Impaired Expression of GABA Signaling Components in the Alzheimer’s Disease Middle Temporal Gyrus
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Post-Mortem Human Brain Tissue Processing
4.2. TRIzol RNA Isolation from Fresh-Frozen Human MTG Tissue
4.3. RNA Quantification by NanoString nCounter Analysis
4.4. Free-Floating Fluorescence Immunohistochemistry (fIHC)
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Aβ | Amyloid-beta |
ABAT | 4-aminobutyrate aminotransferase |
AD | Alzheimer’s disease |
BGT1 | Betaine-GABA transporter 1 |
BZD | Benzodiazepine |
CA | Cornu Ammonis |
CERAD | Consortium to Establish a Registry for Alzheimer’s Disease |
E/I | Excitatory/Inhibitory |
ER | Endoplasmic reticulum |
fIHC | Fluorescence immunohistochemistry |
GABA | Gamma-aminobutyric acid |
GABAAR | GABAA receptor |
GABABR | GABAB receptor |
GABABR1 | GABAB receptor subunit 1 |
GABABR2 | GABAB receptor subunit 2 |
GAD | Glutamate decarboxylase |
GAD65 | Glutamate decarboxylase, 65 kDa isoform |
GAD67 | Glutamate decarboxylase, 67 kDa isoform |
GAT | GABA transporter |
GAT1 | GABA transporter 1 |
GAT2 | GABA transporter 2 |
GAT3 | GABA transporter 3 |
IgG | Immunoglobulin G |
IHC | Immunohistochemistry |
MTG | Middle temporal gyrus |
NFT | Neurofibrillary tangle |
PBS | Phosphate-buffered saline |
PM | Post-mortem |
p-tau | Phosphorylated tau protein |
qPCR | Quantitative polymerase chain reaction |
RCC | Reporter code count |
RLF | Reporter library file |
RNA | Ribonucleic acid |
RT | Room temperature |
STG | Superior temporal gyrus |
TLE | Temporal lobe epilepsy |
vGAT | Vesicular GABA transporter |
References
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 1986, 83, 4913–4917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyreuther, K.; Masters, C.L. Nomenclature of amyloid A4 proteins and their precursors in Alzheimer’s disease and down’s syndrome. Neurobiol. Aging 1990, 11, 66–68. [Google Scholar] [CrossRef]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-Q.; Mobley, W.C. Alzheimer disease pathogenesis: Insights from molecular and cellular biology studies of oligomeric Aβ and tau species. Front. Neurosci. 2019, 13, 659. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Scahill, R.I.; Schott, J.M.; Stevens, J.M.; Rossor, M.N.; Fox, N.C. Mapping the evolution of regional atrophy in Alzheimer’s disease: Unbiased analysis of fluid-registered serial MRI. Proc. Natl. Acad. Sci. USA 2002, 99, 4703–4707. [Google Scholar] [CrossRef] [Green Version]
- Zakzanis, K.K.; Graham, S.J.; Campbell, Z. A meta-analysis of structural and functional brain imaging in dementia of the Alzheimer’s type: A neuroimaging profile. Neuropsychol. Rev. 2003, 13, 1–18. [Google Scholar] [CrossRef]
- Davies, D.C.; Horwood, N.; Isaacs, S.L.; Mann, D.M.A. The effect of age and Alzheimer’s disease on pyramidal neuron density in the individual fields of the hippocampal formation. Acta Neuropathol. 1992, 83, 510–517. [Google Scholar] [CrossRef]
- Doebler, J.A.; Markesbery, W.R.; Anthony, A.; Rhoads, R.E. Neuronal RNA in relation to neuronal loss and neurofibrillary pathology in the hippocampus in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 1987, 46, 28–39. [Google Scholar] [CrossRef]
- Rössler, M.; Zarski, R.; Bohl, J. Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer’s disease. Acta Neuropathol. 2002, 103, 363–369. [Google Scholar] [CrossRef]
- Mann, D.M.A.; Yates, P.O.; Marcyniuk, B. Some morphometric observations on the cerebral cortex and hippocampus in presenile Alzheimer’s disease, senile dementia of Alzheimer type and Down’s syndrome in middle age. J. Neurol. Sci. 1985, 69, 139–159. [Google Scholar] [CrossRef]
