Mechanistic Insights into Synergy between Melanin-Targeting Radioimmunotherapy and Immunotherapy in Experimental Melanoma
Abstract
:1. Introduction
2. Results
2.1. A Combination of ICB with 177Lu-h8C3 RIT in Melanoma-Bearing Mice Was More Effective Than Either Therapy Alone
2.2. Immunohistochemistry Detected More Necrosis in Combination-Treated Tumors and No Difference in CD3+ Cells and Ki67 Positivity
2.3. Mechanistic Studies Showed No Difference in Tumor-Infiltrating T Cells Between the Treatment Groups
3. Discussion
4. Materials and Methods
4.1. Antibodies, Reagents, and Radionuclides
4.2. Conjugation to BCA DOTA and Radiolabeling of h8C3 mAb
4.3. Murine Cloudman S91 Melanoma Model
4.4. Combination Treatment with Anti-PD-1 Immunotherapy and RIT
4.5. Immunohistochemistry
4.6. Mechanism of Action Studies
4.7. Statistics
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ICB | Immune checkpoint blockade |
mAb | Monoclonal antibody |
TRT | Targeted radiation therapy |
RIT | Radioimmunotherapy |
WBC | White blood cell |
RBC | Red blood cell |
TME | Tumor microenvironment |
LET | Linear energy transfer |
FACS | Fluorescence-activated cell sorting |
References
- Sun, X.; Zhang, N.; Yin, C.; Zhu, B.; Li, X. Ultraviolet Radiation and Melanomagenesis: From Mechanism to Immunotherapy. Front. Oncol. 2020, 10, 951. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. Ca Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Cancer Stat Facts: Melanoma of the Skin, NCI SEER. Available online: https://seer.cancer.gov/statfacts/html/melan.html (accessed on 14 April 2020).
- Dobry, A.S.; Zogg, C.K.; Hodi, F.S.; Smith, T.R.; Ott, P.A.; Iorgulescu, J.B. Management of metastatic melanoma: Improved survival in a national cohort following the approvals of checkpoint blockade immunotherapies and targeted therapies. Cancer Immunol. Immunother. 2018, 67, 1833–1844. [Google Scholar] [CrossRef] [PubMed]
- Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 2018, 62, 29–39. [Google Scholar] [CrossRef]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef]
- Hennrich, U.; Kopka, K. Lutathera (R): The First FDA- and EMA-Approved Radiopharmaceutical for Peptide Receptor Radionuclide Therapy. Pharm. Basel 2019, 12, 114. [Google Scholar] [CrossRef] [Green Version]
- Kratochwil, C.; Haberkorn, U.; Giesel, F.L. 225Ac-PSMA-617 for Therapy of Prostate Cancer. Semin. Nucl. Med. 2020, 50, 133–140. [Google Scholar] [CrossRef]
- Morgenstern, A.; Apostolidis, C.; Bruchertseifer, F. Supply and Clinical Application of Actinium-225 and Bismuth-213. Semin. Nucl. Med. 2020, 50, 119–123. [Google Scholar] [CrossRef]
- Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted alpha-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016, 57, 1941–1944. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.; Lotem, M.; Peretz, T.; Zwas, S.T.; Mizrachi, S.; Liberman, Y.; Chisin, R.; Schachter, J.; Ron, I.G.; Iosilevsky, G.; et al. Safety and efficacy of 188-rhenium-labeled antibody to melanin in patients with metastatic melanoma. J. Ski. Cancer 2013, 2013, 828329. [Google Scholar] [CrossRef] [Green Version]
