The Weight of IgA Anti-β2glycoprotein I in the Antiphospholipid Syndrome Pathogenesis: Closing the Gap of Seronegative Antiphospholipid Syndrome
Abstract
:1. Introduction
2. The Role of IgA aB2G1 in the Pathogenesis of APS
2.1. Protein Function
2.2. Antigen Recognition
2.3. Pathogenic Mechanism
2.4. Evidence and Evaluation of the Pathogenic Role of aB2GP1 IgA
2.5. Second Hit
3. Prevalence of IgA aPL and Relation with Other aPL
4. Clinical Spectrum of the IgA aB2GP1
4.1. IgA aB2GP1 in Patients Negative for 2006-Revised Sapporo-Criteria aPL (SN-APS)
4.2. IgA aB2GP1 in Primary APS
4.3. IgA aB2GP1 in Systemic Autoimmune Diseases Associated APS
4.4. IgA aB2GP1 in Chronic Disease
4.5. The Isolate Positivity of IgA aß2GPI in Thrombosis
4.6. The IgA aB2GP1 and Reproductive Failure
4.7. Isolated IgA aB2GP1 Role in Other Manifestations
4.8. IgA aB2GP1 in Asymptomatic Carriers
5. Estimating the Value of IgA in APS: Methodological and Technical Considerations
5.1. The Design of the Study Matters
5.2. Not All Assays Work in IgA aB2GP1 Detection
5.3. The Sample Inclusion Criteria Modify the IgA aB2GP1 Relation with the APS
5.4. The Importance of Identifying Isolated IgA aB2GP1 Patients
6. Prevention in the Population at Risk and Treatment
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APS | Antiphospholipid syndrome |
aB2GP1 | Anti-β 2 Glycoprotein I Antibodies |
aCL | Anti-Cardiolipin antibodies |
aPL | Antiphospholipid antibodies |
B2GP1 | Beta 2 Glycoprotein I |
LA | Lupus anticoagulant |
P-APS | Primary Antiphospholipid syndrome without associating with other entities |
SAD | Systemic autoimmune diseases |
SLE | Systemic lupus erythematosus |
SAD-APS | Antiphospholipid syndrome associated with Systemic autoimmune diseases |
SN-APS | Seronegative Antiphospholipid syndrome |
C-APS | Catastrophic Antiphospholipid syndrome |
References
- Schreiber, K.; Sciascia, S.; de Groot, P.G.; Devreese, K.; Jacobsen, S.; Ruiz-Irastorza, G.; Salmon, J.E.; Shoenfeld, Y.; Shovman, O.; Hunt, B.J. Antiphospholipid syndrome. Nat. Rev. Dis. Primers 2018, 4, 17103. [Google Scholar] [CrossRef] [PubMed]
- de Groot, P.G.; Meijers, J.C. beta(2) -Glycoprotein I: Evolution, structure and function. J. Thromb. Haemost. 2011, 9, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Agar, C.; van Os, G.M.; Morgelin, M.; Sprenger, R.R.; Marquart, J.A.; Urbanus, R.T.; Derksen, R.H.; Meijers, J.C.; de Groot, P.G. Beta2-glycoprotein I can exist in 2 conformations: Implications for our understanding of the antiphospholipid syndrome. Blood 2010, 116, 1336–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, G.R. The antiphospholipid syndrome: Ten years on. Lancet 1993, 342, 341–344. [Google Scholar] [CrossRef]
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.; De Groot, P.G.; Koike, T.; Meroni, P.L.; et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef]
- Sciascia, S.; Amigo, M.C.; Roccatello, D.; Khamashta, M. Diagnosing antiphospholipid syndrome: ’extra-criteria’ manifestations and technical advances. Nat. Rev. Rheumatol. 2017, 13, 548–560. [Google Scholar] [CrossRef]
- Aggarwal, R.; Ringold, S.; Khanna, D.; Neogi, T.; Johnson, S.R.; Miller, A.; Brunner, H.I.; Ogawa, R.; Felson, D.; Ogdie, A.; et al. Distinctions between diagnostic and classification criteria? Arthritis Care Res. 2015, 67, 891–897. [Google Scholar] [CrossRef]
- Hughes, G.R.; Khamashta, M.A. Seronegative antiphospholipid syndrome. Ann. Rheum Dis 2003, 62, 1127. [Google Scholar] [CrossRef] [Green Version]
- Noureldine, M.H.A.; Nour-Eldine, W.; Khamashta, M.A.; Uthman, I. Insights into the diagnosis and pathogenesis of the antiphospholipid syndrome. Semin. Arthritis. Rheum. 2018, 48, 860–866. [Google Scholar] [CrossRef]
- Cervera, R.; Conti, F.; Doria, A.; Iaccarino, L.; Valesini, G. Does seronegative antiphospholipid syndrome really exist? Autoimmun. Rev. 2012, 11, 581–584. [Google Scholar] [CrossRef]
- Zohoury, N.; Bertolaccini, M.L.; Rodriguez-Garcia, J.L.; Shums, Z.; Ateka-Barrutia, O.; Sorice, M.; Norman, G.L.; Khamashta, M. Closing the Serological Gap in the Antiphospholipid Syndrome: The Value of “Non-criteria” Antiphospholipid Antibodies. J. Rheumatol. 2017, 44, 1597–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salle, V.; Schmidt, J.; Smail, A.; Maziere, C.; Conte, M.A.; Brule, A.; Maziere, J.C.; Cadet, E.; Herpe, Y.E.; Duhaut, P. Antibodies directed against annexin A2 and obstetric morbidity. J. Reprod. Immunol. 2016, 118, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Becarevic, M. The IgG and IgM isotypes of anti-annexin A5 antibodies: Relevance for primary antiphospholipid syndrome. J. Thromb. Thrombolysis 2016, 42, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Salle, V.; Sagnier, A.; Diouf, M.; Schmidt, J.; Smail, A.; Galmiche, A.; Herpe, Y.E.; Duhaut, P. Prevalence of anti-S100A10 antibodies in antiphospholipid syndrome patients. Thromb. Res. 2019, 179, 15–19. [Google Scholar] [CrossRef]
- Lakos, G.; Favaloro, E.J.; Harris, E.N.; Meroni, P.L.; Tincani, A.; Wong, R.C.; Pierangeli, S.S. International consensus guidelines on anticardiolipin and anti-beta2-glycoprotein I testing: Report from the 13th International Congress on Antiphospholipid Antibodies. Arthritis Rheum. 2012, 64, 1–10. [Google Scholar] [CrossRef]
- Martinez-Flores, J.A.; Serrano, M.; Perez, D.; Lora, D.; Paz-Artal, E.; Morales, J.M.; Serrano, A. Detection of circulating immune complexes of human IgA and beta 2 glycoprotein I in patients with antiphospholipid syndrome symptomatology. J. Immunol. Methods 2015, 422, 51–58. [Google Scholar] [CrossRef]
- Pericleous, C.; Ferreira, I.; Borghi, O.; Pregnolato, F.; McDonnell, T.; Garza-Garcia, A.; Driscoll, P.; Pierangeli, S.; Isenberg, D.; Ioannou, Y.; et al. Measuring IgA Anti-beta2-Glycoprotein I and IgG/IgA Anti-Domain I Antibodies Adds Value to Current Serological Assays for the Antiphospholipid Syndrome. PLoS ONE 2016, 11, e0156407. [Google Scholar] [CrossRef]