- Ball, M.J. Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathol. 1977, 37, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.C.; Esiri, M.M.; Hiorns, R.W.; Wilcock, G.K.; Powell, T.P. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc. Natl. Acad. Sci. USA 1985, 82, 4531–4534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berron, D.; van Westen, D.; Ossenkoppele, R.; Strandberg, O.; Hansson, O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain 2020, 143, 1233–1248. [Google Scholar] [CrossRef] [PubMed]
- Scheff, S.W.; Price, D.A.; Schmitt, F.A.; Scheff, M.A.; Mufson, E.J. Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer’s disease. J. Alzheimer’s Dis. 2011, 24, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Khan, U.A.; Liu, L.; Provenzano, F.A.; Berman, D.E.; Profaci, C.P.; Sloan, R.; Mayeux, R.; Duff, K.E.; Small, S.A. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat. Neurosci. 2014, 17, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 1991, 30, 572–580. [Google Scholar] [CrossRef]
- Kravitz, E.; Gaisler-Salomon, I.; Biegon, A. Hippocampal glutamate NMDA receptor loss tracks progression in Alzheimer’s disease: Quantitative autoradiography in postmortem human brain. PLoS ONE 2013, 8, e81244. [Google Scholar] [CrossRef] [Green Version]
- Elgh, E.; Åstot, A.L.; Fagerlund, M.; Eriksson, S.; Olsson, T.; Näsman, B. Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biol. Psychiatry 2006, 59, 155–161. [Google Scholar] [CrossRef]
- Hyman, B.T.; Van Hoesen, G.W.; Damasio, A.R.; Barnes, C.L. Alzheimer’s disease: Cell-specific pathology isolates the hippocampal formation. Science 1984, 225, 1168–1170. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yao, C.; Tian, T.; Li, X.; Yan, H.; Wu, J.; Li, H.; Pei, L.; Liu, D.; Tian, Q.; et al. A novel mechanism of memory loss in Alzheimer’s disease mice via the degeneration of entorhinal–CA1 synapses. Mol. Psychiatry 2018, 23, 199–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyce, R.; Glasgow, S.D.; Williams, S.; Adamantidis, A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 2016, 352, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Huh, C.Y.L.; Amilhon, B.; Ferguson, K.A.; Manseau, F.; Torres-Platas, S.G.; Peach, J.P.; Scodras, S.; Mechawar, N.; Skinner, F.K.; Williams, S. Excitatory inputs determine phase-locking strength and spike-timing of ca1 stratum oriens/alveus parvalbumin and somatostatin interneurons during intrinsically generated hippocampal theta rhythm. J. Neurosci. 2016, 36, 6605–6622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Froemke, R.C. Plasticity of cortical excitatory-inhibitory balance. Annu. Rev. Neurosci. 2015, 38, 195–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amilhon, B.; Huh, C.Y.L.; Manseau, F.; Ducharme, G.; Nichol, H.; Adamantidis, A.; Williams, S. Parvalbumin interneurons of hippocampus tune population activity at theta frequency. Neuron 2015, 86, 1277–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busche, M.A.; Konnerth, A. Impairments of neural circuit function in Alzheimer’s disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150429. [Google Scholar] [CrossRef]
- Selten, M.; van Bokhoven, H.; Nadif Kasri, N. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Research 2018, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Varela, E.V.; Etter, G.; Williams, S. Excitatory-inhibitory imbalance in Alzheimer’s disease and therapeutic significance. Neurobiol. Dis. 2019, 127, 605–615. [Google Scholar] [CrossRef]
- Osipova, D.; Ahveninen, J.; Jensen, O.; Ylikoski, A.; Pekkonen, E. Altered generation of spontaneous oscillations in Alzheimer’s disease. NeuroImage 2005, 27, 835–841. [Google Scholar] [CrossRef]
- Palop, J.J.; Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 2016, 17, 777–792. [Google Scholar] [CrossRef] [PubMed]