- Allen, K.J.H.; Jiao, R.; Malo, M.E.; Frank, C.; Fisher, D.R.; Rickles, D.; Dadachova, E. Comparative Radioimmunotherapy of Experimental Melanoma with Novel Humanized Antibody to Melanin Labeled with 213Bismuth and 177Lutetium. Pharmaceutics 2019, 11, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, R.; Allen, K.J.H.; Malo, M.E.; Rickles, D.; Dadachova, E. Evaluating the Combination of Radioimmunotherapy and Immunotherapy in a Melanoma Mouse Model. Int. J. Mol. Sci. 2020, 21, 773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trommer, M.; Yeo, S.Y.; Persigehl, T.; Bunck, A.; Grull, H.; Schlaak, M.; Theurich, S.; Von Bergwelt-Baildon, M.; Morgenthaler, J.; Herter, J.M.; et al. Abscopal Effects in Radio-Immunotherapy-Response Analysis of Metastatic Cancer Patients With Progressive Disease Under Anti-PD-1 Immune Checkpoint Inhibition. Front. Pharm. 2019, 10, 511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujoo, K.; Hunt, C.R.; Pandita, R.K.; Ferrari, M.; Krishnan, S.; Cooke, J.P.; Hahn, S.; Pandita, T.K. Harnessing and Optimizing the Interplay between Immunotherapy and Radiotherapy to Improve Survival Outcomes. Mol. Cancer Res. 2018, 16, 1209–1214. [Google Scholar] [CrossRef] [Green Version]
- Park, S.S.; Dong, H.; Liu, X.; Harrington, S.M.; Krco, C.J.; Grams, M.P.; Mansfield, A.S.; Furutani, K.M.; Olivier, K.R.; Kwon, E.D. PD-1 Restrains Radiotherapy-Induced Abscopal Effect. Cancer Immunol. Res. 2015, 3, 610–619. [Google Scholar] [CrossRef] [Green Version]
- Roger, A.; Finet, A.; Boru, B.; Beauchet, A.; Mazeron, J.-J.; Otzmeguine, Y.; Blom, A.; Longvert, C.; De Maleissye, M.-F.; Fort, M.; et al. Efficacy of combined hypo-fractionated radiotherapy and anti-PD-1 monotherapy in difficult-to-treat advanced melanoma patients. Oncol. Immunol. 2018, 7, e1442166. [Google Scholar] [CrossRef]
- Kim, C.; Subramaniam, D.S.; Liu, S.V.; Giaccone, G. Phase I/II trial of anti-PD-1 checkpoint inhibitor nivolumab and 177Lu-DOTA0-Tyr3-Octreotate for patients with extensive-stage small cell lung cancer. J. Clin. Oncol. 2018, 36 (Suppl. 15), TPS8589. [Google Scholar] [CrossRef]
- NCT03805594, 177Lu-PSMA-617 and Pembrolizumab in Treating Patients With Metastatic Castration-Resistant Prostate Cancer. Available online: https://ClinicalTrials.gov/show/NCT03805594 (accessed on 4 April 2020).
- Kuzu, O.F.; Nguyen, F.D.; Noory, M.A.; Sharma, A. Current State of Animal (Mouse) Modeling in Melanoma Research. Cancer Growth Metastasis 2015, 8 (Suppl. 1), 81–94. [Google Scholar] [CrossRef] [Green Version]
- Syngenic Mouse Models, Charles River. Available online: https://www.criver.com/products-services/discovery-services/pharmacology-studies/oncology-immuno-oncology-studies/oncology-models/syngeneic-mouse-models?region=3601 (accessed on 4 May 2020).
- Taub, F.; Wright, S.; Guth, A. Abstract LB-145: Enhancement of checkpoint inhibitor therapy by beta-alethine. Cancer Res. 2018, 78 (Suppl. 13), LB-145. [Google Scholar]
- Sofou, S. Radionuclide carriers for targeting of cancer. Int. J. Nanomed. 2008, 3, 181–199. [Google Scholar] [CrossRef] [Green Version]
- Garg, R.; Mills, K.; Allen, K.J.H.; Causey, P.; Perron, R.W.; Gendron, D.; Sanche, S.; Berman, J.W.; Gorny, M.K.; Dadachova, E. Comparison of various radioactive payloads for a human monoclonal antibody to glycoprotein 41 for elimination of HIV-infected cells. Nucl. Med. Biol. 2020, 82, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Graf, F.; Fahrer, J.; Maus, S.; Morgenstern, A.; Bruchertseifer, F.; Venkatachalam, S.; Fottner, C.; Weber, M.M.; Huelsenbeck, J.; Schreckenberger, M.; et al. DNA Double Strand Breaks as Predictor of Efficacy of the Alpha-Particle Emitter Ac-225 and the Electron Emitter Lu-177 for Somatostatin Receptor Targeted Radiotherapy. PloS ONE 2014, 9, e88239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ober, R.J.; Radu, C.G.; Ghetie, V.; Ward, E.S. Differences in promiscuity for antibody-FcRn interactions across species: Implications for therapeutic antibodies. Int. Immunol. 