- Ruiz-Garcia, R.; Serrano, M.; Angel Martinez-Flores, J.; Mora, S.; Morillas, L.; Martin-Mola, M.A.; Morales, J.M.; Paz-Artal, E.; Serrano, A. Isolated IgA Anti- beta 2 Glycoprotein I Antibodies in Patients with Clinical Criteria for Antiphospholipid Syndrome. J. Immunol. Res. 2014, 2014, 704395. [Google Scholar] [CrossRef] [Green Version]
- Garcia, D.; Erkan, D. Diagnosis and Management of the Antiphospholipid Syndrome. N. Engl. J. Med. 2018, 378, 2010–2021. [Google Scholar] [CrossRef]
- Tortosa, C.; Cabrera-Marante, O.; Serrano, M.; Martinez-Flores, J.A.; Perez, D.; Lora, D.; Morillas, L.; Paz-Artal, E.; Morales, J.M.; Pleguezuelo, D.; et al. Incidence of thromboembolic events in asymptomatic carriers of IgA anti ss2 glycoprotein-I antibodies. PLoS ONE 2017, 12, e0178889. [Google Scholar] [CrossRef]
- Meijide, H.; Sciascia, S.; Sanna, G.; Khamashta, M.A.; Bertolaccini, M.L. The clinical relevance of IgA anticardiolipin and IgA anti-beta2 glycoprotein I antiphospholipid antibodies: A systematic review. Autoimmun. Rev. 2013, 12, 421–425. [Google Scholar] [CrossRef]
- Sevim, E.; Zisa, D.; Andrade, D.; Sciascia, S.; Pengo, V.; Tektonidou, M.G.; Ugarte, A.; Gerosa, M.; Belmont, H.M.; Aguirre Zamorano, M.A.; et al. Characteristics of Antiphospholipid Antibody Positive Patients in AntiPhospholipid Syndrome Alliance for Clinical Trials and InternatiOnal Networking. Arthritis Care Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- de Sousa-Pereira, P.; Woof, J.M. IgA: Structure, Function, and Developability. Antibodies 2019, 8, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muramatsu, M.; Yoshida, R.; Yokoyama, A.; Miyamoto, H.; Kajihara, M.; Maruyama, J.; Nao, N.; Manzoor, R.; Takada, A. Comparison of antiviral activity between IgA and IgG specific to influenza virus hemagglutinin: Increased potential of IgA for heterosubtypic immunity. PLoS ONE 2014, 9, e85582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, Y.; Yalavarthi, S.; Gockman, K.; Madison, J.A.; Gudjonsson, J.E.; Kahlenberg, J.M.; McCune, W.J.; Bockenstedt, P.L.; Karp, D.R.; Knight, J.S. Anti-NET antibodies and impaired NET degradation in antiphospholipid syndrome. Arthritis Rheumatol. 2020. ahead of print. [Google Scholar] [CrossRef]
- Heineke, M.H.; van Egmond, M. Immunoglobulin A: Magic bullet or Trojan horse? Eur. J. Clin. Investig. 2017, 47, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Despierres, L.; Beziane, A.; Kaplanski, G.; Granel, B.; Serratrice, J.; Cohen, W.; Bretelle, F.; Rossi, P.; Morange, P.E.; Weiller, P.J.; et al. Contribution of anti-beta2glycoprotein I IgA antibodies to the diagnosis of anti-phospholipid syndrome: Potential interest of target domains to discriminate thrombotic and non-thrombotic patients. Rheumatology 2014, 53, 1215–1218. [Google Scholar] [CrossRef] [Green Version]
- Paulmyer-Lacroix, O.; Despierres, L.; Courbiere, B.; Bardin, N. Antiphospholipid antibodies in women undergoing in vitro fertilization treatment: Clinical value of IgA anti-beta2glycoprotein I antibodies determination. Biomed. Res. Int. 2014, 2014, 314704. [Google Scholar] [CrossRef] [Green Version]
- Ciesla, M.; Wypasek, E.; Undas, A. IgA Antiphospholipid Antibodies and Anti-Domain 1 of Beta 2 Glycoprotein 1 Antibodies are Associated with Livedo Reticularis and Heart Valve Disease in Antiphospholipid Syndrome. Adv. Clin. Exp. Med. 2014, 23, 729–733. [Google Scholar] [CrossRef]
- Mattia, E.; Ruffatti, A.; Tonello, M.; Meneghel, L.; Robecchi, B.; Pittoni, M.; Gallo, N.; Salvan, E.; Teghil, V.; Punzi, L.; et al. IgA anticardiolipin and IgA anti-beta2 glycoprotein I antibody positivity determined by fluorescence enzyme immunoassay in primary antiphospholipid syndrome. Clin. Chem. Lab. Med. 2014, 52, 1329–1333. [Google Scholar] [CrossRef]
- Mankai, A.; Manoubi, W.; Ghozzi, M.; Melayah, S.; Sakly, W.; Ghedira, I. High frequency of antiphospholipid antibodies in primary biliary cirrhosis. J. Clin. Lab. Anal. 2015, 29, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, Z.; Li, P.; Bai, Y.; Zhang, F.; Li, Y. Evaluation of the Clinical Performance of a Novel Chemiluminescent Immunoassay for Detection of Anticardiolipin and Anti-Beta2-Glycoprotein 1 Antibodies in the Diagnosis of Antiphospholipid Syndrome. Medicine 2015, 94, e2059. [Google Scholar] [CrossRef] [PubMed]
- Kitaori, T.; Sugiura-Ogasawara, M.; Oku, K.; Papisch, W.; Ebara, T.; Ozaki, Y.; Katano, K.; Atsumi, T. Determination of clinically significant tests for antiphospholipid antibodies and cutoff levels for obstetric antiphospholipid syndrome. Lupus 2015, 24, 1505–1519. [Google Scholar] [CrossRef] [PubMed]
- Cousins, L.; Pericleous, C.; Khamashta, M.; Bertolaccini, M.L.; Ioannou, Y.; Giles, I.; Rahman, A. Antibodies to domain I of beta-2-glycoprotein I and IgA antiphospholipid antibodies in patients with ’seronegative’ antiphospholipid syndrome. Ann. Rheum. Dis. 2015, 74, 317–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraiem, I.; Hadhri, S.; Ben Rejeb, M.; Ifa, L.; Jmaa, A.; Ajmi, S.; Skouri, H. Antiphospholipid Antibodies and Procoagulant Profile in Tunisians With Inflammatory Bowel Diseases. Clin. Appl. Thromb. Hemost. 2016, 22, 734–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tebo, A.E.; Willis, R.; Jaskowski, T.D.; Guerra, M.; Pierangeli, S.S.; Salmon, J.; Petri, M.; Branch, D.W. Clinical significance and correlations between anti-beta2 glycoprotein I IgA assays in antiphospholipid syndrome and/or systemic lupus erythematosus. Clin. Chim. Acta 2016, 460, 107–113. [Google Scholar] [CrossRef]
- Mekinian, A.; Bourrienne, M.C.; Carbillon, L.; Benbara, A.; Noemie, A.; Chollet-Martin, S.; Tigaizin, A.; Montestruc, F.; Fain, O.; Nicaise-Roland, P. Non-conventional antiphospholipid antibodies in patients with clinical obstetrical APS: Prevalence and treatment efficacy in pregnancies. Semin. Arthritis Rheum. 2016, 46, 232–237. [Google Scholar] [CrossRef]
