Salivary Stress/Immunological Markers in Crohn’s Disease and Ulcerative Colitis
Abstract
:1. Introduction
2. Calprotectin
3. Cytokines
4. Exosomes
5. Amylase and Mucin 5B
6. Salivary IgA
7. Cortisol
8. Salivary Oxidative Stress Markers in IBD
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid |
AGE | advanced glycation end products |
AOPP | advanced oxidation protein products |
CAMP | cathelicidin antimicrobial peptides |
CD | Crohn’s disease |
CDAI | Crohn’s Disease Activity Index |
CRP | C-reactive Protein |
DMF-T | decay-missing-filled index |
DTNB | 5,5′-dithiobis 2 nitrobenzoic acid |
FRAP | ferric reducing antioxidant power |
GPX | glutathione peroxidase |
HIV | Human Immunodeficiency Virus |
HPA | hypothalamic-pituitary-adrenal |
HPLC | high-performance liquid chromatography |
IBD | inflammatory bowel disease |
IFN-γ | interferon-gamma |
IgA | immunoglobulin A |
IL | interleukin |
MCP | monocyte chemoattractant protein |
MIP-1β | macrophage inflammatory protein-1beta |
MMP-10 | metalloproteinase-10 |
MPO | myeloperoxidase |
MUC5B | mucin 5B |
NO | nitric oxide |
OFG | orofacial granulomatosis |
PSMA7 | proteasome subunit alpha type 7 |
ROS | reactive oxygen species |
sAA | salivary alpha amylase |
SIgA | secretory immunoglobulin A |
SH | total thiol level |
SOD | superoxide dismutase |
SNS | sympathetic nervous system |
STIM | stimulated |
TAC | total antioxidant capacity |
TBARS | thiobarbituric acid reactive substances |
TGF-β | transforming growth factor-beta |
Th | T helper |
TNF-α | tumor necrosis factor-alpha |
UA | uric acid |
UC | ulcerative colitis |
UNST | unstimulated |
References
- Goldinova, A.; Tan, X.C.; Bouma, G.; Duijvestein, M.; Brand, H.S.; de Boer, N.K. Oral health and salivary function in ulcerative colitis patients. United Eur. Gastroenterol. J. 2020, 8, 1067–1075. [Google Scholar] [CrossRef]
- de Vries, S.A.G.; Tan, C.X.W.; Bouma, G.; Forouzanfar, T.; Brand, H.S.; de Boer, N.K. Salivary Function and Oral Health Problems in Crohn’s Disease Patients. Inflamm. Bowe.l Dis. 2018, 24, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Saleh, J.; Figueiredo, M.A.Z.; Cherubini, K.; Salum, F.G. Salivary hypofunction: An update on aetiology, diagnosis and therapeutics. Arch. Oral Biol. 2015, 60, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, J.M.; Schafer, C.A.; Schafer, J.J.; Farrell, J.J.; Paster, B.J.; Wong, D.T.W. Salivary biomarkers: Toward future clinical and diagnostic utilities. Clin. Microbiol. Rev. 2013, 26, 781–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malamud, D. Saliva as a diagnostic fluid. Dent. Clin. N. Am. 2011, 55, 159–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engeland, C.G.; Bosch, J.A.; Rohleder, N. Salivary Biomarkers in Psychoneuroimmunology. Curr. Opin. Behav. Sci. 2019, 28, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Farah, R.; Haraty, H.; Salame, Z.; Fares, Y.; Ojcius, D.M.; Said Sadier, N. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed. J. 2018, 41, 63–87. [Google Scholar] [CrossRef]
- Valassi, E.; Franz, H.; Brue, T.; Feelders, R.A.; Netea-Maier, R.; Tsagarakis, S.; Webb, S.M.; Yaneva, M.; Reincke, M.; Droste, M.; et al. Diagnostic tests for Cushing’s syndrome differ from published guidelines: Data from ERCUSYN. Eur. J. Endocrinol. 2017, 176, 613–624. [Google Scholar] [CrossRef]
- Nieman, L.K.; Biller, B.M.K.; Findling, J.W.; Newell-Price, J.; Savage, M.O.; Stewart, P.M.; Montori, V.M. The diagnosis of Cushing’s syndrome: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2008, 93, 1526–1540. [Google Scholar] [CrossRef]
