The Anti-Inflammatory Role of Bilirubin on “Two-Hit” Sepsis Animal Model
Abstract
:1. Introduction
2. Results
2.1. Bilirubin Improves Survival in the “Two-Hit” Model
2.2. The Effect of Bilirubin on Pro- and Anti-Inflammatory Cytokine Expression on the “Two-Hit” Model
2.3. The Effect of Bilirubin on MAPKs Expression in the Lung in the “Two-Hit” Model
2.4. Bilirubin Enhances the Recruitment of Myeloid-Derived Suppressor Cells (MDSCs) and Suppresses the Activities and Functions of T Cells in Blood in the “Two-Hit” Model
2.5. Bilirubin Improves the Lung Tissue Injury in the “Two-Hit” Model
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Preparation of Bilirubin
4.3. Animal
4.4. Mice Models
4.4.1. Sham Model and LPS Model
4.4.2. One-Hit Sepsis Model (Cecal Ligation and Puncture; CLP Model)
4.4.3. “Two Hit” Sepsis Model (Two-Hit Model)
4.4.4. Bilirubin Model (BIL Model)
4.4.5. “Two Hit” Sepsis Model Treated with Bilirubin (Two-Hit + BIL Model)
4.5. Measuring the Levels of Pro and Anti-Inflammatory Cytokines, Mitogen-Activated Protein Kinase (MAPK) from Lung by ELISA
4.5.1. Collecting Lung Tissue
4.5.2. The Levels of Pro and Anti-Inflammatory Cytokines of the Lung
4.5.3. The Levels of Mitogen-Activated Protein Kinase (MAPK)
4.6. Tissue Histology
4.7. Determine the Percentages of Immune Cells (MDSC, T-Regulation, and Macrophage Polarization) from Blood by Flow Cytometry
Flow Cytometry
4.8. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Ethics Approval and Consent to Participate
References
- Fujishima, S. Organ dysfunction as a new standard for defining sepsis. Inflamm. Regen. 2016, 36, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mira, J.C.; Gentile, L.F.; Mathias, B.J.; Efron, P.A.; Brakenridge, S.C.; Mohr, A.M.; Moore, F.A.; Moldawer, L.L. Sepsis Pathophysiology, Chronic Critical Illness, and Persistent Inflammation-Immunosuppression and Catabolism Syndrome. Crit. Care Med. 2017, 45, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.H.; Chan, D.L.; Pinheiro, D.; Armitage-Chan, E.; Garden, O.A. The immunopathology of sepsis: Pathogen recognition, systemic inflammation, the compensatory anti-inflammatory response, and regulatory T cells. J. Vet. Intern. Med. 2012, 26, 457–482. [Google Scholar] [CrossRef]
- Rosenthal, M.D.; Moore, F.A. Persistent inflammatory, immunosuppressed, catabolic syndrome (PICS): A new phenotype of multiple organ failure. J. Adv. Nutr Hum. Metab. 2015, 1, e784. [Google Scholar]
- Rosenthal, M.D.; Moore, F.A. Persistent Inflammation, Immunosuppression, and Catabolism: Evolution of Multiple Organ Dysfunction. Surg Infect. (Larchmt) 2016, 17, 167–172. [Google Scholar] [CrossRef]
- Iskander, K.N.; Osuchowski, M.F.; Stearns-Kurosawa, D.J.; Kurosawa, S.; Stepien, D.; Valentine, C.; Remick, D.G. Sepsis: Multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol. Rev. 2013, 93, 1247–1288. [Google Scholar] [CrossRef] [Green Version]
- Ward, N.S.; Casserly, B.; Ayala, A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin. Chest Med. 2008, 29, 617–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilevicius, E.; Dragosavac, D.; Dragosavac, S.; Araujo, S.; Falcao, A.L.; Terzi, R.G. Multiple organ failure in septic patients. Braz. J. Infect. Dis. 2001, 5, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Li, S.; Li, S. The role of the liver in sepsis. Int. Rev. Immunol. 2014, 33, 498–510. [Google Scholar] [CrossRef] [Green Version]
- Faist, E.; Baue, A.E.; Dittmer, H.; Heberer, G. Multiple organ failure in polytrauma patients. J. Trauma 1983, 23, 775–787. [Google Scholar] [CrossRef]