- Shi, H.; Zheng, H.; Yin, Y.F.; Hu, Q.Y.; Teng, J.L.; Sun, Y.; Liu, H.L.; Cheng, X.B.; Ye, J.N.; Su, Y.T.; et al. Antiphosphatidylserine/prothrombin antibodies (aPS/PT) as potential diagnostic markers and risk predictors of venous thrombosis and obstetric complications in antiphospholipid syndrome. Clin. Chem. Lab. Med. 2018, 56, 614–624. [Google Scholar] [CrossRef] [Green Version]
- Delgado, J.F.; Serrano, M.; Moran, L.; Enguita, A.B.; Martinez-Flores, J.A.; Ortiz-Bautista, C.; Rodriguez-Chaverri, A.; de Antonio, I.P.; Garcia Cosio, M.D.; Castro Panete, M.J.; et al. Early mortality after heart transplantation related to IgA anti-beta2-glycoprotein I antibodies. J. Heart Lung Transpl. 2017, 36, 1258–1265. [Google Scholar] [CrossRef]
- Frodlund, M.; Vikerfors, A.; Grosso, G.; Skogh, T.; Wettero, J.; Elvin, K.; Gunnarsson, I.; Kastbom, A.; Dahlstrom, O.; Ronnelid, J.; et al. Immunoglobulin a anti-phospholipid antibodies in Swedish cases of systemic lupus erythematosus: Associations with disease phenotypes, vascular events and damage accrual. Clin. Exp. Immunol. 2018, 194, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Vlagea, A.; Pascual-Salcedo, D.; Alvarez Doforno, R.; Lavilla, P.; Diez, J.; Padilla Merlano, B.; Cuesta, M.V.; Gil, A. IgA anti-beta2 glycoprotein I antibodies: Experience from a large center. Thromb. Res. 2018, 162, 38–43. [Google Scholar] [CrossRef]
- Morales, J.M.; Serrano, M.; Martinez-Flores, J.A.; Gainza, F.J.; Marcen, R.; Arias, M.; Escuin, F.; Pérez, D.; Andres, A.; Martínez, M.A.; et al. Pre-Transplant IgA-Anti-Beta 2 Glycoprotein I Antibodies as a Predictor of Early Graft Thrombosis After Renal Transplantation in the Clinical Practice. A Multicenter and Prospective Study. Front. Immunol. 2018, 9, 468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zigon, P.; Podovsovnik, A.; Ambrozic, A.; Tomsic, M.; Hocevar, A.; Gaspersic, N.; Rotar, Z.; Praprotnik, S.; Semrl, S.S.; Cucnik, S. Added value of non-criteria antiphospholipid antibodies for antiphospholipid syndrome: Lessons learned from year-long routine measurements. Clin. Rheumatol. 2019, 38, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Litvinova, E.; Darnige, L.; Kirilovsky, A.; Burnel, Y.; de Luna, G.; Dragon-Durey, M.A. Prevalence and Significance of Non-conventional Antiphospholipid Antibodies in Patients With Clinical APS Criteria. Front. Immunol. 2018, 9, 2971. [Google Scholar] [CrossRef] [PubMed]
- Truglia, S.; Capozzi, A.; Mancuso, S.; Recalchi, S.; Spinelli, F.R.; Perricone, C.; De Carolis, C.; Manganelli, V.; Riitano, G.; Garofalo, T.; et al. A Monocentric Cohort of Obstetric Seronegative Anti-Phospholipid Syndrome. Front. Immunol. 2018, 9, 1678. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Sippl, N.; Kjellstrom, B.; Amara, K.; de Faire, U.; Elvin, K.; Lindahl, B.; Nasman, P.; Ryden, L.; Norhammar, A.; et al. Antiphospholipid Antibodies in Patients With Myocardial Infarction. Ann. Intern. Med. 2019, 170, 277–280. [Google Scholar] [CrossRef]
- Gaspersic, N.; Zaletel, M.; Kobal, J.; Zigon, P.; Cucnik, S.; Semrl, S.S.; Tomsic, M.; Ambrozic, A. Stroke and antiphospholipid syndrome-antiphospholipid antibodies are a risk factor for an ischemic cerebrovascular event. Clin. Rheumatol. 2019, 38, 379–384. [Google Scholar] [CrossRef]
- Selmi, C.; De Santis, M.; Battezzati, P.M.; Generali, E.; Lari, S.A.; Ceribelli, A.; Isailovic, N.; Zermiani, P.; Neidhofer, S.; Matthias, T.; et al. Anti-phospholipid antibody prevalence and association with subclinical atherosclerosis and atherothrombosis in the general population. Int. J. Cardiol. 2020, 300, 209–213. [Google Scholar] [CrossRef]
- Liu, T.; Gu, J.; Wan, L.; Hu, Q.; Teng, J.; Liu, H.; Cheng, X.; Ye, J.; Su, Y.; Sun, Y.; et al. “Non-criteria” antiphospholipid antibodies add value to antiphospholipid syndrome diagnoses in a large Chinese cohort. Arthritis Res. Ther. 2020, 22, 33. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.Y.; Gu, J.Y.; Liu, T.T.; Hu, Q.Y.; Jia, J.C.; Teng, J.L.; Sun, Y.; Liu, H.L.; Cheng, X.B.; Ye, J.N.; et al. Clinical performance of automated chemiluminescent methods for anticardiolipin and anti-beta2-glycoprotein I antibodies detection in a large cohort of Chinese patients with antiphospholipid syndrome. Int. J. Lab. Hematol. 2020, 42, 206–213. [Google Scholar] [CrossRef]
- Arachchillage, D.R.J.; Laffan, M. Pathogenesis and management of antiphospholipid syndrome. Br. J. Haematol. 2017, 178, 181–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyakis, S.; Giannakopoulos, B.; Krilis, S.A. Beta 2 glycoprotein I--function in health and disease. Thromb. Res. 2004, 114, 335–346. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, T.; Wincup, C.; Buchholz, I.; Pericleous, C.; Giles, I.; Ripoll, V.; Cohen, H.; Delcea, M.; Rahman, A. The role of beta-2-glycoprotein I in health and disease associating structure with function: More than just APS. Blood Rev. 2020, 39, 100610. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.N.; Balasubramanian, K.; Ramoth, J.A.; Schroit, A.J. Beta-2-glycoprotein 1-dependent macrophage uptake of apoptotic cells. Binding to lipoprotein receptor-related protein receptor family members. J. Biol. Chem. 2008, 283, 3761–3766. [Google Scholar] [CrossRef] [Green Version]
- Laird, M.E.; Mohsen, A.; Duffy, D.; Mamdouh, R.; LeFouler, L.; Casrouge, A.; El-Daly, M.; Rafik, M.; Abdel-Hamid, M.; Soulier, A.; et al. Apolipoprotein H expression is associated with IL28B genotype and viral clearance in hepatitis C virus infection. J. Hepatol. 2014, 61, 770–776. [Google Scholar] [CrossRef]
- Andreoli, L.; Fredi, M.; Nalli, C.; Franceschini, F.; Meroni, P.L.; Tincani, A. Antiphospholipid antibodies mediate autoimmunity against dying cells. Autoimmunity 2013, 46, 302–306. [Google Scholar] [CrossRef]