- Balamane, M.; Winters, M.A.; Dalai, S.C.; Freeman, A.H.; Traves, M.W.; Israelski, D.M.; Katzenstein, D.A.; Klausner, J.D. Detection of HIV-1 in Saliva: Implications for Case-Identification, Clinical Monitoring and Surveillance for Drug Resistance. Open Virol. J. 2010, 4, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Assad, D.X.; Mascarenhas, E.C.P.; de Lima, C.L.; de Toledo, I.P.; Chardin, H.; Combes, A.; Acevedo, A.C.; Guerra, E.N.S. Salivary metabolites to detect patients with cancer: A systematic review. Int. J. Clin. Oncol. 2020, 25, 1016–1036. [Google Scholar] [CrossRef] [PubMed]
- Desai, G.S.; Mathews, S.T. Saliva as a non-invasive diagnostic tool for inflammation and insulin-resistance. World J. Diabetes 2014, 5, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Goodson, J.M.; Kantarci, A.; Hartman, M.L.; Denis, G.V.; Stephens, D.; Hasturk, H.; Yaskell, T.; Vargas, J.; Wang, X.; Cugini, M.; et al. Metabolic disease risk in children by salivary biomarker analysis. PLoS ONE 2014, 9, e98799. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, T.; Konkol, K.; Biccard, B.; Dudose, K.; McKune, A.J. Elevated salivary C-reactive protein predicted by low cardio-respiratory fitness and being overweight in African children. Cardiovasc. J. Afr. 2012, 23, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Bozovic, D.; Racic, M.; Ivkovic, N. Salivary cortisol levels as a biological marker of stress reaction. Med. Arch. 2013, 67, 374–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aardal, E.; Holm, A.C. Cortisol in saliva--reference ranges and relation to cortisol in serum. Eur. J. Clin. Chem. Clin. Biochem. 1995, 33, 927–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, S.; Munro, C.; Pickler, R.; Grap, M.J.; Elswick, R.K., Jr. Comparison of biomarkers in blood and saliva in healthy adults. Nurs. Res. Pract. 2012, 2012, 246178. [Google Scholar] [CrossRef] [PubMed]
- Sawair, F.A.; Ryalat, S.; Shayyab, M.; Saku, T. The unstimulated salivary flow rate in a jordanian healthy adult population. J. Clin. Med. Res. 2009, 1, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Actis, G.C.; Pellicano, R.; Fagoonee, S.; Ribaldone, D.G. History of Inflammatory Bowel Diseases. J. Clin. Med. 2019, 8, 1970. [Google Scholar] [CrossRef] [Green Version]
- Roselli, M.; Finamore, A. Use of Synbiotics for Ulcerative Colitis Treatment. Curr. Clin. Pharmacol. 2019. [Google Scholar] [CrossRef]
- Szczeklik, K.; Owczarek, D.; Pytko-Polonczyk, J.; Kesek, B.; Mach, T.H. Proinflammatory cytokines in the saliva of patients with active and non-active Crohn’s disease. Pol. Arch. Med. Wewn. 2012, 122, 200–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Cheon, J.H. Pathogenesis of Inflammatory Bowel Disease and Recent Advances in Biologic Therapies. Immune. Netw. 2017, 17, 25–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salminen, A.; Gursoy, U.K.; Paju, S.; Hyvarinen, K.; Mantyla, P.; Buhlin, K.; Kononen, E.; Nieminen, M.S.; Sorsa, T.; Sinisalo, J.; et al. Salivary biomarkers of bacterial burden, inflammatory response, and tissue destruction in periodontitis. J. Clin. Periodontol. 2014, 41, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Liu, M.; Xiong, H. Role of Calprotectin as a Biomarker in Periodontal Disease. Mediat. Inflamm. 2019, 2019, 3515026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathirana, W.G.W.; Chubb, S.P.; Gillett, M.J.; Vasikaran, S.D. Faecal Calprotectin. Clin. Biochem. Rev. 2018, 39, 77–90. [Google Scholar] [PubMed]
