Google Scholar] [CrossRef]
- Mischler, I.; Boirie, Y.; Gachon, P.; Pialoux, V.; Mounier, R.; Rousset, P.; Coudert, J.; Fellmann, N. Human albumin synthesis is increased by an ultra-endurance trial. Med. Sci. Sports Exerc. 2003, 35, 75–81. [Google Scholar] [CrossRef]
- Haskell, A.; Nadel, E.R.; Stachenfeld, N.S.; Nagashima, K.; Mack, G.W. Transcapillary escape rate of albumin in humans during exercise-induced hypervolemia. J. Appl. Physiol. (1985) 1997, 83, 407–413. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [Green Version]
- Nieken, J.; Mulder, N.H.; Buter, J.; Vellenga, E.; Limburg, P.C.; Piers, D.A.; de Vries, E.G. Recombinant human interleukin-6 induces a rapid and reversible anemia in cancer patients. Blood 1995, 86, 900–905. [Google Scholar] [CrossRef] [Green Version]
- Atkins, M.B.; Kappler, K.; Mier, J.W.; Isaacs, R.E.; Berkman, E.M. Interleukin-6-associated anemia: Determination of the underlying mechanism. Blood 1995, 86, 1288–1291. [Google Scholar] [CrossRef]
- Grau, M.; Cremer, J.M.; Schmeichel, S.; Kunkel, M.; Bloch, W. Comparisons of Blood Parameters, Red Blood Cell Deformability and Circulating Nitric Oxide Between Males and Females Considering Hormonal Contraception: A Longitudinal Gender Study. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef]
- Giorno, R.; Clifford, J.H.; Beverly, S.; Rossing, R.G. Hematology reference values. Analysis by different statistical technics and variations with age and sex. Am. J. Clin. Pathol. 1980, 74, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Baskurt, O.K.; Boynard, M.; Cokelet, G.C.; Connes, P.; Cooke, B.M.; Forconi, S.; Liao, F.; Hardeman, M.R.; Jung, F.; Meiselman, H.J.; et al. New guidelines for hemorheological laboratory techniques. Clin. Hemorheol. Microcirc. 2009, 42, 75–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid-Schönbein, H.; Gallasch, G.; von Gosen, J.; Volger, E.; Klose, H.J. Red cell aggregation in blood flow. I. New methods of quantification. Klin. Wochenschr. 1976, 54, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Cripps, C.M. Rapid method for the estimation of plasma haemoglobin levels. J. Clin. Pathol. 1968, 21, 110–112. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robert, M.; Stauffer, E.; Nader, E.; Skinner, S.; Boisson, C.; Cibiel, A.; Feasson, L.; Renoux, C.; Robach, P.; Joly, P.; et al. Impact of Trail Running Races on Blood Viscosity and Its Determinants: Effects of Distance. Int. J. Mol. Sci. 2020, 21, 8531. https://doi.org/10.3390/ijms21228531
Robert M, Stauffer E, Nader E, Skinner S, Boisson C, Cibiel A, Feasson L, Renoux C, Robach P, Joly P, et al. Impact of Trail Running Races on Blood Viscosity and Its Determinants: Effects of Distance. International Journal of Molecular Sciences. 2020; 21(22):8531. https://doi.org/10.3390/ijms21228531
Chicago/Turabian StyleRobert, Mélanie, Emeric Stauffer, Elie Nader, Sarah Skinner, Camille Boisson, Agnes Cibiel, Léonard Feasson, Céline Renoux, Paul Robach, Philippe Joly, and et al. 2020. "Impact of Trail Running Races on Blood Viscosity and Its Determinants: Effects of Distance" International Journal of Molecular Sciences 21, no. 22: 8531. https://doi.org/10.3390/ijms21228531
APA StyleRobert, M., Stauffer, E., Nader, E., Skinner, S., Boisson, C., Cibiel, A., Feasson, L., Renoux, C., Robach, P., Joly, P., Millet, G. Y., & Connes, P. (2020). Impact of Trail Running Races on Blood Viscosity and Its Determinants: Effects of Distance. International Journal of Molecular Sciences, 21(22), 8531. https://doi.org/10.3390/ijms21228531