- Efron, P.A.; Mohr, A.M.; Bihorac, A.; Horiguchi, H.; Hollen, M.K.; Segal, M.S.; Baker, H.V.; Leeuwenburgh, C.; Moldawer, L.L.; Moore, F.A.; et al. Persistent inflammation, immunosuppression, and catabolism and the development of chronic critical illness after surgery. Surgery 2018, 164, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Duran-Bedolla, J.; Montes de Oca-Sandoval, M.A.; Saldana-Navor, V.; Villalobos-Silva, J.A.; Rodriguez, M.C.; Rivas-Arancibia, S. Sepsis, mitochondrial failure and multiple organ dysfunction. Clin. Investig. 2014, 37, E58–E69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stortz, J.A.; Mira, J.C.; Raymond, S.L.; Loftus, T.J.; Ozrazgat-Baslanti, T.; Wang, Z.; Ghita, G.L.; Leeuwenburgh, C.; Segal, M.S.; Bihorac, A.; et al. Benchmarking clinical outcomes and the immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive care unit patients. J. Trauma Acute Care Surg. 2018, 84, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Keshavan, P.; Deem, T.L.; Schwemberger, S.J.; Babcock, G.F.; Cook-Mills, J.M.; Zucker, S.D. Unconjugated Bilirubin Inhibits VCAM-1-Mediated Transendothelial Leukocyte Migration. J. Immunol. 2005, 174, 3709–3718. [Google Scholar] [CrossRef] [Green Version]
- Arai, T.; Yoshikai, Y.; Kamiya, J.; Nagino, M.; Uesaka, K.; Yuasa, N.; Oda, K.; Sano, T.; Nimura, Y. Bilirubin impairs bactericidal activity of neutrophils through an antioxidant mechanism in vitro. J. Surg. Res. 2001, 96, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, B.; Archer, F.E.; Kathiravan, S.; Hirsch, D.S.; Kleinfeld, A.M.; Vetrano, A.M.; Hegyi, T. Effects of bilirubin on neutrophil responses in newborn infants. Neonatology 2013, 103, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.W.; Smith, D.L.; Zucker, S.D. Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatol. (Baltim. Md) 2004, 40, 424–433. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, J.; Jiang, H.; Ma, Y.; Pan, S.; Reddy, S.; Sun, X. Bilirubin protects grafts against nonspecific inflammation-induced injury in syngeneic intraportal islet transplantation. Exp. Mol. Med. 2010, 42, 739–748. [Google Scholar] [CrossRef] [Green Version]
- Jenniskens, M.; Langouche, L.; Vanwijngaerden, Y.M.; Mesotten, D.; Van den Berghe, G. Cholestatic liver (dys)function during sepsis and other critical illnesses. Intensive Care Med. 2016, 42, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Bone, R.C. Immunologic dissonance: A continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann. Intern. Med. 1996, 125, 680–687. [Google Scholar] [CrossRef]
- Huo, R.; Wang, L.; Wang, X.; Zhao, Y.; Wang, Y.; Zhao, X.; Chang, L.; Liu, S.-L.; Tong, D.; Zhang, H.; et al. Removal of regulatory T cells prevents secondary chronic infection but increases the mortality of subsequent sub-acute infection in sepsis mice. Oncotarget 2016, 7, 10962–10975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochst, B.; Mikulec, J.; Baccega, T.; Metzger, C.; Welz, M.; Peusquens, J.; Tacke, F.; Knolle, P.; Kurts, C.; Diehl, L.; et al. Differential induction of Ly6G and Ly6C positive myeloid derived suppressor cells in chronic kidney and liver inflammation and fibrosis. PLoS ONE 2015, 10, e0119662. [Google Scholar] [CrossRef] [PubMed]
- Bronte, V.; Brandau, S.; Chen, S.H.; Colombo, M.P.; Frey, A.B.; Greten, T.F.; Mandruzzato, S.; Murray, P.J.; Ochoa, A.; Ostrand-Rosenberg, S.; et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 2016, 7, 12150. [Google Scholar] [CrossRef] [Green Version]
- Cudalbu, C.; McLin, V.A.; Lei, H.; Duarte, J.M.; Rougemont, A.L.; Oldani, G.; Terraz, S.; Toso, C.; Gruetter, R. The C57BL/6J mouse exhibits sporadic congenital portosystemic shunts. PLoS ONE 2013, 8, e69782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plotnikov, A.; Zehorai, E.; Procaccia, S.; Seger, R. The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta 2011, 1813, 1619–1633. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.T.; Jeong, Y.H.; Park, H.J.; Ha, S.J. Mechanism of T cell exhaustion in a chronic environment. BMB Rep. 2011, 44, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, P.; Lu, J.; Xiong, W.; Oger, J.; Tetzlaff, W.; Cynader, M. Bilirubin possesses powerful immunomodulatory activity and suppresses experimental autoimmune encephalomyelitis. J. Immunol. (Baltim. Md 1950) 2008, 181, 1887–1897. [Google Scholar] [CrossRef] [Green Version]
- Virgin, H.W.; Wherry, E.J.; Ahmed, R. Redefining chronic viral infection. Cell 2009, 138, 30–50. [Google Scholar] [CrossRef] [Green Version]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef]
- Corral-Jara, K.F.; Trujillo-Ochoa, J.L. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling. Mediat. Inflamm. 2016, 1759027. [Google Scholar] [CrossRef]