- Pruenster, M.; Vogl, T.; Roth, J.; Sperandio, M. S100A8/A9: From basic science to clinical application. Pharmacol. Ther. 2016, 167, 120–131. [Google Scholar] [CrossRef]
- Nisapakultorn, K.; Ross, K.F.; Herzberg, M.C. Calprotectin expression in vitro by oral epithelial cells confers resistance to infection by Porphyromonas gingivalis. Infect. Immun. 2001, 69, 4242–4247. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, F.; Nancey, S.; Danese, S.; Peyrin-Biroulet, L. A practical guide for faecal calprotectin measurement: Myths and realities. J. Crohns Colitis 2020, jjaa093. [Google Scholar] [CrossRef]
- Johne, B.; Fagerhol, M.K.; Lyberg, T.; Prydz, H.; Brandtzaeg, P.; Naess-Andresen, C.F.; Dale, I. Functional and clinical aspects of the myelomonocyte protein calprotectin. Mol. Pathol. 1997, 50, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Majster, M.; Almer, S.; Bostrom, E.A. Salivary calprotectin is elevated in patients with active inflammatory bowel disease. Arch. Oral Biol. 2019, 107, 104528. [Google Scholar] [CrossRef]
- Ostrowska, L.; Gornowicz, A.; Pietraszewska, B.; Bielawski, K.; Bielawska, A. Which salivary components can differentiate metabolic obesity? PLoS ONE 2020, 15, e0235358. [Google Scholar] [CrossRef] [PubMed]
- Kleinegger, C.L.; Stoeckel, D.C.; Kurago, Z.B. A comparison of salivary calprotectin levels in subjects with and without oral candidiasis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001, 92, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Strober, W.; Fuss, I.J. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 2011, 140, 1756–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izawa, S.; Miki, K.; Liu, X.; Ogawa, N. The diurnal patterns of salivary interleukin-6 and C-reactive protein in healthy young adults. Brain Behav. Immun. 2013, 27, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Roda, G.; Marocchi, M.; Sartini, A.; Roda, E. Cytokine networks in ulcerative colitis. Ulcers 2011, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Szczeklik, K.; Owczarek, D.; Jolanta; Cibor, D.; Mach, T. Increased Expression of Interleukin-6 and Tumor Necrosis Factor Alpha in Saliva of Patients with Dental Caries and Crohn’s Disease. Proceeding 2018, 75, 425–430. [Google Scholar]
- Aleksandra Nielsen, A.; Nederby Nielsen, J.; Schmedes, A.; Brandslund, I.; Hey, H. Saliva Interleukin-6 in patients with inflammatory bowel disease. Scand. J. Gastroenterol. 2005, 40, 1444–1448. [Google Scholar] [CrossRef]
- Abdul-Ghafoor, S.H.; Al-Mudhaffer, M.H. Salivary assessment of Interleukin-6, C-reactive protein and albumin in ulcerative colitis patients in relation to oral findings. J. Baghdad Coll. Dent. 2013, 25, 105–109. [Google Scholar] [CrossRef]
- Stadnicki, A.; Machnik, G.; Klimacka-Nawrot, E.; Wolanska-Karut, A.; Labuzek, K. Transforming growth factor-beta1 and its receptors in patients with ulcerative colitis. Int. Immunopharmacol. 2009, 9, 761–766. [Google Scholar] [CrossRef]
- Samarani, S.; Dupont-Lucas, C.; Marcil, V.; Mack, D.; Israel, D.; Deslandres, C.; Jantchou, P.; Ahmad, A.; Amre, D. CpG Methylation in TGFbeta1 and IL-6 Genes as Surrogate Biomarkers for Diagnosis of IBD in Children. Inflamm. Bowel Dis. 2020, 26, 1572–1578. [Google Scholar] [CrossRef]