2001, 13, 1551–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzeszowska-Wolny, J.; Przybyszewski, W.M.; Widel, M. Ionizing radiation-induced bystander effects, potential targets for modulation of radiotherapy. Eur. J. Pharmacol. 2009, 625, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Lumniczky, K.; Sáfrány, G. The impact of radiation therapy on the antitumor immunity: Local effects and systemic consequences. Cancer Lett. 2015, 356, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.M.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568. [Google Scholar] [CrossRef] [PubMed]
- Pfirschke, C.; Engblom, C.; Rickelt, S.; Cortez-Retamozo, V.; Garris, C.; Pucci, F.; Yamazaki, T.; Poirier-Colame, V.; Newton, A.; Redouane, Y.; et al. Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy. Immunity 2016, 44, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhao, L.; Fu, K.; Lin, Q.; Wen, X.; Jacobson, O.; Sun, L.; Wu, H.; Zhang, X.; Guo, Z.; et al. Integrin α(v)β(3)-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy. Theranostics 2019, 9, 7948–7960. [Google Scholar] [CrossRef]
- Choi, J.; Beaino, W.; Fecek, R.J.; Fabian, K.P.L.; Laymon, C.M.; Kurland, B.F.; Storkus, W.J.; Anderson, C.J. Combined VLA-4-Targeted Radionuclide Therapy and Immunotherapy in a Mouse Model of Melanoma. J. Nucl. Med. 2018, 59, 1843–1849. [Google Scholar] [CrossRef] [Green Version]
- Hiniker, S.M.; Chen, D.S.; Reddy, S.; Chang, D.T.; Jones, J.C.; Mollick, J.A.; Swetter, S.M.; Knox, S.J. A Systemic Complete Response of Metastatic Melanoma to Local Radiation and Immunotherapy. Transl. Oncol. 2012, 5, 404–407. [Google Scholar] [CrossRef] [Green Version]
- Postow, M.A.; Callahan, M.K.; Barker, C.A.; Yamada, Y.; Yuan, J.; Kitano, S.; Mu, Z.; Rasalan, T.; Adamow, M.; Ritter, E.; et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl. J. Med. 2012, 366, 925–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiniker, S.M.; Reddy, S.A.; Maecker, H.T.; Subrahmanyam, P.B.; Rosenberg-Hasson, Y.; Swetter, S.M.; Saha, S.; Shura, L.; Knox, S.J. A Prospective Clinical Trial Combining Radiation Therapy with Systemic Immunotherapy in Metastatic Melanoma. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 578–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouanet, J.; Benboubker, V.; Akil, H.; Hennino, A.; Auzeloux, P.; Besse, S.; Pereira, B.; Delorme, S.; Mansard, S.; D’Incan, M.; et al. Immune checkpoint inhibitors reverse tolerogenic mechanisms induced by melanoma targeted radionuclide therapy. Cancer Immunol. Immunother. 2020, 69, 2075–2088. [Google Scholar] [CrossRef] [PubMed]
- Dawicki, W.; Allen, K.J.H.; Jiao, R.; Malo, M.E.; Helal, M.; Berger, M.S.; Ludwig, D.L.; Dadachova, E. Daratumumab-225Actinium conjugate demonstrates greatly enhanced antitumor activity against experimental multiple myeloma tumors. OncoImmunology 2019, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Curran, M.A.; Montalvo, W.; Yagita, H.; Allison, J.P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. USA 2010, 107, 4275. [Google Scholar] [CrossRef] [Green Version]