- Rocuts, F.; Zhang, X.; Yan, J.; Yue, Y.; Thomas, M.; Bach, F.H.; Czismadia, E.; Wang, H. Bilirubin promotes de novo generation of T regulatory cells. Cell Transplant. 2010, 19, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Pan, P.Y.; Li, Q.; Sato, A.I.; Levy, D.E.; Bromberg, J.; Divino, C.M.; Chen, S.H. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006, 66, 1123–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.M.; Poduval, T.B. Immunomodulatory and immunotoxic effects of bilirubin: Molecular mechanisms. J. Leukoc. Biol. 2011, 90, 997–1015. [Google Scholar] [CrossRef]
- Wang, H.; Lee, S.S.; Dell’Agnello, C.; Tchipashvili, V.; d’Avila, J.C.; Czismadia, E.; Chin, B.Y.; Bach, F.H. Bilirubin can induce tolerance to islet allografts. Endocrinology 2006, 147, 762–768. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gu, H.; Qin, D.; Yang, L.; Huang, W.; Essandoh, K.; Wang, Y.; Caldwell, C.C.; Peng, T.; Zingarelli, B.; et al. Exosomal miR-223 Contributes to Mesenchymal Stem Cell-Elicited Cardioprotection in Polymicrobial Sepsis. Sci. Rep. 2015, 5, 13721. [Google Scholar] [CrossRef] [Green Version]
- Brudecki, L.; Ferguson, D.A.; McCall, C.E.; El Gazzar, M. Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infect. Immun. 2012, 80, 2026–2034. [Google Scholar] [CrossRef] [Green Version]
- Brudecki, L.; Ferguson, D.A.; Yin, D.; Lesage, G.D.; McCall, C.E.; El Gazzar, M. Hematopoietic stem-progenitor cells restore immunoreactivity and improve survival in late sepsis. Infect. Immun. 2012, 80, 602–611. [Google Scholar] [CrossRef] [Green Version]
- Osuchowski, M.F.; Craciun, F.; Weixelbaumer, K.M.; Duffy, E.R.; Remick, D.G. Sepsis chronically in MARS: Systemic cytokine responses are always mixed regardless of the outcome, magnitude, or phase of sepsis. J. Immunol. (Baltim. Md 1950) 2012, 189, 4648–4656. [Google Scholar] [CrossRef] [Green Version]
- Bae, H.B.; Li, M.; Kim, J.P.; Kim, S.J.; Jeong, C.W.; Lee, H.G.; Kim, W.M.; Kim, H.S.; Kwak, S.H. The effect of epigallocatechin gallate on lipopolysaccharide-induced acute lung injury in a murine model. Inflammation 2010, 33, 82–91. [Google Scholar] [CrossRef]
- Wang, X.Q.; Bdeir, K.; Yarovoi, S.; Cines, D.B.; Fang, W.; Abraham, E. Involvement of the urokinase kringle domain in lipopolysaccharide-induced acute lung injury. J. Immunol. (Baltim. Md 1950) 2006, 177, 5550–5557. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, S.; Amaya, F.; Oh-hashi, K.; Kiuchi, K.; Hashimoto, S. Expression of neutral endopeptidase activity during clinical and experimental acute lung injury. Respir. Res. 2010, 11, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doeing, D.C.; Borowicz, J.L.; Crockett, E.T. Gender dimorphism in differential peripheral blood leukocyte counts in mice using cardiac, tail, foot, and saphenous vein puncture methods. BMC Clin. Pathol. 2003, 3, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swamydas, M.; Luo, Y.; Dorf, M.E.; Lionakis, M.S. Isolation of Mouse Neutrophils. Curr. Protoc. Immunol. 2015, 110, 3.20.1–3.20.15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, D.T.; Jeong, Y.Y.; Kim, J.M.; Bae, H.B.; Son, S.K.; Kwak, S.H. The Anti-Inflammatory Role of Bilirubin on “Two-Hit” Sepsis Animal Model. Int. J. Mol. Sci. 2020, 21, 8650. https://doi.org/10.3390/ijms21228650
Tran DT, Jeong YY, Kim JM, Bae HB, Son SK, Kwak SH. The Anti-Inflammatory Role of Bilirubin on “Two-Hit” Sepsis Animal Model. International Journal of Molecular Sciences. 2020; 21(22):8650. https://doi.org/10.3390/ijms21228650
Chicago/Turabian StyleTran, Duc Tin, Yong Yeon Jeong, Jeong Min Kim, Hong Bum Bae, Sung Kuk Son, and Sang Hyun Kwak. 2020. "The Anti-Inflammatory Role of Bilirubin on “Two-Hit” Sepsis Animal Model" International Journal of Molecular Sciences 21, no. 22: 8650. https://doi.org/10.3390/ijms21228650
APA StyleTran, D. T., Jeong, Y. Y., Kim, J. M., Bae, H. B., Son, S. K., & Kwak, S. H. (2020). The Anti-Inflammatory Role of Bilirubin on “Two-Hit” Sepsis Animal Model. International Journal of Molecular Sciences, 21(22), 8650. https://doi.org/10.3390/ijms21228650