- Rezaie, A.; Khalaj, S.; Shabihkhani, M.; Nikfar, S.; Zamani, M.J.; Mohammadirad, A.; Daryani, N.E.; Abdollahi, M. Study on the correlations among disease activity index and salivary transforming growth factor-beta 1 and nitric oxide in ulcerative colitis patients. Ann. N. Y. Acad. Sci. 2007, 1095, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, A.; Ghorbani, F.; Eshghtork, A.; Zamani, M.J.; Dehghan, G.; Taghavi, B.; Nikfar, S.; Mohammadirad, A.; Daryani, N.E.; Abdollahi, M. Alterations in salivary antioxidants, nitric oxide, and transforming growth factor-beta 1 in relation to disease activity in Crohn’s disease patients. Ann. N. Y. Acad. Sci. 2006, 1091, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Jahanshahi, G.; Motavasel, V.; Rezaie, A.; Hashtroudi, A.A.; Daryani, N.E.; Abdollahi, M. Alterations in antioxidant power and levels of epidermal growth factor and nitric oxide in saliva of patients with inflammatory bowel diseases. Dig. Dis. Sci. 2004, 49, 1752–1757. [Google Scholar] [CrossRef] [PubMed]
- Majster, M.; Lira-Junior, R.; Hoog, C.M.; Almer, S.; Bostrom, E.A. Salivary and Serum Inflammatory Profiles Reflect Different Aspects of Inflammatory Bowel Disease Activity. Inflamm. Bowel Dis. 2020, 26, 1588–1596. [Google Scholar] [CrossRef]
- Dobre, M.; Milanesi, E.; Manuc, T.E.; Arsene, D.E.; Tieranu, C.G.; Maj, C.; Becheanu, G.; Manuc, M. Differential Intestinal Mucosa Transcriptomic Biomarkers for Crohn’s Disease and Ulcerative Colitis. J. Immunol. Res. 2018, 2018, 9208274. [Google Scholar] [CrossRef] [Green Version]
- Leon, A.J.; Gomez, E.; Garrote, J.A.; Bernardo, D.; Barrera, A.; Marcos, J.L.; Fernandez-Salazar, L.; Velayos, B.; Blanco-Quiros, A.; Arranz, E. High levels of proinflammatory cytokines, but not markers of tissue injury, in unaffected intestinal areas from patients with IBD. Mediat. Inflamm. 2009, 2009, 580450. [Google Scholar] [CrossRef]
- Said, H.S.; Suda, W.; Nakagome, S.; Chinen, H.; Oshima, K.; Kim, S.; Kimura, R.; Iraha, A.; Ishida, H.; Fujita, J.; et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 2014, 21, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Leoni, G.; Neumann, P.A.; Kamaly, N.; Quiros, M.; Nishio, H.; Jones, H.R.; Sumagin, R.; Hilgarth, R.S.; Alam, A.; Fredman, G.; et al. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J. Clin. Investig. 2015, 125, 1215–1227. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Zhang, W.; Yang, F.; Yu, L.; Yu, Z.; Pan, J.; Wang, L.; Cao, X.; Wang, J. Immunosuppressive exosomes from TGF-beta1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Res. 2012, 22, 607–610. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Xu, Q. Functions and application of exosomes. Acta Pol. Pharm. 2014, 71, 537–543. [Google Scholar]
- Mitsuhashi, S.; Feldbrugge, L.; Csizmadia, E.; Mitsuhashi, M.; Robson, S.C.; Moss, A.C. Luminal Extracellular Vesicles (EVs) in Inflammatory Bowel Disease (IBD) Exhibit Proinflammatory Effects on Epithelial Cells and Macrophages. Inflamm. Bowel Dis. 2016, 22, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- Larabi, A.; Barnich, N.; Nguyen, H.T.T. Emerging Role of Exosomes in Diagnosis and Treatment of Infectious and Inflammatory Bowel Diseases. Cells 2020, 9, 1111. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Chen, F.; Zhang, Q.; Liu, Y.; You, P.; Sun, S.; Lin, J.; Chen, N. Salivary exosomal PSMA7: A promising biomarker of inflammatory bowel disease. Protein Cell 2017, 8, 686–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, G.A.; Miozza, V.A.; Delgado, A.; Busch, L. Relationship between salivary mucin or amylase and the periodontal status. Oral Dis. 2013, 19, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wei, B.; Qiu, Y.; Zhang, T. Altered Salivary Alpha-Amylase Secretion in Patients with Ulcerative Colitis. Gastroenterol. Res. Pract. 2018, 2018, 4203737. [Google Scholar] [CrossRef] [PubMed]