- Palop, J.J.; Chin, J.; Roberson, E.D.; Wang, J.; Thwin, M.T.; Bien-Ly, N.; Yoo, J.; Ho, K.O.; Yu, G.-Q.; Kreitzer, A.; et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 2007, 55, 697–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Waal, H.; Stam, C.J.; de Haan, W.; van Straaten, E.C.W.; Scheltens, P.; van der Flier, W.M. Young Alzheimer patients show distinct regional changes of oscillatory brain dynamics. Neurobiol. Aging 2012, 33, 1008.e1025–1008.e1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pike, C.J.; Cotman, C.W. Cultured GABA-immunoreactive neurons are resistant to toxicity induced by β-amyloid. Neuroscience 1993, 56, 269–274. [Google Scholar] [CrossRef]
- Hof, P.R.; Nimchinsky, E.A.; Celio, M.R.; Bouras, C.; Morrison, J.H. Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci. Lett. 1993, 152, 145–149. [Google Scholar] [CrossRef]
- Rossor, M.N.; Garrett, N.J.; Johnson, A.L.; Mountjoy, C.Q.; Roth, M.; Iversen, L.L. A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain 1982, 105, 313–330. [Google Scholar] [CrossRef]
- Bell, K.F.S.; Ducatenzeiler, A.; Ribeiro-da-Silva, A.; Duff, K.; Bennett, D.A.; Claudio Cuello, A. The amyloid pathology progresses in a neurotransmitter-specific manner. Neurobiol. Aging 2006, 27, 1644–1657. [Google Scholar] [CrossRef]
- Govindpani, K.; Calvo-Flores Guzmán, B.; Vinnakota, C.; Waldvogel, H.J.; Faull, R.L.; Kwakowsky, A. Towards a Better Understanding of GABAergic Remodeling in Alzheimer’s Disease. Int. J. Mol. Sci. 2017, 18, 1813. [Google Scholar] [CrossRef] [Green Version]
- Villette, V.; Dutar, P. GABAergic Microcircuits in Alzheimer’s Disease Models. Curr. Alzheimer Res. 2017, 14, 30–39. [Google Scholar] [CrossRef]
- Kwakowsky, A.; Calvo-Flores Guzmán, B.; Govindpani, K.; Waldvogel, H.J.; Faull, R.L. Gamma-aminobutyric acid A receptors in Alzheimer’s disease: Highly localized remodeling of a complex and diverse signaling pathway. Neural Regen. Res. 2018, 13, 1362–1363. [Google Scholar] [CrossRef]
- Garcia-Marin, V.; Blazquez-Llorca, L.; Rodriguez, J.-R.; Boluda, S.; Muntane, G.; Ferrer, I.; DeFelipe, J. Diminished perisomatic GABAergic terminals on cortical neurons adjacent to amyloid plaques. Front. Neuroanat. 2009, 3, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, J.; Cowburn, R.; Barton, A.; Reynolds, G.; Dodd, P.; Wester, P.; O’Carroll, A.M.; Lofdahl, E.; Winblad, B. A disorder of cortical GABAergic innervation in Alzheimer’s disease. Neurosci. Lett. 1987, 73, 192–196. [Google Scholar] [CrossRef]
- Bi, D.; Wen, L.; Wu, Z.; Shen, Y. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer’s disease. Alzheimer’s Dement. 2020, 16, 1312–1329. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhao, M.; Han, Y.; Zhang, H. GABAergic inhibitory interneuron deficits in Alzheimer’s disease: Implications for treatment. Front. Neurosci. 2020, 14, 660. [Google Scholar] [CrossRef] [PubMed]
- Lowe, S.L.; Francis, P.T.; Procter, A.W.; Palmer, A.M.; Davison, A.N.; Bowen, D.M. Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimer’s disease. Brain 1988, 111, 785–799. [Google Scholar] [CrossRef]
- Erdő, S.L. Postmortem increase of GABA levels in peripheral rat tissues: Prevention by 3-mercapto-propionic acid. J. Neural Trans. 1984, 60, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Perry, T.L.; Hansen, S.; Gandham, S.S. Postmortem changes of amino compounds in human and rat brain. J. Neurochem. 1981, 36, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Iwakiri, M.; Mizukami, K.; Ikonomovic, M.D.; Ishikawa, M.; Abrahamson, E.E.; DeKosky, S.T.; Asada, T. An immunohistochemical study of GABAA receptor gamma subunits in Alzheimer’s disease hippocampus: Relationship to neurofibrillary tangle progression. Neuropathology 2009, 29, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Mizukami, K.; Ikonomovic, M.D.; Grayson, D.R.; Sheffield, R.; Armstrong, D.M. Immunohistochemical study of GABAA receptor α1 subunit in the hippocampal formation of aged brains with Alzheimer-related neuropathologic changes. Brain Res. 1998, 799, 148–155. [Google Scholar] [CrossRef]
