Variants of STAR, AMH and ZFPM2/FOG2 May Contribute towards the Broad Phenotype Observed in 46,XY DSD Patients with Heterozygous Variants of NR5A1
Abstract
:1. Introduction
2. Results
2.1. Clinical Features and Follow-Up
2.2. Identification of NR5A1 Gene Variants and Other DSD-Related Gene Variants in Patients Presenting with 46,XY DSD
2.3. Transcription Activity and Protein Expression Testing of Novel NR5A1 Variants
3. Discussion
4. Materials and Methods
4.1. Patients and Samples
4.2. Case Reports
4.3. Genetic Testing
4.4. Design of the Targeted Gene Panel and Screening via Next-Generation Sequencing
4.5. Sequencing of the Coding Sequence of NR5A1
4.6. In Silico Analyses and Variant Classification
4.7. In Vitro Transactivation Assays and Protein Expression Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
17OHP | 17-hydroxyprogesterone |
ACMG | American College of Medical Genetics and Genomics |
ACTH | Adrenocorticotropic hormone |
AF | Activation function |
AMH | Anti-Müllerian hormone |
AMH | Anti-Müllerian hormone |
Androst | Androstenedione |
C | Cortisol |
CAT | Computerized axial tomography |
CGA | Candidate gene approach |
DBD | DNA binding domain |
DHEA-s | Dehydroepiandrosterone sulphate |
DHT | Dihydrotestosterone |
DSD | Disorders/differences of sex development |
E2 | Estradiol |
F | Female |
FSH | Follicle-stimulating hormone |
HA | Hemagglutinin |
hCG | Human chorionic gonadotropin |
HGMD. | Human Gene Mutation Database |
KO | Knockout |
LBD | Ligand binding domain |
LH | Luteinizing hormone |
LHRH | Luteinizing hormone releasing hormone |
LP | Likely pathogenic |
M | Male |
MAF | Minor allele frequency |
MRI | Magnetic resonance imaging |
N | Normal |
ND | Not determined |
NGS | Next generation sequencing |
OMIM | Online Mendelian Inheritance in Man |
PCOS | Polycystic ovary syndrome |
PCR | Polymerase chain reaction |
RLU | Relative light units |
SF1 | Steroidogenic factor 1 |
T | Testosterone |
TGP | Targeted gene panel |
US | Ultrasound |
Ve | Empty vector |
VUS | Variant of unknown significance |
WT | Wild-type |
Y | Years |
ZN | Zinc finger domain |
References
- Eggers, S.; Ohnesorg, T.; Sinclair, A. Genetic regulation of mammalian gonad development. Nat. Rev. Endocrinol. 2014, 10, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.; Mönig, I.; Lünstedt, R.; Wünsch, L.; Thorns, C.; Reiz, B.; Krause, A.; Schwab, K.O.; Binder, G.; Holterhus, P.-M.; et al. New NR5A1 mutations and phenotypic variations of gonadal dysgenesis. PLoS ONE 2017, 12, e0176720. [Google Scholar] [CrossRef] [PubMed]
- Achermann, J.C.; Ito, M.; Ito, M.; Hindmarsh, P.C.; Jameson, J.L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat. Genet. 1999, 22, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ikeda, Y.; Parker, K.L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994, 77, 481–490. [Google Scholar] [CrossRef]
- Fabbri-Scallet, H.; de Sousa, L.M.; Maciel-Guerra, A.T.; Guerra-Júnior, G.; de Mello, M.P. Mutation update for the NR5A1 gene involved in DSD and infertility. Hum. Mutat. 2020, 1, 58–68. [Google Scholar] [CrossRef]