- Nater, U.M.; Rohleder, N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology 2009, 34, 486–496. [Google Scholar] [CrossRef]
- Nater, U.M.; Rohleder, N.; Schlotz, W.; Ehlert, U.; Kirschbaum, C. Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology 2007, 32, 392–401. [Google Scholar] [CrossRef]
- Wust, S.; Wolf, J.; Hellhammer, D.H.; Federenko, I.; Schommer, N.; Kirschbaum, C. The cortisol awakening response - normal values and confounds. Noise Health 2000, 2, 79–88. [Google Scholar]
- Holmgren, J.; Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 2005, 11, S45–S53. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Otsuki, T.; Ishi, Y.; Inagaki, A.; Kawakami, Y.; Hisano, Y.; Yamashita, R.; Wani, K.; Sakaguchi, H.; Tsujita, S.; et al. Perturbation of secretory Ig A in saliva and its daily variation by academic stress. Environ. Health Prev. Med. 2002, 6, 268–272. [Google Scholar] [CrossRef]
- Bishop, N.C.; Gleeson, M. Acute and chronic effects of exercise on markers of mucosal immunity. Front. Biosci. (Landmark Ed.) 2009, 14, 4444–4456. [Google Scholar] [CrossRef] [Green Version]
- Tauler, P.; Martinez, S.; Moreno, C.; Martinez, P.; Aguilo, A. Changes in salivary hormones, immunoglobulin A, and C-reactive protein in response to ultra-endurance exercises. Appl. Physiol. Nutr. Metab. 2014, 39, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Leicht, C.A.; Goosey-Tolfrey, V.L.; Bishop, N.C. Exercise intensity and its impact on relationships between salivary immunoglobulin A, saliva flow rate and plasma cortisol concentration. Eur. J. Appl. Physiol. 2018, 118, 1179–1187. [Google Scholar] [CrossRef] [Green Version]
- Marcotte, H.; Lavoie, M.C. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol. Mol. Biol. Rev. 1998, 62, 71–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crama-Bohbouth, G.; Lems-van Kan, P.; Weterman, I.T.; Biemond, I.; Pena, A.S. Immunological findings in whole and parotid saliva of patients with Crohn’s disease and healthy controls. Dig. Dis. Sci. 1984, 29, 1089–1092. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, W.; Takeshita, T.; Shibata, Y.; Matsuo, K.; Eshima, N.; Yokoyama, T.; Yamashita, Y. Compositional stability of a salivary bacterial population against supragingival microbiota shift following periodontal therapy. PLoS ONE 2012, 7, e42806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paju, S.; Pussinen, P.J.; Suominen-Taipale, L.; Hyvonen, M.; Knuuttila, M.; Kononen, E. Detection of multiple pathogenic species in saliva is associated with periodontal infection in adults. J. Clin. Microbiol. 2009, 47, 235–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, N.W.; Barnard, K.; Shirlaw, P.J.; Rahman, D.; Mistry, M.; Escudier, M.P.; Sanderson, J.D.; Challacombe, S.J. Serum and salivary IgA antibody responses to Saccharomyces cerevisiae, Candida albicans and Streptococcus mutans in orofacial granulomatosis and Crohn’s disease. Clin. Exp. Immunol. 2004, 135, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Ranadheer, E.; Nayak, U.A.; Reddy, N.V.; Rao, V.A. The relationship between salivary IgA levels and dental caries in children. J. Indian Soc. Pedod. Prev. Dent. 2011, 29, 106–112. [Google Scholar] [CrossRef]