- Rissman, R.A.; Mishizen-Eberz, A.J.; Carter, T.L.; Wolfe, B.B.; De Blas, A.L.; Miralles, C.P.; Ikonomovic, M.D.; Armstrong, D.M. Biochemical analysis of GABAA receptor subunits α1, α5, β1, β2 in the hippocampus of patients with Alzheimer’s disease neuropathology. Neuroscience 2003, 120, 695–704. [Google Scholar] [CrossRef]
- Rissman, R.A.; Bennett, D.A.; Armstrong, D.M. Subregional analysis of GABAA receptor subunit mRNAs in the hippocampus of older persons with and without cognitive impairment. J. Chem. Neuroanat. 2004, 28, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Mizukami, K.; Ikonomovic, M.D.; Grayson, D.R.; Rubin, R.T.; Warde, D.; Sheffield, R.; Hamilton, R.L.; Davies, P.; Armstrong, D.M. Immunohistochemical study of GABAA receptor β2/3 subunits in the hippocampal formation of aged brains with Alzheimer-related neuropathologic changes. Exp. Neurol. 1997, 147, 333–345. [Google Scholar] [CrossRef]
- Mizukami, K.; Grayson, D.R.; Ikonomovic, M.D.; Sheffield, R.; Armstrong, D.M. GABAA receptor β2 and β3 subunits mRNA in the hippocampal formation of aged human brain with Alzheimer-related neuropathology. Mol. Brain Res. 1998, 56, 268–272. [Google Scholar] [CrossRef]
- Luchetti, S.; Bossers, K.; Van de Bilt, S.; Agrapart, V.; Morales, R.R.; Frajese, G.V.; Swaab, D.F. Neurosteroid biosynthetic pathways changes in prefrontal cortex in Alzheimer’s disease. Neurobiol. Aging 2011, 32, 1964–1976. [Google Scholar] [CrossRef] [PubMed]
- Limon, A.; Reyes-Ruiz, J.M.; Miledi, R. Loss of functional GABAA receptors in the Alzheimer diseased brain. Proc. Natl. Acad. Sci. USA 2012, 109, 10071–10076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwakowsky, A.; Calvo-Flores Guzmán, B.; Pandya, M.; Turner, C.; Waldvogel, H.J.; Faull, R.L. GABAA receptor subunit expression changes in the human Alzheimer’s disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus. J. Neurochem. 2018, 145, 374–392. [Google Scholar] [CrossRef]
- Nayeem, N.; Green, T.P.; Martin, I.L.; Barnard, E.A. Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J. Neurochem. 1994, 62, 815–818. [Google Scholar] [CrossRef]
- Barnard, E.A.; Skolnick, P.; Olsen, R.W.; Mohler, H.; Sieghart, W.; Biggio, G.; Braestrup, C.; Bateson, A.N.; Langer, S.Z. International Union of Pharmacology. XV. Subtypes of γ-aminobutyric acidA receptors: Classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 1998, 50, 291–314. [Google Scholar]
- Bonnert, T.P.; McKernan, R.M.; Farrar, S.; le Bourdellès, B.; Heavens, R.P.; Smith, D.W.; Hewson, L.; Rigby, M.R.; Sirinathsinghji, D.J.S.; Brown, N.; et al. θ, a novel γ-aminobutyric acid type A receptor subunit. Proc. Natl. Acad. Sci. USA 1999, 96, 9891–9896. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, R.L.; Olsen, R.W. GABAA Receptor Channels. Ann. Rev. Neurosci. 1994, 17, 569–602. [Google Scholar] [CrossRef]
- Simon, J.; Wakimoto, H.; Fujita, N.; Lalande, M.; Barnard, E.A. Analysis of the set of GABAA receptor genes in the human genome. J. Biol. Chem. 2004, 279, 41422–41435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudolph, U.; Möhler, H. Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Ann. Rev. Pharmacol. Toxicol. 2004, 44, 475–498. [Google Scholar] [CrossRef] [PubMed]
- Verdoorn, T.A.; Draguhn, A.; Ymer, S.; Seeburg, P.H.; Sakmann, B. Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 1990, 4, 919–928. [Google Scholar] [CrossRef]
- Padgett, C.L.; Slesinger, P.A. GABAB receptor coupling to G-proteins and ion channels. Adv. Pharmacol. 2010, 58, 123–147. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.C.M.; Penney, J.B.; Young, A.B. Cortical GABAB and GABAA receptors in Alzheimer’s disease. A quantitative autoradiographic study. Neurology 1987, 37, 1454. [Google Scholar] [CrossRef] [PubMed]