- Domenice, S.; Machado, A.Z.; Ferreira, F.M.; Ferraz-de-Souza, B.; Lerario, A.M.; Lin, L.; Nishi, M.Y.; Gomes, N.L.; da Sliva, T.E.; Sliva, R.B. Wide spectrum of NR5A1-related phenotypes in 46,XY and 46,XX individuals. Birth Defects Res. Part C Embryo Today 2016, 108, 309–320. [Google Scholar] [CrossRef]
- Camats, N.; Pandey, A.V.; Fernández-Cancio, M.; Andaluz, P.; Janner, M.; Torán, N.; Moreno, F.; Bereket, A.; Akcay, T.; García-García, E.; et al. Ten novel mutations in the NR5A1 gene cause disordered sex development in 46,XY and ovarian insufficiency in 46,XX individuals. J. Clin. Endocrinol. Metab. 2012, 97, 1294–1306. [Google Scholar] [CrossRef] [Green Version]
- Camats, N.; Fernández-Cancio, M.; Audí, L.; Schaller, A.; Flück, C.E. Broad phenotypes in heterozygous NR5A1 46,XY patients with a disorder of sex development: An oligogenic origin? Eur. J. Hum. Genet. 2018, 26, 1329–1338. [Google Scholar] [CrossRef] [Green Version]
- Ostrer, H. Disorders of Sex Development (DSDs): An Update. J. Clin. Endocrinol. Metab. 2014, 99, 1503–1509. [Google Scholar] [CrossRef] [Green Version]
- Mazen, I.; Abdel-Hamid, M.; Mekkawy, M.; Bignon-Topalovic, J.; Boudjenah, R.; El Gammal, M.; Essawi, M.; Bashamboo, A.; McElreavey, K. Identification of NR5A1 Mutations and Possible Digenic Inheritance in 46,XY Gonadal Dysgenesis. Sex. Dev. 2016, 10, 147–151. [Google Scholar] [CrossRef]
- Eggers, S.; Sadedin, S.; van den Bergen, J.A.; Robevska, G.; Ohnesorg, T.; Hewitt, J.; Lambeth, L.; Bouty, A.; Knarston, I.M.; Tan, T.Y.; et al. Disorders of sex development: Insights from targeted gene sequencing of a large international patient cohort. Genome Biol. 2016, 17, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robevska, G.; van den Bergen, J.A.; Ohnesorg, T.; Eggers, S.; Hanna, C.; Hersmus, R.; Thompson, E.M.; Baxendale, A.; Verge, C.F.; Lafferty, A.R.; et al. Functional characterization of novel NR5A1 variants reveals multiple complex roles in disorders of sex development. Hum. Mutat. 2018, 39, 124–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhang, L.; Wang, N.; Zhu, H.; Han, B.; Sun, F.; Yao, H.; Zhang, Q.; Zhu, W.; Cheng, T.; et al. Next-generation sequencing reveals genetic landscape in 46, XY disorders of sexual development patients with variable phenotypes. Hum. Genet. 2018, 137, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Camats, N.; Flück, C.E.; Audí, L. Oligogenic origin of differences of sex development in humans. Int. J. Mol. Sci. 2020, 21, 1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellaithi, M.; de LaPiscina, I.M.; de La Hoz, A.B.; de Nanclares, G.P.; Alasha, M.A.; Hemaida, M.A.; Castano, L. Simple Virilizing Congenital Adrenal Hyperplasia: A case Report of Sudanese 46, XY DSD male with G293D variant in CYP21A2. Open Pediatr. Med. J. 2019, 9, 7–11. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Reuter, A.L.; Goji, K.; Bingham, N.C.; Matsuo, M.; Parker, K.L. A novel mutation in the accessory DNA-binding domain of human steroidogenic factor 1 causes XY gonadal dysgenesis without adrenal insufficiency. Eur. J. Endocrinol. 2007, 157, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Bashamboo, A.; Brauner, R.; Bignon-Topalovic, J.; Lortat-Jacob, S.; Karageorgou, V.; Lourenco, D.; Guffanti, A.; McElreavey, K. Mutations in the FOG2/ZFPM2 gene are associated with anomalies of human testis determination. Hum. Mol. Genet. 2014, 23, 3657–3665. [Google Scholar] [CrossRef] [Green Version]