- Engstrom, J.F.; Arvanitakis, C.; Sagawa, A.; Abdou, N.I. Secretory immunoglobulin deficiency in a family with inflammatory bowel disease. Gastroenterology 1978, 74, 747–751. [Google Scholar] [CrossRef]
- Morris, T.J.; Matthews, N.; Rhodes, J. Serum and salivary immunoglobulin A and free secretory component in ulcerative colitis. Clin. Allergy 1981, 11, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, L.; Xie, R.; Wang, B.; Jiang, K.; Cao, H. Stress Triggers Flare of Inflammatory Bowel Disease in Children and Adults. Front. Pediatr. 2019, 7, 432. [Google Scholar] [CrossRef] [PubMed]
- Mawdsley, J.E.; Rampton, D.S. Psychological stress in IBD: New insights into pathogenic and therapeutic implications. Gut 2005, 54, 1481–1491. [Google Scholar] [CrossRef] [PubMed]
- Vanuytsel, T.; van Wanrooy, S.; Vanheel, H.; Vanormelingen, C.; Verschueren, S.; Houben, E.; Salim Rasoel, S.; Tomicronth, J.; Holvoet, L.; Farre, R.; et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014, 63, 1293–1299. [Google Scholar] [CrossRef]
- Vineetha, R.; Pai, K.M.; Vengal, M.; Gopalakrishna, K.; Narayanakurup, D. Usefulness of salivary alpha amylase as a biomarker of chronic stress and stress related oral mucosal changes—A pilot study. J. Clin. Exp. Dent. 2014, 6, e132–e137. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.; Wojtyniak, J.G.; Weckesser, L.J.; Alexander, N.C.; Engert, V.; Lehr, T. How to disentangle psychobiological stress reactivity and recovery: A comparison of model-based and non-compartmental analyses of cortisol concentrations. Psychoneuroendocrinology 2018, 90, 194–210. [Google Scholar] [CrossRef] [Green Version]
- DeSantis, A.S.; DiezRoux, A.V.; Hajat, A.; Aiello, A.E.; Golden, S.H.; Jenny, N.S.; Seeman, T.E.; Shea, S. Associations of salivary cortisol levels with inflammatory markers: The Multi-Ethnic Study of Atherosclerosis. Psychoneuroendocrinology 2012, 37, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Khil, J.; Picardo, S.; Seow, C.H.; Leung, Y.; Metcalfe, A.; Afshar, E.E.; Sharifi, N.; Campbell, T.; Letourneau, N.; Dewey, D.; et al. Physiological and psychological stress in pregnant women with quiescent inflammatory bowel disease: A pilot study using salivary biomarkers. JGH Open 2020, 4, 692–697. [Google Scholar] [CrossRef]
- Pellissier, S.; Dantzer, C.; Mondillon, L.; Trocme, C.; Gauchez, A.S.; Ducros, V.; Mathieu, N.; Toussaint, B.; Fournier, A.; Canini, F.; et al. Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn’s disease and irritable bowel syndrome. PLoS ONE 2014, 9, e105328. [Google Scholar] [CrossRef] [Green Version]
- Marrocco, I.; Altieri, F.; Peluso, I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid. Med. Cell Longev. 2017, 2017, 6501046. [Google Scholar] [CrossRef]
- Szczeklik, K.; Owczarek, D.; Cibor, D.; Czesnikiewicz-Guzik, M.; Krzysciak, P.; Krawczyk, A.; Mach, T.; Karczewska, E.; Krzysciak, W. Relative homogeneity of oral bacterial oral in Crohn’s disease compared to ulcerative colitis and its connections with antioxidant defense—Preliminary report. Folia Med. Cracov. 2019, 59, 15–35. [Google Scholar] [PubMed]
- Szczeklik, K.; Krzysciak, W.; Domagala-Rodacka, R.; Mach, P.; Darczuk, D.; Cibor, D.; Pytko-Polonczyk, J.; Rodacki, T.; Owczarek, D. Alterations in glutathione peroxidase and superoxide dismutase activities in plasma and saliva in relation to disease activity in patients with Crohn’s disease. J. Physiol Pharmacol. 2016, 67, 709–715. [Google Scholar] [PubMed]