- Iwakiri, M.; Mizukami, K.; Ikonomovic, M.D.; Ishikawa, M.; Hidaka, S.; Abrahamson, E.E.; DeKosky, S.T.; Asada, T. Changes in hippocampal GABABR1 subunit expression in Alzheimer’s patients: Association with Braak staging. Acta Neuropathol. 2005, 109, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Scimemi, A. Structure, function, and plasticity of GABA transporters. Front. Cell. Neurosci. 2014, 8, 161. [Google Scholar] [CrossRef] [Green Version]
- Simpson, M.D.C.; Cross, A.J.; Slater, P.; Deakin, J.F.W. Loss of cortical GABA uptake sites in Alzheimer’s disease. J. Neural Trans. 1988, 71, 219–226. [Google Scholar] [CrossRef]
- Nägga, K.; Bogdanovic, N.; Marcusson, J. GABA transporters (GAT-1) in Alzheimer’s disease. J. Neural Trans. 1999, 106, 1141–1149. [Google Scholar] [CrossRef]
- Fuhrer, T.E.; Palpagama, T.H.; Waldvogel, H.J.; Synek, B.J.L.; Turner, C.; Faull, R.L.; Kwakowsky, A. Impaired expression of GABA transporters in the human Alzheimer’s disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus. Neuroscience 2017, 351, 108–118. [Google Scholar] [CrossRef]
- Schwab, C.; Yu, S.; Wong, W.; McGeer, E.G.; McGeer, P.L. GAD65, GAD67, and GABAT immunostaining in human brain and apparent GAD65 loss in Alzheimer’s disease. J. Alzheimer’s Dis. 2013, 33, 1073–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernareggi, A.; Dueñas, Z.; Reyes-Ruiz, J.M.; Ruzzier, F.; Miledi, R. Properties of glutamate receptors of Alzheimer’s disease brain transplanted to frog oocytes. Proc. Natl. Acad. Sci. USA 2007, 104, 2956–2960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieghart, W.; Sperk, G. Subunit composition, distribution and function of GABAA receptor subtypes. Curr. Top. Med. Chem. 2002, 2, 795–816. [Google Scholar] [CrossRef] [PubMed]
- Howell, O.; Atack, J.R.; Dewar, D.; McKernan, R.M.; Sur, C. Density and pharmacology of α5 subunit-containing GABAA receptors are preserved in hippocampus of Alzheimer’s disease patients. Neuroscience 2000, 98, 669–675. [Google Scholar] [CrossRef]
- Galvez, T.; Duthey, B.; Kniazeff, J.; Blahos, J.; Rovelli, G.; Bettler, B.; Prézeau, L.; Pin, J.-P. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABAB receptor function. EMBO J. 2001, 20, 2152–2159. [Google Scholar] [CrossRef]
- Baloucoune, G.A.; Chun, L.; Zhang, W.; Xu, C.; Huang, S.; Sun, Q.; Wang, Y.; Tu, H.; Liu, J. GABAB receptor subunit GB1 at the cell surface independently activates ERK1/2 through IGF-1R transactivation. PLoS ONE 2012, 7, e39698. [Google Scholar] [CrossRef]
- Richer, M.; David, M.; Villeneuve, L.R.; Trieu, P.; Ethier, N.; Pétrin, D.; Mamarbachi, A.M.; Hébert, T.E. GABA-B1 receptors are coupled to the ERK1/2 MAP kinase pathway in the absence of GABA-B2 subunits. J. Mol. Neurosci. 2009, 38, 67–79. [Google Scholar] [CrossRef]
- Bitoun, M.; Tappaz, M. Gene expression of the transporters and biosynthetic enzymes of the osmolytes in astrocyte primary cultures exposed to hyperosmotic conditions. Glia 2000, 32, 165–176. [Google Scholar] [CrossRef]
- Olsen, M.; Sarup, A.; Larsson, O.M.; Schousboe, A. Effect of hyperosmotic conditions on the expression of the betaine-GABA-transporter (BGT-1) in cultured mouse astrocytes. Neurochem. Res. 2005, 30, 855–865. [Google Scholar] [CrossRef]
- Zhu, X.M.; Ong, W.Y. Changes in GABA transporters in the rat hippocampus after kainate-induced neuronal injury: Decrease in GAT-1 and GAT-3 but upregulation of betaine/GABA transporter BGT-1. J. Neurosci. Res. 2004, 77, 402–409. [Google Scholar] [CrossRef]
- Zhou, Y.; Holmseth, S.; Guo, C.; Hassel, B.; Höfner, G.; Huitfeldt, H.S.; Wanner, K.T.; Danbolt, N.C. Deletion of the γ-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents. J. Biol. Chem. 2012, 287, 35733–35746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinikainen, K.J.; Paljärvi, L.; Huuskonen, M.; Soininen, H.; Laakso, M.; Riekkinen, P.J. A post-mortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer’s disease. J. Neurol. Sci. 1988, 84, 101–116. [Google Scholar] [CrossRef]