- Gorsic, L.K.; Dapas, M.; Legro, R.S.; Hayes, M.G.; Urbanek, M. Functional Genetic Variation in the Anti-Müllerian Hormone Pathway in Women With Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2019, 104, 2855–2874. [Google Scholar] [CrossRef]
- Coutant, R.; Mallet, D.; Lahlou, N.; Bouhours-Nouet, N.; Guichet, A.; Coupris, L.; Croué, A.; Morel, Y. Heterozygous Mutation of Steroidogenic Factor-1 in 46,XY Subjects May Mimic Partial Androgen Insensitivity Syndrome. J. Clin. Endocrinol. Metab. 2007, 92, 2868–2873. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Fan, L.; Gong, C. Phenotype and Molecular Characterizations of 30 Children From China With NR5A1 Mutations. Front. Pharmacol. 2018, 30, 9. [Google Scholar] [CrossRef] [PubMed]
- Van Silfhout, A.; Boot, A.M.; Dijkhuizen, T.; Hoek, A.; Nijman, R.; Sikkema-Raddatz, B.; van Ravenswaaij-Arts, C.M.A. A unique 970kb microdeletion in 9q33.3, including the NR5A1 gene in a 46,XY female. Eur. J. Med. Genet. 2009, 52, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Sıklar, Z.; Berberoğlu, M.; Ceylaner, S.; Çamtosun, E.; Kocaay, P.; Göllü, G.; Sertçelik, A.; Öcal, G. A Novel Heterozygous Mutation in Steroidogenic Factor-1 in Pubertal Virilization of a 46,XY Female Adolescent. J. Pediatr. Adolesc. Gynecol. 2014, 27, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Tantawy, S.; Lin, L.; Akkurt, I.; Borck, G.; Klingmuller, D.; Hauffa, B.P.; Krude, H.; Biebermann, H.; Achermann, J.C.; Köhler, B. Testosterone production during puberty in two 46,XY patients with disorders of sex development and novel NR5A1 (SF-1) mutations. Eur. J. Endocrinol. 2012, 167, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudhakar, D.V.S.; Jaishankar, S.; Regur, P.; Kumar, U.; Singh, R.; Kabilan, U.; Namduri, S.; Dhyani, J.; Gupta, N.J.; Chakravarthy, B.; et al. Novel NR5A1 Pathogenic Variants Cause Phenotypic Heterogeneity in 46,XY Disorders of Sex Development. Sex. Dev. 2019, 13, 178–186. [Google Scholar] [CrossRef]
- Lourenço, D.; Brauner, R.; Lin, L.; De Perdigo, A.; Weryha, G.; Muresan, M.; Boudjenah, R.; Guerra-Junior, G.; Maciel-Guerra, A.T.; Achermann, J.C.; et al. Mutations in NR5A1 Associated with Ovarian Insufficiency. N. Engl. J. Med. 2009, 360, 1200–1210. [Google Scholar] [CrossRef] [Green Version]
- Suntharalingham, J.P.; Buonocore, F.; Duncan, A.J.; Achermann, J.C. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 607–619. [Google Scholar] [CrossRef] [Green Version]
- Allali, S.; Muller, J.-B.; Brauner, R.; Lourenço, D.; Boudjenah, R.; Karageorgou, V.; Trivin, C.; Lottmann, H.; Lortat-Jacob, S.; Nihoul-Fékété, C.; et al. Mutation Analysis of NR5A1 Encoding Steroidogenic Factor 1 in 77 Patients with 46, XY Disorders of Sex Development (DSD) Including Hypospadias. Gromoll J, editor. PLoS ONE 2011, 6, e24117. [Google Scholar] [CrossRef] [Green Version]