- Szczeklik, K.; Krzysciak, W.; Cibor, D.; Domagala-Rodacka, R.; Pytko-Polonczyk, J.; Mach, T.; Owczarek, D. Markers of lipid peroxidation and antioxidant status in the serum and saliva of patients with active Crohn disease. Pol. Arch. Intern. Med. 2018, 128, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Jansakova, K.; Escudier, M.; Tothova, L.; Proctor, G. Salivary changes in oxidative stress related to inflammation in oral and gastrointestinal diseases. Oral Dis. 2020. [Google Scholar] [CrossRef]
- Peluso, I.; Raguzzini, A. Salivary and Urinary Total Antioxidant Capacity as Biomarkers of Oxidative Stress in Humans. Pathol. Res. Int. 2016, 2016, 5480267. [Google Scholar] [CrossRef] [Green Version]
- Pfaffe, T.; Cooper-White, J.; Beyerlein, P.; Kostner, K.; Punyadeera, C. Diagnostic potential of saliva: Current state and future applications. Clin. Chem. 2011, 57, 675–687. [Google Scholar] [CrossRef] [Green Version]
- Burbelo, P.D.; Bayat, A.; Lebovitz, E.E.; Iadarola, M.J. New technologies for studying the complexity of oral diseases. Oral Dis. 2012, 18, 121–126. [Google Scholar] [CrossRef]
- Tatsuki, M.; Hatori, R.; Nakazawa, T.; Ishige, T.; Hara, T.; Kagimoto, S.; Tomomasa, T.; Arakawa, H.; Takizawa, T. Serological cytokine signature in paediatric patients with inflammatory bowel disease impacts diagnosis. Sci. Rep. 2020, 10, 14638. [Google Scholar] [CrossRef]
- Niederau, C.; Backmerhoff, F.; Schumacher, B.; Niederau, C. Inflammatory mediators and acute phase proteins in patients with Crohn’s disease and ulcerative colitis. Hepatogastroenterology 1997, 44, 90–107. [Google Scholar]
- Bourgonje, A.R.; von Martels, J.Z.H.; Gabriels, R.Y.; Blokzijl, T.; Buist-Homan, M.; Heegsma, J.; Jansen, B.H.; van Dullemen, H.M.; Festen, E.A.M.; Ter Steege, R.W.F.; et al. A Combined Set of Four Serum Inflammatory Biomarkers Reliably Predicts Endoscopic Disease Activity in Inflammatory Bowel Disease. Front. Med. (Lausanne) 2019, 6, 251. [Google Scholar] [CrossRef] [Green Version]
- Costantini, E.; Sinjari, B.; Piscopo, F.; Porreca, A.; Reale, M.; Caputi, S.; Murmura, G. Evaluation of Salivary Cytokines and Vitamin D Levels in Periodontopathic Patients. Int. J. Mol. Sci. 2020, 21, 2669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueredo, C.M.; Brito, F.; Barros, F.C.; Menegat, J.S.B.; Pedreira, R.R.; Fischer, R.G.; Gustafsson, A. Expression of cytokines in the gingival crevicular fluid and serum from patients with inflammatory bowel disease and untreated chronic periodontitis. J. Periodontal Res. 2011, 46, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, G.; Nicita, F.; Militi, A.; Bertino, R.; Matarese, M.; Curro, M.; Damiano, C.S.; Mannucci, C.; Calapai, G. Correlation of s-IgA and IL-6 Salivary with Caries Disease and Oral Hygiene Parameters in Children. Dent. J. (Basel) 2019, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzunkova, M.; Martinez-Martinez, D.; Gardlik, R.; Behuliak, M.; Jansakova, K.; Jimenez, N.; Vazquez-Castellanos, J.F.; Marti, J.M.; D’Auria, G.; Bandara, H.M.H.N.; et al. Oxidative stress in the oral cavity is driven by individual-specific bacterial communities. NPJ Biofilms Microbiomes 2018, 4, 29. [Google Scholar] [CrossRef]
- Kitamoto, S.; Nagao-Kitamoto, H.; Jiao, Y.; Gillilland, M.G., 3rd; Hayashi, A.; Imai, J.; Sugihara, K.; Miyoshi, M.; Brazil, J.C.; Kuffa, P.; et al. The Intermucosal Connection between the Mouth and Gut in Commensal Pathobiont-Driven Colitis. Cell 2020, 182, 447–462.e14. [Google Scholar] [CrossRef]