- Rossor, M.N.; Iversen, L.L.; Reynolds, G.P.; Mountjoy, C.Q.; Roth, M. Neurochemical characteristics of early and late onset types of Alzheimer’s disease. Br. Med. J. (Clin. Res. Ed.) 1984, 288, 961–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellison, D.W.; Beal, M.F.; Mazurek, M.F.; Bird, E.D.; Martin, J.B. A postmortem study of amino acid neurotransmitters in Alzheimer’s disease. Ann. Neurol. 1986, 20, 616–621. [Google Scholar] [CrossRef]
- Seidl, R.; Cairns, N.; Singewald, N.; Kaehler, S.T.; Lubec, G. Differences between GABA levels in Alzheimer’s disease and Down syndrome with Alzheimer-like neuropathology. Naunyn Schmiedeberg’s Arch. Pharmacol. 2001, 363, 139–145. [Google Scholar] [CrossRef]
- Sasaki, H.; Muramoto, O.; Kanazawa, I.; Arai, H.; Kosaka, K.; Iizuka, R. Regional distribution of amino acid transmitters in postmortem brains of presenile and senile dementia of Alzheimer type. Ann. Neurolog. 1986, 19, 263–269. [Google Scholar] [CrossRef]
- Asada, H.; Kawamura, Y.; Maruyama, K.; Kume, H.; Ding, R.; Ji, F.Y.; Kanbara, N.; Kuzume, H.; Sanbo, M.; Yagi, T.; et al. Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem. Biophys. Res. Commun. 1996, 229, 891–895. [Google Scholar] [CrossRef]
- Asada, H.; Kawamura, Y.; Maruyama, K.; Kume, H.; Ding, R.-G.; Kanbara, N.; Kuzume, H.; Sanbo, M.; Yagi, T.; Obata, K. Cleft palate and decreased brain γ-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc. Natl. Acad. Sci. USA 1997, 94, 6496–6499. [Google Scholar] [CrossRef] [Green Version]
- Tian, N.; Petersen, C.; Kash, S.; Baekkeskov, S.; Copenhagen, D.; Nicoll, R. The role of the synthetic enzyme GAD65 in the control of neuronal γ-aminobutyric acid release. Proc. Natl. Acad. Sci. USA 1999, 96, 12911–12916. [Google Scholar] [CrossRef] [Green Version]
- Calvo-Flores Guzmán, B.; Kim, S.; Chawdhary, B.; Peppercorn, K.; Tate, W.P.; Waldvogel, H.J.; Faull, R.L.; Montgomery, J.; Kwakowsky, A. Amyloid-Beta(1-42)-induced increase in GABAergic tonic conductance in mouse hippocampal CA1 pyramidal cells. Molecules 2020, 25, 693. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Guo, Z.; Gearing, M.; Chen, G. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s disease model. Nat. Commun. 2014, 5, 4159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vossel, K.A.; Tartaglia, M.C.; Nygaard, H.B.; Zeman, A.Z.; Miller, B.L. Epileptic activity in Alzheimer’s disease: Causes and clinical relevance. Lancet Neurol. 2017, 16, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Loup, F.; Wieser, H.G.; Yonekawa, Y.; Aguzzi, A.; Fritschy, J.M. Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy. J. Neurosci. 2000, 20, 5401–5419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, L.; Alonso-Vanegas, M.; Martínez-Juárez, I.E.; Orozco-Suárez, S.; Escalante-Santiago, D.; Feria-Romero, I.A.; Zavala-Tecuapetla, C.; Cisneros-Franco, J.M.; Buentello-García, R.M.; Cienfuegos, J. GABAergic alterations in neocortex of patients with pharmacoresistant temporal lobe epilepsy can explain the comorbidity of anxiety and depression: The potential impact of clinical factors. Front. Cell. Neurosci. 2015, 8, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loup, F.; Picard, F.; André, V.M.; Kehrli, P.; Yonekawa, Y.; Wieser, H.-G.; Fritschy, J.-M.J.B. Altered expression of α3-containing GABAA receptors in the neocortex of patients with focal epilepsy. Brain 2006, 129, 3277–3289. [Google Scholar] [CrossRef] [Green Version]