- Ho, Y.; Ahuja, K.; Körner, H.; Adams, M. β2GP1, Anti-β2GP1 Antibodies and Platelets: Key Players in the Antiphospholipid Syndrome. Antibodies 2016, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, Y.; Rahman, A. Domain I of beta2-glycoprotein I: Its role as an epitope and the potential to be developed as a specific target for the treatment of the antiphospholipid syndrome. Lupus 2010, 19, 400–405. [Google Scholar] [CrossRef]
- Pericleous, C.; Ruiz-Limon, P.; Romay-Penabad, Z.; Marin, A.C.; Garza-Garcia, A.; Murfitt, L.; Driscoll, P.C.; Latchman, D.S.; Isenberg, D.A.; Giles, I.; et al. Proof-of-concept study demonstrating the pathogenicity of affinity-purified IgG antibodies directed to domain I of beta2-glycoprotein I in a mouse model of anti-phospholipid antibody-induced thrombosis. Rheumatology 2015, 54, 722–727. [Google Scholar] [CrossRef] [Green Version]
- Bakimer, R.; Guilburd, B.; Zurgil, N.; Shoenfeld, Y. The effect of intravenous gamma-globulin on the induction of experimental antiphospholipid syndrome. Clin. Immunol. Immunopathol. 1993, 69, 97–102. [Google Scholar] [CrossRef]
- George, J.; Blank, M.; Levy, Y.; Meroni, P.; Damianovich, M.; Tincani, A.; Shoenfeld, Y. Differential effects of anti-beta2-glycoprotein I antibodies on endothelial cells and on the manifestations of experimental antiphospholipid syndrome. Circulation 1998, 97, 900–906. [Google Scholar] [CrossRef] [Green Version]
- Serrano, M.; Martinez-Flores, J.A.; Norman, G.L.; Naranjo, L.; Morales, J.M.; Serrano, A. The IgA Isotype of Anti-beta2 Glycoprotein I Antibodies Recognizes Epitopes in Domains 3, 4, and 5 That Are Located in a Lateral Zone of the Molecule (L-Shaped). Front. Immunol. 2019, 10, 1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murthy, V.; Willis, R.; Romay-Penabad, Z.; Ruiz-Limon, P.; Martinez-Martinez, L.A.; Jatwani, S.; Jajoria, P.; Seif, A.; Alarcon, G.S.; Papalardo, E.; et al. Value of isolated IgA anti-beta2 -glycoprotein I positivity in the diagnosis of the antiphospholipid syndrome. Arthritis Rheum. 2013, 65, 3186–3193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreoli, L.; Chighizola, C.B.; Nalli, C.; Gerosa, M.; Borghi, M.O.; Pregnolato, F.; Grossi, C.; Zanola, A.; Allegri, F.; Norman, G.L.; et al. Clinical characterization of antiphospholipid syndrome by detection of IgG antibodies against beta2 -glycoprotein i domain 1 and domain 4/5: Ratio of anti-domain 1 to anti-domain 4/5 as a useful new biomarker for antiphospholipid syndrome. Arthritis Rheumatol. 2015, 67, 2196–2204. [Google Scholar] [CrossRef] [PubMed]
- Chighizola, C.B.; Raschi, E.; Borghi, M.O.; Meroni, P.L. Update on the pathogenesis and treatment of the antiphospholipid syndrome. Curr. Opin. Rheumatol. 2015, 27, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.J.; Fickentscher, C.; Boehlen, F.; Kruithof, E.K.; de Moerloose, P. NF-kappaB is activated from endosomal compartments in antiphospholipid antibodies-treated human monocytes. J. Thromb Haemost. 2014, 12, 779–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canaud, G.; Legendre, C.; Terzi, F. AKT/mTORC pathway in antiphospholipid-related vasculopathy: A new player in the game. Lupus 2015, 24, 227–230. [Google Scholar] [CrossRef]
- D’Atri, L.P.; Schattner, M. Platelet toll-like receptors in thromboinflammation. Front. Biosci. 2017, 22, 1867–1883. [Google Scholar]
- Ma, K.; Simantov, R.; Zhang, J.C.; Silverstein, R.; Hajjar, K.A.; McCrae, K.R. High affinity binding of beta 2-glycoprotein I to human endothelial cells is mediated by annexin II. J. Biol. Chem. 2000, 275, 15541–15548. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; McCrae, K.R. Annexin A2 mediates endothelial cell activation by antiphospholipid/anti-beta2 glycoprotein I antibodies. Blood 2005, 105, 1964–1969. [Google Scholar] [CrossRef] [Green Version]
- Cockrell, E.; Espinola, R.G.; McCrae, K.R. Annexin A2: Biology and relevance to the antiphospholipid syndrome. Lupus 2008, 17, 943–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedesco, F.; Borghi, M.O.; Gerosa, M.; Chighizola, C.B.; Macor, P.; Lonati, P.A.; Gulino, A.; Belmonte, B.; Meroni, P.L. Pathogenic Role of Complement in Antiphospholipid Syndrome and Therapeutic Implications. Front. Immunol. 2018, 9, 1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedi, S.; Brodsky, R.A.; McCrae, K.R. Complement in the Pathophysiology of the Antiphospholipid Syndrome. Front. Immunol. 2019, 10, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chintalacharuvu, K.R.; Morrison, S.L. Production and characterization of recombinant IgA. Immunotechnology 1999, 4, 165–174. [Google Scholar] [CrossRef]
- Woof, J.M.; Russell, M.W. Structure and function relationships in IgA. Mucosal. Immunol. 2011, 4, 590–597. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.S.; Chen, P.C.; Yang, C.D.; Cho, E.; Hahn, B.H.; Grossman, J.; Hwang, K.K.; Chen, P.P. Some antiphospholipid antibodies recognize conformational epitopes shared by beta2-glycoprotein I and the homologous catalytic domains of several serine proteases. Arthritis Rheum. 2007, 56, 1638–1647. [Google Scholar] [CrossRef] [Green Version]
- Nojima, J.; Kuratsune, H.; Suehisa, E.; Iwatani, Y.; Kanakura, Y. Acquired activated protein C resistance associated with IgG antibodies against beta2-glycoprotein I and prothrombin as a strong risk factor for venous thromboembolism. Clin. Chem. 2005, 51, 545–552. [Google Scholar] [CrossRef] [Green Version]
- White, T.C.; Berny, M.A.; Tucker, E.I.; Urbanus, R.T.; de Groot, P.G.; Fernandez, J.A.; Griffin, J.H.; Gruber, A.; McCarty, O.J. Protein C supports platelet binding and activation under flow: Role of glycoprotein Ib and apolipoprotein E receptor 2. J. Thromb Haemost. 2008, 6, 995–1002. [Google Scholar] [CrossRef]
- Zhao, R.; Lin, H.; Bereza-Malcolm, L.; Clarke, E.; Jackson, C.J.; Xue, M. Activated Protein C in Cutaneous Wound Healing: From Bench to Bedside. Int. J. Mol. Sci. 2019, 20, 903. [Google Scholar] [CrossRef] [Green Version]