IBD Severity | Control | Saliva | Salivary Biomarkers | Results | Ref |
---|---|---|---|---|---|
CD (n = 48) | Healthy (n = 48) | UNST | IL-6 | ↑ | [36] |
TNF-α | ↓ | ||||
pH | ↔ | ||||
salivary flow rate | ↓ | ||||
CD (n = 52) CDAI 256.5 ± 36.9 | Healthy (n = 43) | UNST | IL-1β, IL-6 and TNF-α | ↑ | [21] |
Oral lesion | Correlated to cytokines increase | ||||
CD (n = 43) CDAI 107.5 ± 30.2 | Healthy (n = 43) | UNST | IL-1β, IL-6 and TNF-α | ↔ | [21] |
CD (n = 15) | Healthy (n = 19) | UNST | IL-6 | ↑ (CD>UC) | [37] |
UC (n = 7) | Healthy (n = 19) | UNST | IL-6 | ↑ | [37] |
UC (n = 16) newly diagnosed | Healthy (n = 16) | UNST | IL-6, CRP and albumin | ↑ | [38] |
UC (n = 16) in medication | Healthy (n = 16) | UNST | IL-6 | ↔ | [38] |
CRP and albumin | ↑ | ||||
UC (n = 37) | Healthy (n = 15) | UNST | TGF-β1 and NO | ↑ | [41] |
CD (n = 28) CDAI 102.1 ± 84.9 | Healthy (n = 20) | UNST | TGF-β1 and NO | ↑ | [42] |
CD + UC (n = 12 + 9) | Healthy (n = 22) | UNST STIM | IL-6 and MMP-10 | ↑ (in STIM saliva) | [44] |
CD (n = 14) | Healthy (n = 15) | UNST | Secretory IgA | ↑ (UC>CD) | [47] |
Lisozima | ↓ | ||||
LL37, IL-1β and TNF-α | ↑ | ||||
UC (n = 10) | Healthy (n = 15) | UNST | Secretory IgA | ↑ (UC>CD) | [47] |
Lisozima | ↓ | ||||
LL37, IL-1β, IL-6, IL-8 | ↑ | ||||
MCP-1 | ↑ |
IBD Severity | Control | Saliva | Enzymes | Non-Enzymatic Antioxidants | Lipid Oxidation | Protein Oxidation | Ref. |
---|---|---|---|---|---|---|---|
CD (n = 18) | Healthy (n = 5) | STIM | TAC (FRAP) ↓ | [81] | |||
UC (n = 13) | Healthy (n = 5) | STIM | TAC (FRAP) ↓ | [81] | |||
CD(n = 25) CDAI: 262.5 ± 57.7 | Healthy (n = 25) | STIM | GPX ↔ SOD ↔ | [82] | |||
CD (n = 22) CDAI: 67.2 ± 40.2 | Healthy (n = 25) | STIM | GPX ↔ SOD ↔ | [82] | |||
CD (n = 16) | Healthy (n = 16) | UNST | TAC (FRAP) ↓ | TBARS ↑ | [43] | ||
UC (n = 16) | Healthy (n = 16) | UNST | TAC (FRAP) ↔ | TBARS ↔ | [43] | ||
CD (n = 32) CDAI: 270.8 ± 31.2 | Healthy (n = 26) | UNST | TAC (FRAP) ↔ SH (DTNB) ↓ | TBARS ↑ | [83] | ||
CD (n = 26) CDAI: 67.2 ± 21.4 | Healthy (n = 26) | UNST | TAC (FRAP) ↔ SH (DTNB) ↔ | TBARS ↔ | [83] | ||
CD (n = 28) CDAI: 102.1 ± 84.9 | Healthy (n = 20) | UNST | TAC (FRAP) ↓ UA ↓ SH (DTNB) ↔ | TBARS ↑ | [42] | ||
CD (n = 29) remission | Healthy (n = 22) | UNST | MPO ↔ | TAC (ABTS) ↔ TAC (FRAP) ↓ | TBARS ↔ | AOPP ↑ AGE ↑ | [84] |
CD remission + OFG (n = 14) | OFG (n = 27) | UNST | MPO ↔ | TAC (ABTS) ↔ TAC (FRAP) ↓ | TBARS ↔ | AOPP ↔ AGE ↑ | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finamore, A.; Peluso, I.; Cauli, O. Salivary Stress/Immunological Markers in Crohn’s Disease and Ulcerative Colitis. Int. J. Mol. Sci. 2020, 21, 8562. https://doi.org/10.3390/ijms21228562
Finamore A, Peluso I, Cauli O. Salivary Stress/Immunological Markers in Crohn’s Disease and Ulcerative Colitis. International Journal of Molecular Sciences. 2020; 21(22):8562. https://doi.org/10.3390/ijms21228562
Chicago/Turabian StyleFinamore, Alberto, Ilaria Peluso, and Omar Cauli. 2020. "Salivary Stress/Immunological Markers in Crohn’s Disease and Ulcerative Colitis" International Journal of Molecular Sciences 21, no. 22: 8562. https://doi.org/10.3390/ijms21228562
APA StyleFinamore, A., Peluso, I., & Cauli, O. (2020). Salivary Stress/Immunological Markers in Crohn’s Disease and Ulcerative Colitis. International Journal of Molecular Sciences, 21(22), 8562. https://doi.org/10.3390/ijms21228562