- Rocca, M.S.; Ortolano, R.; Menabò, S.; Baronio, F.; Cassio, A.; Russo, G.; Balsamo, A.; Ferlin, A.; Baldazzi, A. Mutational and functional studies on NR5A1 gene in 46,XY disorders of sex development: Identification of six novel loss of function mutations. Fertil. Steril. 2018, 109, 1105–1113. [Google Scholar] [CrossRef]
- Gaisl, O.; Aeppli, T.; Sproll, P.; Lang-Muritano, M.; Nef, S.; Konrad, D.; Biason-Lauber, A. Follow-up of two similar patients with Steroidogenic Factor-1 (SF-1/ NR5A1) variants in two different eras. Horm. Res. Paediatr. 2019, 91, 1–682. [Google Scholar] [CrossRef]
- Bertelloni, S.; Dati, E.; Baldinotti, F.; Toschi, B.; Marrocco, G.; Sessa, M.R.; Michelucci, A.; Simi, P.; Baroncelli, G.I. NR5A1 Gene Mutations: Clinical, Endocrine and Genetic Features in Two Girls with 46,XY Disorder of Sex Development. Horm. Res. Paediatr. 2014, 81, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Desclozeaux, M.; Krylova, I.N.; Horn, F.; Fletterick, R.J.; Ingraham, H.A. Phosphorylation and Intramolecular Stabilization of the Ligand Binding Domain in the Nuclear Receptor Steroidogenic Factor 1. Mol. Cell Biol. 2002, 22, 7193–7203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Achermann, J.C. Steroidogenic Factor-1 (SF-1, Ad4BP, NR5A1) and Disorders of Testis Development. Sex. Dev. 2008, 2, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagi, H.; Takagi, M.; Kon, M.; Igarashi, M.; Fukami, M.; Hasegawa, Y. Fertility preservation in a family with a novel NR5A1 mutation. Endocr. J. 2015, 3, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Philibert, P.; Paris, F.; Audran, F.; Kalfa, N.; Polak, M.; Thibaud, E.; Pinto, G.; Houang, M.; Zenaty, D.; Leger, J.; et al. Phenotypic variation of SF1 gene mutations. Adv. Exp. Med. Biol. 2011, 707, 67–72. [Google Scholar]
- Flück, C.E.; Audí, L.; Fernández-Cancio, M.; Sauter, K.-S.; Martinez de LaPiscina, I.; Castaño, L.; Esteva, I.; Camats, N. Broad Phenotypes of Disorders/Differences of Sex Development in MAMLD1 Patients Through Oligogenic Disease. Front. Genet. 2019, 10. [Google Scholar] [CrossRef]
- Kolesinska, Z.; Acierno, J., Jr.; Ahmed, S.F.; Xu, C.; Kapczuk, K.; Skorczyk-Werner, A.; Mikos, H.; Rojek, A.; Massouras, A.; Krawczynski, M.A.; et al. Integrating clinical and genetic approaches in the diagnosis of 46,XY disorders of sex development. Endocr. Connect. 2018, 1480–1490. [Google Scholar] [CrossRef] [Green Version]
- Kon, M.; Suzuki, E.; Dung, V.C.; Hasegawa, Y.; Mitsui, T.; Muroya, K. Molecular basis of non-syndromic hypospadias: Systematic mutation screening and genome-wide copy-number analysis of 62 patients. Hum. Reprod. 2015, 30, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Flück, C.E. Mechanisms in Endocrinology: Update on pathogenesis of primary adrenal insufficiency: Beyond steroid enzyme deficiency and autoimmune adrenal destruction. Eur. J. Endocrinol. 2017, 177, R99–R111. [Google Scholar] [CrossRef]
- Shen, W.-H.; Moore, C.C.D.; Ikeda, Y.; Parker, K.L.; Ingraham, H.A. Nuclear receptor steroidogenic factor 1 regulates the müllerian inhibiting substance gene: A link to the sex determination cascade. Cell 1994, 77, 651–661. [Google Scholar] [CrossRef]