- Vallar, L.; Regnault, V.; Latger-Cannard, V.; Lecompte, T. Beta2-glycoprotein I binding to platelet microparticle membrane specifically reduces immunoreactivity of glycoproteins IIb/IIIa. Thromb Haemost. 2001, 85, 314–319. [Google Scholar] [CrossRef]
- Reynaud, Q.; Lega, J.C.; Mismetti, P.; Chapelle, C.; Wahl, D.; Cathebras, P.; Laporte, S. Risk of venous and arterial thrombosis according to type of antiphospholipid antibodies in adults without systemic lupus erythematosus: A systematic review and meta-analysis. Autoimmun. Rev. 2014, 13, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Wahl, D.G.; Guillemin, F.; de Maistre, E.; Perret-Guillaume, C.; Lecompte, T.; Thibaut, G. Meta-analysis of the risk of venous thrombosis in individuals with antiphospholipid antibodies without underlying autoimmune disease or previous thrombosis. Lupus 1998, 7, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Di Simone, N.; Di Nicuolo, F.; D’Ippolito, S.; Castellani, R.; Tersigni, C.; Caruso, A.; Meroni, P.; Marana, R. Antiphospholipid antibodies affect human endometrial angiogenesis. Biol. Reprod. 2010, 83, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Han, C.S.; Mulla, M.J.; Brosens, J.J.; Chamley, L.W.; Paidas, M.J.; Lockwood, C.J.; Abrahams, V.M. Aspirin and heparin effect on basal and antiphospholipid antibody modulation of trophoblast function. Obstet. Gynecol. 2011, 118, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Viall, C.A.; Chamley, L.W. Histopathology in the placentae of women with antiphospholipid antibodies: A systematic review of the literature. Autoimmun. Rev. 2015, 14, 446–471. [Google Scholar] [CrossRef]
- Wang, X.; Campos, B.; Kaetzel, M.A.; Dedman, J.R. Annexin V is critical in the maintenance of murine placental integrity. Am. J. Obstet. Gynecol. 1999, 180, 1008–1016. [Google Scholar] [CrossRef]
- Vogt, E.; Ng, A.K.; Rote, N.S. Antiphosphatidylserine antibody removes annexin-V and facilitates the binding of prothrombin at the surface of a choriocarcinoma model of trophoblast differentiation. Am. J. Obstet. Gynecol. 1997, 177, 964–972. [Google Scholar] [CrossRef]
- Mulla, M.J.; Brosens, J.J.; Chamley, L.W.; Giles, I.; Pericleous, C.; Rahman, A.; Joyce, S.K.; Panda, B.; Paidas, M.J.; Abrahams, V.M. Antiphospholipid antibodies induce a pro-inflammatory response in first trimester trophoblast via the TLR4/MyD88 pathway. Am. J. Reprod. Immunol. 2009, 62, 96–111. [Google Scholar] [CrossRef] [Green Version]
- Holers, V.M.; Girardi, G.; Mo, L.; Guthridge, J.M.; Molina, H.; Pierangeli, S.S.; Espinola, R.; Xiaowei, L.E.; Mao, D.; Vialpando, C.G.; et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J. Exp. Med. 2002, 195, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Naparstek, Y.; Plotz, P.H. The role of autoantibodies in autoimmune disease. Annu. Rev. Immunol. 1993, 11, 79–104. [Google Scholar] [CrossRef]
- Serrano, M.; Moran, L.; Martinez-Flores, J.A.; Mancebo, E.; Pleguezuelo, D.; Cabrera-Marante, O.; Delgado, J.; Serrano, A. Immune Complexes of Beta-2-Glycoprotein I and IgA Antiphospholipid Antibodies Identify Patients With Elevated Risk of Thrombosis and Early Mortality After Heart Transplantation. Front. Immunol. 2019, 10, 2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radic, M.; Pattanaik, D. Cellular and Molecular Mechanisms of Anti-Phospholipid Syndrome. Front. Immunol. 2018, 9, 969. [Google Scholar] [CrossRef] [Green Version]
- Pierangeli, S.S.; Liu, X.W.; Barker, J.H.; Anderson, G.; Harris, E.N. Induction of thrombosis in a mouse model by IgG, IgM and IgA immunoglobulins from patients with the antiphospholipid syndrome. Thromb. Haemost. 1995, 74, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Flamholz, R.; Tran, T.; Grad, G.I.; Mauer, A.M.; Olopade, O.I.; Ellman, M.H.; McKinsey, J.F.; Jeon, H.R.; Baron, J.M.; Baron, B.W. Therapeutic plasma exchange for the acute management of the catastrophic antiphospholipid syndrome: Beta(2)-glycoprotein I antibodies as a marker of response to therapy. J. Clin. Apher. 1999, 14, 171–176. [Google Scholar] [CrossRef]
- Meroni, P.L.; Chighizola, C.B.; Rovelli, F.; Gerosa, M. Antiphospholipid syndrome in 2014: More clinical manifestations, novel pathogenic players and emerging biomarkers. Arthritis Res. Ther. 2014, 16, 209. [Google Scholar] [CrossRef] [Green Version]
- Cervera, R.; Asherson, R.A. Antiphospholipid syndrome associated with infections: Clinical and microbiological characteristics. Immunobiology 2005, 210, 735–741. [Google Scholar] [CrossRef]
- Sikara, M.P.; Routsias, J.G.; Samiotaki, M.; Panayotou, G.; Moutsopoulos, H.M.; Vlachoyiannopoulos, P.G. {beta}2 Glycoprotein I ({beta}2GPI) binds platelet factor 4 (PF4): Implications for the pathogenesis of antiphospholipid syndrome. Blood 2010, 115, 713–723. [Google Scholar] [CrossRef] [Green Version]
- Elbagir, S.; Mohammed, N.A.; Kaihola, H.; Svenungsson, E.; Gunnarsson, I.; Manivel, V.A.; Pertsinidou, E.; Elagib, E.M.; Nur, M.A.M.; Elussein, E.A.; et al. Elevated IgA antiphospholipid antibodies in healthy pregnant women in Sudan but not Sweden, without corresponding increase in IgA anti-beta2 glycoprotein I domain 1 antibodies. Lupus 2020, 29, 463–473. [Google Scholar] [CrossRef]
- Lackner, K.J.; Muller-Calleja, N. Pathogenesis of the antiphospholipid syndrome revisited: Time to challenge the dogma. J. Thromb. Haemost. 2016, 14, 1117–1120. [Google Scholar] [CrossRef] [Green Version]
- Nojima, J.; Motoki, Y.; Hara, K.; Sakata, T.; Ichihara, K. Novel enzyme immunoassay system for simultaneous detection of six subclasses of antiphospholipid antibodies for differential diagnosis of antiphospholipid syndrome. Blood Coagul. Fibrinolysis. 2017, 28, 316–322. [Google Scholar] [CrossRef]
- Bor, M.V.; Jacobsen, I.S.; Gram, J.B.; Sidelmann, J.J. Revisiting the Phadia/EliA cut-off values for anticardiolipin and anti-beta2-glycoprotein I antibodies: A systematic evaluation according to the guidelines. Lupus 2018, 27, 1446–1454. [Google Scholar] [CrossRef] [PubMed]