- Pirker, S.; Schwarzer, C.; Czech, T.; Baumgartner, C.; Pockberger, H.; Maier, H.; Hauer, B.; Sieghart, W.; Furtinger, S.; Sperk, G. Increased expression of GABAA receptor β-subunits in the hippocampus of patients with temporal lobe epilepsy. J. Neuropathol. Exp. Neurol. 2003, 62, 820–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Defrancesco, M.; Marksteiner, J.; Fleischhacker, W.W.; Blasko, I. Use of benzodiazepines in Alzheimer’s disease: A systematic review of literature. Int. J. Neuropsychopharmacol. 2015, 18, pyv055. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Iqbal, U.; Walther, B.; Atique, S.; Dubey, N.K.; Nguyen, P.A.; Poly, T.N.; Masud, J.H.B.; Li, Y.C.; Shabbir, S.A. Benzodiazepine use and risk of dementia in the elderly population: A systematic review and meta-analysis. Neuroepidemiology 2016, 47, 181–191. [Google Scholar] [CrossRef]
- Vinnakota, C.; Govindpani, K.; Tate, W.P.; Peppercorn, K.; Anekal, P.V.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. An α5 GABAA receptor inverse agonist, α5IA, attenuates amyloid beta-induced neuronal death in mouse hippocampal cultures. Int. J. Mol. Sci. 2020, 21, 3284. [Google Scholar] [CrossRef]
- Jacob, T.C. Neurobiology and therapeutic potential of α5-GABA type A receptors. Front. Mol. Neurosci. 2019, 12, 179. [Google Scholar] [CrossRef] [Green Version]
- Dawson, G.R.; Maubach, K.A.; Collinson, N.; Cobain, M.; Everitt, B.J.; MacLeod, A.M.; Choudhury, H.I.; McDonald, L.M.; Pillai, G.; Rycroft, W.; et al. An inverse agonist selective for alpha5 subunit-containing GABAA receptors enhances cognition. J. Pharmacol. Exp. Ther. 2006, 316, 1335–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, M.S.; Atack, J.R.; Carling, R.W.; Collinson, N.; Cook, S.M.; Dawson, G.R.; Ferris, P.; Hobbs, S.C.; O’Connor, D.; Marshall, G.; et al. An orally bioavailable, functionally selective inverse agonist at the benzodiazepine site of GABAA alpha5 receptors with cognition enhancing properties. J. Med. Chem. 2004, 47, 5829–5832. [Google Scholar] [CrossRef] [PubMed]
- Mirra, S.S.; Heyman, A.; McKeel, D.; Sumi, S.M.; Crain, B.J.; Brownlee, L.M.; Vogel, F.S.; Hughes, J.P.; van Belle, G.; Berg, L. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 1991, 41, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Waldvogel, H.J.; Curtis, M.A.; Baer, K.; Rees, M.I.; Faull, R.L.M. Immunohistochemical staining of post-mortem adult human brain sections. Nat. Protoc. 2006, 1, 2719–2732. [Google Scholar] [CrossRef]
- Geiss, G.K.; Bumgarner, R.E.; Birditt, B.; Dahl, T.; Dowidar, N.; Dunaway, D.L.; Fell, H.P.; Ferree, S.; George, R.D.; Grogan, T.; et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotech. 2008, 26, 317–325. [Google Scholar] [CrossRef]
Case | Age | Sex | PM Delay (h) | Cause of Death | Brain Weight (g) |
---|---|---|---|---|---|
H122 | 72 | F | 9 | Emphysema | 1230 |
H123 | 78 | M | 7.5 | Abdominal aortic aneurysm | 1260 |
H131 | 73 | F | 13 | Ischaemic heart disease | 1210 |
H164 | 73 | M | 13 | Ischaemic heart disease | 1315 |
H190 | 72 | F | 19 | Ruptured myocardial infarction | 1264 |
H202 | 83 | M | 14 | Abdominal aortic aneurysm | 1245 |
Case | Age | Sex | PM Delay (h) | Cause of Death | CERAD Class. | Braak Stage Score | Brain Weight (g) |
---|---|---|---|---|---|---|---|
AZ38 | 80 | M | 5.5 | Pneumonia emphysema | Definite AD | V | 1039 |
AZ45 | 82 | M | 4.5 | Pneumonia | Probable AD | IV | 1200 |
AZ61 | 87 | F | 7.5 | Dementia | Definite AD | V | 1036 |
AZ72 | 70 | F | 7 | Lung cancer | Probable AD | V | 1044 |
AZ90 | 73 | M | 4 | Gastrointestinal haemorrhage | Definite AD | V | 1287 |
AZ96 | 74 | F | 8.5 | Metastatic cancer, likely gastric | Definite AD | V | 1062 |
Case | Age | Sex | PM Delay (h) | Cause of Death | Brain Weight (g) |
---|---|---|---|---|---|
H122 | 72 | F | 9 | Emphysema | 1230 |
H123 | 78 | M | 7.5 | Abdominal aortic aneurysm | 1260 |
H137 | 77 | F | 12 | Coronary arteriosclerosis | 1227 |
H169 | 81 | M | 24 | Asphyxia | 1225 |
H180 | 73 | M | 33 | Ischemic heart disease | 1318 |
H181 | 78 | F | 20 | Aortic aneurism | 1292 |
H202 | 83 | M | 14 | Abdominal aortic aneurysm | 1245 |
Case | Age | Sex | PM Delay (h) | Cause of Death | CERAD Class. | Braak Stage Score | Brain Weight (g) |