- Sekido, R.; Lovell-Badge, R. Erratum: Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 2008, 453, 930–934. [Google Scholar] [CrossRef]
- Moses, M.M.; Behringer, R.R. A gene regulatory network for Müllerian duct regression. Skinner, M., editor. Environ. Epigenet. 2019, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouma, G.J.; Washburn, L.L.; Albrecht, K.H.; Eicher, E.M. Correct dosage of Fog2 and Gata4 transcription factors is critical for fetal testis development in mice. Proc. Natl. Acad. Sci. USA 2007, 104, 14994–14999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchard, M.F.; Bergeron, F.; Grenier Delaney, J.; Harvey, L.-M.; Viger, R.S. In Vivo Ablation of the Conserved GATA-Binding Motif in the Amh Promoter Impairs Amh Expression in the Male Mouse. Endocrinology 2019, 160, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Manuylov, N.L.; Fujiwara, Y.; Adameyko, I.I.; Poulat, F.; Tevosian, S.G. The regulation of Sox9 gene expression by the GATA4/FOG2 transcriptional complex in dominant XX sex reversal mouse models. Dev. Biol. 2007, 307, 356–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tevosian, S.G.; Albrecht, K.H.; Crispino, J.D.; Fujiwara, Y.; Eicher, E.M.; Orkin, S.H. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 2002, 129, 4627–4634. [Google Scholar] [PubMed]
- Pizzuti, A.; Sarkozy, A.; Newton, A.L.; Conti, E.; Flex, E.; Cristina Digilio, M.; Amati, F.; Gianni, D.; Tandoi, C.; Marino, B.; et al. Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum. Mutat. 2003, 22, 372–377. [Google Scholar] [CrossRef]
- Bergen, J.A.; Robevska, G.; Eggers, S.; Riedl, S.; Grover, S.R.; Bergman, P.B.; Kimber, C.; Jiwane, A.; Khan, S.; Krausz, C.; et al. Analysis of variants in GATA4 and FOG2 / ZFPM2 demonstrates benign contribution to 46,XY disorders of sex development. Mol. Genet. Genom. Med. 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Babot, G.; Balyura, M.; Hadjidemetriou, I.; Ajodha, S.J.; Taylor, D.R.; Ghataore, L.; Taylor, N.F.; Schubert, U.; Ziegler, C.G.; Storr, H.L.; et al. Modeling Congenital Adrenal Hyperplasia and Testing Interventions for Adrenal Insufficiency Using Donor-Specific Reprogrammed Cells. Cell Rep. 2018, 5, 1236–1249. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, D.R.; Eid, W.; Biason-Lauber, A.A. human gonadal cell model from induced pluripotent stem cells. Front. Genet. 2018, 9, 498. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Sottas, C.; Culty, M.; Fan, J.; Hu, Y.; Cheung, G.; Chemes, H.E. Directing differentiation of human induced pluripotent stem cells toward androgen-producing Leydig cells rather than adrenal cells. Proc. Natl. Acad. Sci. USA. 2019, 46, 23274–23283. [Google Scholar] [CrossRef] [PubMed]
- De LaPiscina, I.M.; de Mingo, C.; Riedl, S.; Rodriguez, A.; Pandey, A.V.; Fernández-Cancio, M.; Camats, N.; Sinclair, A.; Castaño, L.; Audi, L.; et al. GATA4 variants in individuals with a 46,XY Disorder of Sex Development (DSD) may or may not be associated with cardiac defects depending on second hits in other DSD genes. Front. Endocrinol. 2018, 9, 1–10. [Google Scholar]