- Danowski, A.; Kickler, T.S.; Petri, M. Anti-beta2-glycoprotein I: Prevalence, clinical correlations, and importance of persistent positivity in patients with antiphospholipid syndrome and systemic lupus erythematosus. J. Rheumatol. 2006, 33, 1775–1779. [Google Scholar] [PubMed]
- Chighizola, C.B.; Sciascia, S.; Andreoli, L.; Meroni, P.L. Beyond current concepts in anti-phospholipid syndrome: The 16th International Congress on Anti-phospholipid Antibodies (ICAPA) in Manchester. Autoimmun. Rev. 2020, 19, 102615. [Google Scholar] [CrossRef] [PubMed]
- Bertolaccini, M.L.; Sanna, G. The Clinical Relevance of Noncriteria Antiphospholipid Antibodies. Semin. Thromb. Hemost. 2017, 44, 453–457. [Google Scholar]
- Mehrani, T.; Petri, M. Association of IgA Anti-beta2 glycoprotein I with clinical and laboratory manifestations of systemic lupus erythematosus. J. Rheumatol. 2011, 38, 64–68. [Google Scholar] [CrossRef]
- Ambrosino, P.; Lupoli, R.; Spadarella, G.; Tarantino, P.; Di Minno, A.; Tarantino, L.; Di Minno, M.N. Autoimmune liver diseases and antiphospholipid antibodies positivity: A meta-analysis of literature studies. J. Gastrointestin. Liver Dis. 2015, 24, 25–34. [Google Scholar] [CrossRef]
- Morales, J.M.; Martinez-Flores, J.A.; Serrano, M.; Castro, M.J.; Alfaro, F.J.; Garcia, F.; Martinez, M.A.; Andres, A.; Gonzalez, E.; Praga, M.; et al. Association of Early Kidney Allograft Failure with Preformed IgA Antibodies to beta2-Glycoprotein I. J. Am. Soc. Nephrol. 2015, 26, 735–745. [Google Scholar] [CrossRef] [Green Version]
- Morales, J.M.; Serrano, M.; Martinez-Flores, J.A.; Perez, D.; Serrano, A. Antiphospholipid Syndrome and Renal Allograft Thrombosis. Transplantation 2019, 103, 481–486. [Google Scholar] [CrossRef]
- Serrano, M.; Martinez-Flores, J.A.; Perez, D.; Garcia, F.; Cabrera, O.; Pleguezuelo, D.; Paz-Artal, E.; Morales, J.M.; Gonzalez, E.; Serrano, A. Beta2-Glycoprotein I/IgA Immune Complexes: A Marker to Predict Thrombosis After Renal Transplantation in Patients With Antiphospholipid Antibodies. Circulation 2017, 135, 1922–1934. [Google Scholar] [CrossRef]
- Serrano, M.; Martinez-Flores, J.A.; Castro, M.J.; Garcia, F.; Lora, D.; Perez, D.; Gonzalez, E.; Paz-Artal, E.; Morales, J.M.; Serrano, A. Renal transplantation dramatically reduces IgA anti-beta-2-glycoprotein I antibodies in patients with endstage renal disease. J. Immunol. Res. 2014, 2014, 641962. [Google Scholar] [CrossRef]
- Serrano, A.; Garcia, F.; Serrano, M.; Ramirez, E.; Alfaro, F.J.; Lora, D.; de la Camara, A.G.; Paz-Artal, E.; Praga, M.; Morales, J.M. IgA antibodies against beta2 glycoprotein I in hemodialysis patients are an independent risk factor for mortality. Kidney Int. 2012, 81, 1239–1244. [Google Scholar] [CrossRef] [Green Version]
- Andreoli, L.; Fredi, M.; Nalli, C.; Piantoni, S.; Reggia, R.; Dall’Ara, F.; Franceschini, F.; Tincani, A. Clinical significance of IgA anti-cardiolipin and IgA anti-beta2glycoprotein I antibodies. Curr. Rheumatol. Rep. 2013, 15, 343. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.T.; Ahn, C.W.; Alarcon, G.S.; Baethge, B.A.; Tan, F.K.; Roseman, J.; Bastian, H.M.; Fessler, B.J.; McGwin, G., Jr.; Vila, L.M.; et al. Systemic lupus erythematosus in a multiethnic cohort (LUMINA): XXVIII. Factors predictive of thrombotic events. Rheumatology 2005, 44, 1303–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalunian, K.C.; Peter, J.B.; Middlekauff, H.R.; Sayre, J.; Ando, D.G.; Mangotich, M.; Hahn, B.H. Clinical significance of a single test for anti-cardiolipin antibodies in patients with systemic lupus erythematosus. Am. J. Med. 1988, 85, 602–608. [Google Scholar] [CrossRef]
- Iverson, G.M.; von Muhlen, C.A.; Staub, H.L.; Lassen, A.J.; Binder, W.; Norman, G.L. Patients with atherosclerotic syndrome, negative in anti-cardiolipin assays, make IgA autoantibodies that preferentially target domain 4 of beta2-GPI. J. Autoimmun. 2006, 27, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Staub, H.L.; Franck, M.; Ranzolin, A.; Norman, G.L.; Iverson, G.M.; von Muhlen, C.A. IgA antibodies to beta2-glycoprotein I and atherosclerosis. Autoimmun. Rev. 2006, 6, 104–106. [Google Scholar] [CrossRef]
- Ranzolin, A.; Bohn, J.M.; Norman, G.L.; Manenti, E.; Bodanese, L.C.; von Muhlen, C.A.; Staub, H.L. Anti-beta2-glycoprotein I antibodies as risk factors for acute myocardial infarction. Arq. Bras. Cardiol. 2004, 83, 141–144. [Google Scholar]
- Abinader, A.; Hanly, A.J.; Lozada, C.J. Catastrophic antiphospholipid syndrome associated with anti-beta-2-glycoprotein I IgA. Rheumatology 1999, 38, 84–85. [Google Scholar] [CrossRef] [Green Version]
- Yamada, H.; Tsutsumi, A.; Ichikawa, K.; Kato, E.H.; Koike, T.; Fujimoto, S. IgA-class anti-beta2-glycoprotein I in women with unexplained recurrent spontaneous abortion. Arthritis Rheum. 1999, 42, 2727–2728. [Google Scholar] [CrossRef]
- Beltagy, A.; Trespidi, L.; Gerosa, M.; Ossola, M.W.; Meroni, P.L.; Chighizola, C.B. Anti-phospholipid antibodies and reproductive failures. Am. J. Reprod. Immunol. 2020, e13258. [Google Scholar] [CrossRef]
- Lakos, G.; Kiss, E.; Regeczy, N.; Tarjan, P.; Soltesz, P.; Zeher, M.; Bodolay, E.; Szakony, S.; Sipka, S.; Szegedi, G. Isotype distribution and clinical relevance of anti-beta2-glycoprotein I (beta2-GPI) antibodies: Importance of IgA isotype. Clin. Exp. Immunol. 1999, 117, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Boin, F.; Franchini, S.; Colantuoni, E.; Rosen, A.; Wigley, F.M.; Casciola-Rosen, L. Independent association of anti-beta(2)-glycoprotein I antibodies with macrovascular disease and mortality in scleroderma patients. Arthritis Rheum. 2009, 60, 2480–2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabeta, S.; Norman, G.L.; Gatselis, N.; Liaskos, C.; Papamichalis, P.A.; Garagounis, A.; Zachou, K.; Rigopoulou, E.I.; Dalekos, G.N. IgA anti-b2GPI antibodies in patients with autoimmune liver diseases. J. Clin. Immunol. 2008, 28, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Mankai, A.; Achour, A.; Thabet, Y.; Manoubia, W.; Sakly, W.; Ghedira, I. Anti-cardiolipin and anti-beta 2-glycoprotein I antibodies in celiac disease. Pathol. Biol. 2012, 60, 291–295. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, M.; Zhang, S.; Xia, P.; Cao, W.; Jiang, W.; Chen, H.; Ding, X.; Zhao, H.; Zhang, H.; et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N. Engl. J. Med. 2020, 382, e38. [Google Scholar] [CrossRef]