- Bonnet-Duquennoy, M.; Papon, J.; Mishellany, F.; Labarre, P.; Guerquin-Kern, J.-L.; Wu, T.-D.; Gardette, M.; Maublant, J.; Penault-Llorca, F.; Miot-Noirault, E.; et al. Targeted radionuclide therapy of melanoma: Anti-tumoural efficacy studies of a new 131I labelled potential agent. Int. J. Cancer 2009, 125, 708–716. [Google Scholar] [CrossRef]
Treatment Group | Td (Days) Mean ± SEM | Student T-Test p Value | Median Survival (Days) | Log-Rank Test Chi Square/p Value |
---|---|---|---|---|
Cold | 3.7 ± 0.5 | 0.033 * | 26 | 3.918 |
ICB | 6.8 ± 1.2 | 38 | 0.048 * | |
Cold | 3.7 ± 0.5 | 0.059 ns | 26 | 0.078 |
RIT 177Lu (Low) | 6.6 ± 1.2 | 24 | 0.780 ns | |
Cold h8C3 | 3.7 ± 0.5 | 0.071 ns | 26 | 0.024 |
RIT 177Lu (High) | 5.0 ± 0.4 | 26 | 0.876 ns | |
Cold | 3.7 ± 0.5 | 0.004 * | 26 | 9.701 |
RIT 177Lu (Low) + ICB | 14.7 ± 2.7 | 46 | 0.0018 * | |
Cold | 3.7 ± 0.5 | 0.0683 ns | 26 | 0.347 |
RIT 177Lu (High) + ICB | 16.0 ± 5.9 | 26 | 0.556 ns | |
ICB | 6.8 ± 1.2 | 0.047 * | 38 | 1.071 |
RIT 177Lu (Low) + ICB | 14.7 ± 2.7 | 46 | 0.301 ns | |
ICB | 6.8 ± 1.2 | 0.212 ns | 38 | 3.010 |
RIT 177Lu (High) + ICB | 16.0 ± 5.9 | 26 | 0.083 ns | |
RIT 177Lu (Low) | 6.6 ± 1.2 | 0.027 * | 24 | 6.102 |
RIT 177Lu (Low) + ICB | 14.7 ± 2.7 | 46 | 0.014 * | |
RIT 177Lu (High) | 5.0 ± 0.4 | 0.097 ns | 26 | 1.713 |
RIT 177Lu (High) + ICB | 16.0 ± 5.9 | 26 | 0.1906 | |
Cold | 3.7 ± 0.5 | 0.0502 ns | 26 | 0.670 |
RIT 225Ac (High) | 5.1 ± 0.4 | 33 | 0.413 ns | |
Cold | 3.7 ± 0.5 | 0.048 * | 26 | 2.037 |
RIT 225Ac (High) + ICB | 6.2 ± 0.9 | 33 | 0.154 ns | |
ICB | 6.8 ± 1.2 | 0.787 ns | 38 | 0.387 |
RIT 225Ac (Low) + ICB | 6.4 ± 0.8 | 35 | 0.534 ns | |
ICB | 6.8 ± 1.2 | 0.667 ns | 38 | 0.184 |
RIT 225Ac (High) + ICB | 6.2 ± 0.9 | 33 | 0.668 ns | |
RIT 225Ac (High) | 5.1 ± 0.4 | 0.339 ns | 33 | 0.452 |
RIT 225Ac (High) + ICB | 6.2 ± 0.9 | 33 | 0.501 ns | |
RIT 177Lu (Low) + ICB | 14.7 ± 2.7 | 0.018 * | 46 | 1.270 |
RIT 225Ac (High) + ICB | 6.2 ± 0.9 | 33 | 0.260 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malo, M.E.; Allen, K.J.H.; Jiao, R.; Frank, C.; Rickles, D.; Dadachova, E. Mechanistic Insights into Synergy between Melanin-Targeting Radioimmunotherapy and Immunotherapy in Experimental Melanoma. Int. J. Mol. Sci. 2020, 21, 8721. https://doi.org/10.3390/ijms21228721
Malo ME, Allen KJH, Jiao R, Frank C, Rickles D, Dadachova E. Mechanistic Insights into Synergy between Melanin-Targeting Radioimmunotherapy and Immunotherapy in Experimental Melanoma. International Journal of Molecular Sciences. 2020; 21(22):8721. https://doi.org/10.3390/ijms21228721
Chicago/Turabian StyleMalo, Mackenzie E., Kevin J. H. Allen, Rubin Jiao, Connor Frank, David Rickles, and Ekaterina Dadachova. 2020. "Mechanistic Insights into Synergy between Melanin-Targeting Radioimmunotherapy and Immunotherapy in Experimental Melanoma" International Journal of Molecular Sciences 21, no. 22: 8721. https://doi.org/10.3390/ijms21228721
APA StyleMalo, M. E., Allen, K. J. H., Jiao, R., Frank, C., Rickles, D., & Dadachova, E. (2020). Mechanistic Insights into Synergy between Melanin-Targeting Radioimmunotherapy and Immunotherapy in Experimental Melanoma. International Journal of Molecular Sciences, 21(22), 8721. https://doi.org/10.3390/ijms21228721