- Flück, C.E.; Miller, W.L. GATA-4 and GATA-6 Modulate Tissue-Specific Transcription of the Human Gene for P450c17 by Direct Interaction with Sp1. Mol. Endocrinol. 2004, 18, 1144–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Case (Gender) | Phenotype | Hormonal Findings | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Genital Anatomy, Histology and Presence of Müllerian Ducts | Age | 17OHP | DHEA-S | Androst | T | DHT | FSH | LH | AMH | Others | |
1 (m) | At birth: curved micropenis, hypospadias, cryptorchidism. Surgery. At 12 y: penis 7.6 cm. MRI: testis 5 mL, small cysts. At 15 y: MRI: right testis (3.2 mL) and left testis (3.3 mL), small cysts. Absence of Müllerian ducts. | 10 y | 1.7/1.9 † | 86.3/187.4 † | 0.19/0.15 † | 11.9 | 0.9 | ||||
11 y | 1.3 | 2.5 | 290.5 | 0.5 | 30.4 | 7.1 | |||||
14 y | 1900 | 412.5 | 35.9 | 11.4 | <0.1 | ||||||
15 y | 2010 | 4.1 | 518 | 0.5 | 38.9 | 14.6 | 0.4 | ||||
2 (f) | At 10 y: bilateral inguinal hernia and gonads, clitoromegaly. US: vaginal pouch, no uterus. Histology: hypoplastic testis. Gonadectomy. At 20 y: good breast development after estrogen treatment. At 25 y: US: prepuberal hypoplastic uterus. No ovaries. Müllerian ducts. | 10 y | 1.9 | 1.0 | 250 | 24 | 95 | E2: 16 | |||
27 y | 0.5 | 2.5 | 21.4 | 8.4 | E2: 26.4 | ||||||
3 (m) | At birth: micropenis, hypospadias, undescended testes. 5 y: normal penis, right testis 2 mL and hydrocele left testis. At 6 y: smaller penis, scrotal testes. Absence of Müllerian ducts. | 2 d | 202 | 23.6 | 1.5 | <0.5 | <0.5 | F: 10.4 | |||
1 m | 400 | 67.5 | 3.7 | 2.5 | F: 6.1 | ||||||
4 (f) | At 14 y: primary amenorrhea, virilization. clitoromegaly, scrotal rests. US: rudimentary uterus, atrophic testis in left inguinal canal. At 15 y: gonadectomy. Histology: testis with Sertoli cells and epididymis. Müllerian ducts: rudimentary uterus. | 14 y | 0.9 | 1.61 | 1.7 | 193 | 0.5 | 112.5 | 37.8 | 0.4 | E2: 16.7 |
5 (f) | At 14 y: primary amenorrhea, stenotic and enlarged vagina. At 15 y: laparoscopy: rudimentary uterus, streak gonads. Gonadectomy. Histology: testicular parenchyma, normal fallopian tubes. Müllerian ducts: vagina, rudimentary uterus. | 14 y | 0.5 | 1960 | 2.0 | 36.6/46 † | 44.3 | 12.2 | <0.01 | F: 18/27 †; E2: 31.0 | |
6 (m) | At birth: micropenis, hypospadias, palpable gonads. At 2 y: biopsy. Histology: testicular tissue. 17 y: absence of germ cells and Leydig cells hypoplasia. At 10 y: penis 2.6 cm. At 14 y: penis 5.5 cm, scrotal testes. At 17 y: biopsy. At 38 y: penis 3–4 cm, testes 2 cc. Absence of Müllerian ducts. | 10 y | 20/130 † | ||||||||
14 y | N | 180/350 † | 55 | 15 | ACTH: N; F: N | ||||||
15 y | 140/500 † | 39/72 † | 11/137 † | ||||||||
38 y | 0.3 | 1293 | 1.4 | 500 | 25 | 15.6 | <0.1 | ACTH: 36; F: 14.3; E2: 20 | |||
7 (f) | At 1 y: hypertrophic clitoris, fused labia minora. MRI: vagina (3.2 cm) without annexes. Genitoplasty. At 3 y: US: absence of ovaries and uterus. Absence of Müllerian ducts. | 1 y | 0.4 | <17 | 0.6 | 8 | 1.2 | 0.5 | 40.3 | F: 12.1; E2: <10 | |