- Devreese, K.M.J.; Linskens, E.A.; Benoit, D.; Peperstraete, H. Antiphospholipid antibodies in patients with COVID-19: A relevant observation? J. Thromb. Haemost. 2020, 18, 2191–2201. [Google Scholar] [CrossRef]
- Duarte-Garcia, A.; Pham, M.M.; Crowson, C.S.; Amin, S.; Moder, K.G.; Pruthi, R.K.; Warrington, K.J.; Matteson, E.L. The Epidemiology of Antiphospholipid Syndrome: A Population-Based Study. Arthritis Rheumatol. 2019, 71, 1545–1552. [Google Scholar] [CrossRef]
- Mustonen, P.; Lehtonen, K.V.; Javela, K.; Puurunen, M. Persistent antiphospholipid antibody (aPL) in asymptomatic carriers as a risk factor for future thrombotic events: A nationwide prospective study. Lupus 2014, 23, 1468–1476. [Google Scholar] [CrossRef]
- Lopez, L.R.; Santos, M.E.; Espinoza, L.R.; La Rosa, F.G. Clinical significance of immunoglobulin A versus immunoglobulins G and M anti-cardiolipin antibodies in patients with systemic lupus erythematosus. Correlation with thrombosis, thrombocytopenia, and recurrent abortion. Am. J. Clin. Pathol. 1992, 98, 449–454. [Google Scholar] [CrossRef]
- Bertolaccini, M.L.; Amengual, O.; Andreoli, L.; Atsumi, T.; Chighizola, C.B.; Forastiero, R.; de Groot, P.; Lakos, G.; Lambert, M.; Meroni, P.; et al. 14th International Congress on Antiphospholipid Antibodies Task Force. Report on antiphospholipid syndrome laboratory diagnostics and trends. Autoimmun. Rev. 2014, 13, 917–930. [Google Scholar] [CrossRef]
- Perez, D.; Martinez-Flores, J.A.; Serrano, M.; Lora, D.; Paz-Artal, E.; Morales, J.M.; Serrano, A. Evaluation of three fully automated immunoassay systems for detection of IgA anti-beta 2-glycoprotein I antibodies. Int. J. Lab. Hematol. 2016, 38, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Flores, J.A.; Serrano, M.; Alfaro, J.; Mora, S.; Paz-Artal, E.; Morales, J.M.; Serrano, A. Heterogeneity between diagnostic tests for IgA anti-beta2 glycoprotein I: Explaining the controversy in studies of association with vascular pathology. Anal. Chem. 2013, 85, 12093–12098. [Google Scholar] [CrossRef] [PubMed]
- Hood, D.B.; Snyder, K.R.; Buckner, T.R.; Hurley, B.L.; Pitts, K.R.; Lopez, L.R. Differential assay reactivity of immunglobulin A anti-ss2 glycoprotein I antibodies: Implications for the clinical interpretation of antiphospholipid antibody testing. Eur. J. Rheumatol. 2015, 2, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Oku, K.; Amengual, O.; Kato, M.; Bohgaki, T.; Horita, T.; Yasuda, S.; Sakamoto, N.; Ieko, M.; Norman, G.L.; Atsumi, T. Significance of fully automated tests for the diagnosis of antiphospholipid syndrome. Thromb. Res. 2016, 146, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sciascia, S.; Willis, R.; Pengo, V.; Krilis, S.; Andrade, D.; Tektonidou, M.G.; Ugarte, A.; Chighizola, C.; Branch, D.W.; Levy, R.A.; et al. The comparison of real world and core laboratory antiphospholipid antibody ELISA results from antiphospholipid syndrome alliance for clinical trials & international networking (APS ACTION) clinical database and repository analysis. Thromb. Res. 2019, 175, 32–36. [Google Scholar]
- Chayoua, W.; Kelchtermans, H.; Moore, G.W.; Gris, J.C.; Musial, J.; Wahl, D.; Zuily, S.; Gianniello, F.; Fontana, P.; Remijn, J.; et al. Detection of Anti-Cardiolipin and Anti-beta2glycoprotein I Antibodies Differs between Platforms without Influence on Association with Clinical Symptoms. Thromb. Haemost. 2019, 119, 797–806. [Google Scholar]
- Shen, Y.M.; Lee, R.; Frenkel, E.; Sarode, R. IgA antiphospholipid antibodies are an independent risk factor for thromboses. Lupus 2008, 17, 996–1003. [Google Scholar] [CrossRef]
- Unlu, O.; Erkan, D.; Barbhaiya, M.; Andrade, D.; Nascimento, I.; Rosa, R.; Banzato, A.; Pengo, V.; Ugarte, A.; Gerosa, M.; et al. The Impact of Systemic Lupus Erythematosus on the Clinical Phenotype of Antiphospholipid Antibody Positive Patients: Results from AntiPhospholipid Syndrome Alliance for Clinical Trials and InternatiOnal Networking (APS ACTION) Clinical Database and Repository. Arthritis Care Res. 2019, 71, 134–141. [Google Scholar]
- Azarsiz, E.; Eman, G.; Akarcan, S.E.; Severcan, E.U.; Karaca, N.; Aksu, G.; Kutukculer, N. Anti-beta2 Glycoprotein I Antibodies in Children with Rheumatologic Disorders. Indian J. Clin. Biochem. 2019, 34, 95–100. [Google Scholar]
- Pignatelli, P.; Ettorre, E.; Menichelli, D.; Pani, A.; Violi, F.; Pastori, D. Seronegative antiphospholipid syndrome: Refining the value of "non-criteria" antibodies for diagnosis and clinical management. Haematologica 2020, 105, 562–572. [Google Scholar] [CrossRef] [Green Version]
- Tektonidou, M.G.; Andreoli, L.; Limper, M.; Amoura, Z.; Cervera, R.; Costedoat-Chalumeau, N.; Cuadrado, M.J.; Dörner, T.; Ferrer-Oliveras, R.; Hambly, K.; et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann. Rheum. Dis. 2019, 78, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, H.; Seip, M.; Koycheva, S. Live Birth Pregnancy Outcome after First In Vitro Fertilization Treatment in a Patient with Systemic Lupus Erythematosus and Isolated High Positive IgA Anti-beta2glycoprotein I Antibodies: A Case Report. Open Med. 2017, 12, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Ferrer-Oliveras, R.; Saez-Comet, L.; Lefkou, E.; Mekinian, A.; Belizna, C.; Ruffatti, A.; Tincani, A.; Marozio, L.; et al. The European Registry on Obstetric Antiphospholipid Syndrome (EUROAPS): A survey of 1000 consecutive cases. Autoimmun. Rev. 2019, 18, 406–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | IgG aB2GP1 | IgA aB2GP1 |
---|---|---|