---|---|---|---|---|---|---|---|
AZ38 | 80 | M | 5.5 | Pneumonia emphysema | Definite AD | V | 1039 |
AZ45 | 82 | M | 4.5 | Pneumonia | Probable AD | IV | 1200 |
AZ90 | 73 | M | 4 | Gastrointestinal haemorrhage | Definite AD | V | 1287 |
AZ92 | 93 | F | 11.5 | Bronchopneumonia | Probable AD | IV | 1123 |
AZ98 | 91 | F | 20.5 | Alzheimer’s disease/atrial fibrillation | Definite AD | VI | 958 |
AZ102 | 84 | F | 14.5 | Lower respiratory tract infection | Definite AD | VI | 1088 |
AZ103 | 87 | M | <24 | Alzheimer’s dementia | Definite AD | IV | 1385 |
HUGO Gene | Gene Name | Accession Number(s) |
---|---|---|
ABAT | GABA transaminase | NM_001127448.1; NM_020686.5; NM_000663.4 |
ACTB * | Beta-actin | NM_001101.3 |
B2M * | Beta-2-microglobulin | NM_004048.2 |
GABBR1 | GABAB receptor 1 subunit, isoform a | NM_001470.3 |
GABBR1 | GABAB receptor 1 subunit, isoform b | NM_021903.2 |
GABBR2 | GABAB receptor 2 subunit | NM_005458.7 |
GABRA1 | GABAA receptor α1 subunit | NM_001127643.1; NM_000806.5; NM_001127648.1; NM_001127645.1; NM_001127644.1 |
GABRA2 | GABAA receptor α2 subunit | NM_001330690.1; NM_001114175.2; NM_001286827.2; NM_000807.3 |
GABRA3 | GABAA receptor α3 subunit | NM_000808.3 |
GABRA4 | GABAA receptor α4 subunit | NM_001204266.1; NM_001204267.1; NM_000809.3 |
GABRA5 | GABAA receptor α5 subunit | NM_000810.3; NM_001165037.1 |
GABRA6 | GABAA receptor α6 subunit | NM_000811.2 |
GABRB1 | GABAA receptor β1 subunit | NM_000812.3 |
GABRB2 | GABAA receptor β2 subunit | NM_021911.2; NM_000813.2 |
GABRB3 | GABAA receptor β3 subunit | NM_001278631.1; NM_000814.5; NM_001191320.1; NM_021912.4; NM_001191321.2 |
GABRD | GABAA receptor δ subunit | NM_000815.4 |
GABRE | GABAA receptor ε subunit | NM_004961.3 |
GABRG1 | GABAA receptor γ1 subunit | NM_173536.3 |
GABRG2 | GABAA receptor γ2 subunit | NM_198903.2; NM_000816.3; NM_198904.2 |
GABRG3 | GABAA receptor γ3 subunit | NM_033223.4; NM_001270873.1 |
GABRP | GABAA receptor π subunit | NM_001291985.1; NM_014211.2 |
GABRQ | GABAA receptor θ subunit | NM_018558.3 |
GAD1 | Glutamic acid decarboxylase, 67 kDa isoform | NM_000817.2 |
GAD2 | Glutamic acid decarboxylase, 65 kDa isoform | NM_000818.2; NM_001134366.1 |
GAPDH * | Glyceraldehyde-3-phosphate dehydrogenase | NM_001256799.2; NM_001289746.1; NM_001289745.1; NM_002046.5 |
SLC32A1 | Vesicular GABA transporter (vGAT) | NM_080552.2 |
SLC6A1 | GABA transporter 1 (GAT1) | NM_003042.3 |
SLC6A11 | GABA transporter (GAT3) | NM_001317406.1; NM_014229.2 |
SLC6A12 | Betaine transporter 1 (BGT1) | NM_001206931.1; NM_003044.4; NM_001122847.2; NM_001122848.2 |
SLC6A13 | GABA transporter 2 (GAT2) | NM_001190997.2; NM_001243392.1; NM_016615.4 |
TOP1 * | DNA topoisomerase 1 | NM_003286.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govindpani, K.; Turner, C.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. Impaired Expression of GABA Signaling Components in the Alzheimer’s Disease Middle Temporal Gyrus. Int. J. Mol. Sci. 2020, 21, 8704. https://doi.org/10.3390/ijms21228704
Govindpani K, Turner C, Waldvogel HJ, Faull RLM, Kwakowsky A. Impaired Expression of GABA Signaling Components in the Alzheimer’s Disease Middle Temporal Gyrus. International Journal of Molecular Sciences. 2020; 21(22):8704. https://doi.org/10.3390/ijms21228704
Chicago/Turabian StyleGovindpani, Karan, Clinton Turner, Henry J. Waldvogel, Richard L. M. Faull, and Andrea Kwakowsky. 2020. "Impaired Expression of GABA Signaling Components in the Alzheimer’s Disease Middle Temporal Gyrus" International Journal of Molecular Sciences 21, no. 22: 8704. https://doi.org/10.3390/ijms21228704
APA StyleGovindpani, K., Turner, C., Waldvogel, H. J., Faull, R. L. M., & Kwakowsky, A. (2020). Impaired Expression of GABA Signaling Components in the Alzheimer’s Disease Middle Temporal Gyrus. International Journal of Molecular Sciences, 21(22), 8704. https://doi.org/10.3390/ijms21228704