7 y | 14 | 3.8 | 0.05 | E2: <11 |
Case | Genetic Approach | NR5A1 Gene Variant | Second Suspected Gene Variant by NGS | Genes Studied by Sanger (Normal) | ||
---|---|---|---|---|---|---|
Genomic and Protein Change † | Familial Studies | Gene Variant † and Classification ‡ | Familial Studies | |||
1 | CGA + TGP | c.88T>A; p.Cys30Ser | Non-carriers: father, mother, brother | STAR, c.361C>T; p.Arg121Trp (rs34908868)/VUS ‡ | Carrier: fatherNon-carriers: mother, brother | SRD5A2, AR, FMR1 |
2 | CGA + TGP | c.614_615insC; p.Gln206ThrfsX20. Ass with 46,XY DSD [7] | Non-carrier: mother | AMH, c.428C>T; p.Thr143Ile. Ass with PCOS [19]/VUS ‡ | Non-carrier: mother | AR, HSD17B3 |
3 | TGP | c.250C>T; p.Arg84Cys. Ass with 46,XY gonadal dysgenesis [17] | Carriers: mother, uncle, aunt, grandfather, brother. Non-carriers: father, sister, grandmother | Further studies needed | No | |
4 | CGA | c.910_913delGAGC; p.Glu304CysfsX26 | Carrier: mother. Non-carrier: sister | ND | SRY, AR | |
5 | CGA + TGP | c.902G>A; p.Cys301Tyr | Carrier: mother (mosaicism). Non-carriers: father, brother | Further studies needed | SRY, HSD17B3 | |
6 | CGA + TGP | c.71A>T; p.His24Leu | ND | Further studies needed | AR | |
7 | TGP | c.1183_1185delGAG; p.Glu395del | Carrier: mother. Non-carrier: father | ZFPM2, c.1632G>A; p.Met544Ile. Ass with 46,XY DSD [18]/LP ‡ | Carrier: fatherNon-carrier: mother | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez de LaPiscina, I.; Mahmoud, R.A.; Sauter, K.-S.; Esteva, I.; Alonso, M.; Costa, I.; Rial-Rodriguez, J.M.; Rodríguez-Estévez, A.; Vela, A.; Castano, L.; et al. Variants of STAR, AMH and ZFPM2/FOG2 May Contribute towards the Broad Phenotype Observed in 46,XY DSD Patients with Heterozygous Variants of NR5A1. Int. J. Mol. Sci. 2020, 21, 8554. https://doi.org/10.3390/ijms21228554
Martínez de LaPiscina I, Mahmoud RA, Sauter K-S, Esteva I, Alonso M, Costa I, Rial-Rodriguez JM, Rodríguez-Estévez A, Vela A, Castano L, et al. Variants of STAR, AMH and ZFPM2/FOG2 May Contribute towards the Broad Phenotype Observed in 46,XY DSD Patients with Heterozygous Variants of NR5A1. International Journal of Molecular Sciences. 2020; 21(22):8554. https://doi.org/10.3390/ijms21228554
Chicago/Turabian StyleMartínez de LaPiscina, Idoia, Rana AA Mahmoud, Kay-Sara Sauter, Isabel Esteva, Milagros Alonso, Ines Costa, Jose Manuel Rial-Rodriguez, Amaia Rodríguez-Estévez, Amaia Vela, Luis Castano, and et al. 2020. "Variants of STAR, AMH and ZFPM2/FOG2 May Contribute towards the Broad Phenotype Observed in 46,XY DSD Patients with Heterozygous Variants of NR5A1" International Journal of Molecular Sciences 21, no. 22: 8554. https://doi.org/10.3390/ijms21228554
APA StyleMartínez de LaPiscina, I., Mahmoud, R. A., Sauter, K. -S., Esteva, I., Alonso, M., Costa, I., Rial-Rodriguez, J. M., Rodríguez-Estévez, A., Vela, A., Castano, L., & Flück, C. E. (2020). Variants of STAR, AMH and ZFPM2/FOG2 May Contribute towards the Broad Phenotype Observed in 46,XY DSD Patients with Heterozygous Variants of NR5A1. International Journal of Molecular Sciences, 21(22), 8554. https://doi.org/10.3390/ijms21228554