Sex distribution [20] | Mostly in woman | Both sex |
Clinical presentation [20,21,22] | Better association with SAD-APS and in Obstetric APS than the IgA. | Some authors consider that it is more prevalent in P-APS and arterial thrombosis. |
Receptors and cell populations [23] | Large number of receptor (FcγRI, FcγRII, FcγRIII, and so on) with a broad distribution. | FcαRI. Neutrophils, eosinophils, monocytes, macrophages (not lymphocytes) and some DC subsets and Kupffer cells. |
Complement activation [24] | Strong activation of the complement system. | Weak or none bind and activation of complement system proteins. |
Release of neutrophil extracellular traps [25,26] | Moderate induction of traps release. | Potent induction of traps release. |
Other functions [23] | Antigen blocking, Cytokine and inflammatory mediators release, phagocytosis, and respiratory burst mediation, chemoattraction. | Antigen blocking, Cytokine and inflammatory mediators release, phagocytosis, and respiratory burst mediation, chemoattraction. |
Publication | Year | Methods | IgA aB2GP1 Remarks | Instrument and Method | Sample |
---|---|---|---|---|---|
Ruiz-García et al. Journal of Immunology Research [18] | 2014 | Retrospective | The authors reported that the IgA aβ2GP1 is the most prevalent isotype in P-APS. | ELISA INOVA Diagnostics. | 156 |
Despierres et al. Rheumatoloy [27] | 2014 | Retrospective | Determination of the IgA aβ2GP1 in APS was suggested, recommending identifying target domains of aB2GP1 IgA. | INOVA Diagnostics QUANTA Lite® ELISA. | 439 |
Paulmyer-Lacroix et al. BioMed Research International [28] | 2014 | Retrospective | The authors showed a significantly higher prevalence of all the aPL, and in particular, aB2GP1 IgA antibodies, in patients undergoing in vitro fertilization treatment (IVF) vs. controls. They emphasize the determination of aB2GP1 IgA in patients with APS clinical manifestations. | Inhouse ELISA Orgentec. | 40 |
Ciesla et al. Advances in Clinical Experimental Medicine [29] | 2014 | Retrospective | Authors found an association between Heart Valve Disease and with IgA anti-β-2GPI, but not significant. They not observed the relationship between IgA aB2GP1 and thrombocytopenia. | BIOFLASH® instrument (INOVA). | 33 |
Mattia et al. Clincal Chemical Laboratory Medicine [30] | 2014 | Retrospective | The presence of the IgA aB2GP1 antibody was statistically significant in PAPS (50%). The titers were significantly associated with thrombosis. | EliA tests on Phadia 250, i.e., (Thermo Fisher Scientific) | 150 |
Mankai et al. Journal of Clinical Laboratory Analysis [31] | 2014 | Retrospective | In this cohort of primary biliary cirrhosis, the frequency of IgA aβ2GPI antibodies was 62.5% of the patients. | ELISA Orgentec Diagnostika | 80 |
Zhang et al. Medicine [32] | 2015 | Retrospective | The presence of the IgA aB2GP1 in patients with APS was “strikingly higher” than in non-APS disease controls or health controls. Suggesting that the IgA ab2GP1 antibodies could contribute to the diagnosis of APS. | INOVA Diagnostics QUANTA Lite® ELISA. | 192 |
Kitaori et al. Lupus [33] | 2015 | Prospective | This group evaluates the possible cut-off for aPL in obstetric APS. They could not determine the clinical relevance of the aPL, due to the small number of single-positive cases. | EliA tests on Phadia 250, i.e., (Thermo Fisher Scientific) | 560 |
Cousins et al. Annals of Rheumatology [34] | 2015 | Letter | Authors suggest that IgA aB2GP1 may classify a small proportion of patients with SN-APS. | Non-standard ELISA | 50 |
Kraiem et al. Clinical and Applied Thrombosis/Hemostasis [35] | 2015 | Prospective | The IgA aB2GP1 was the most frequently detected isotype, isolated the 63% of cases. They suggest that the detection of IgA in their cohort may be a false positive finding attributable to the high concentrations of IgA in bowel disease. | Inhouse ELISA Orgentec | 89 |
Pericleous et al. Plos One [17] | 2016 | Retrospective | IgA aB2GP1 was strongly associated with APS and was more common than IgM aB2GP1. | In-house ELISA | 230 |
Tebo et al. Clinica Chimica Acta [36] | 2016 | Prospective | The study reports that the prevalence and clinical associations of IgA aB2GP1 shows substantial variability in kit performance. | Three different ELISA (BioRad Laboratories, Corgenix, and INOVA Diagnostics) and Thermo Fisher Scientific. | 269 |
Mekinian et al. Seminars in Arthritis and Rheumatism [37] | 2016 | Prospective | The IgA aB2GP1 was only present in patients with confirmed APS (41% of the patients). | BIOFLASH® instrument (INOVA Diagnostic). | 179 |
Tortosa et al. Plos ONE [20] | 2017 | Retrospective | The IgA aB2GP1 helps to identify an important group of APS patients. | ELISAs developed by INOVA Diagnostics. | 244 |
Shi et al. Clinical Chemistry Medicine Laboratory [38] | 2017 | Retrospective | In this study, the IgA aB2GP1 showed a better performance than aCL IgM and aB2GP1 IgM in APS, and may be more useful than IgM isotypes | INOVA Diagnostics QUANTA Lite® ELISA. | 234 |
Zohoury et al. Journal of Rheumatology [11] | 2017 | Retrospective | Authors reported that only one SN-APS patient was positive for IgA aB2GP1. The clinical relevance was not discussed. | BIOFLASH® instrument (INOVA Diagnostic, Inc, San Diego, CA, USA). | 175 |
Delgado et al. The Journal of Heart and Lung Transplantation [39] | 2017 | Prospective | In hearth transplantation, the IgA aB2GP1 was independently associated with early mortality and thrombotic events. | INOVA Diagnostics QUANTA Lite® ELISA. | 151 |
Frodlund et al. Clinical and Experimental Immunology [40] | 2018 | Retrospective | In this study, 20 cases had isolated positivity for IgA aPL, six had manifestations compatible with APS. These six cases would be classified as APS, in addition to the 76 identified by criteria aPL. | EliA tests on Phadia 250 (Thermo Fisher Scientific) | 526 |
Vlagea et al. Thormbosis Research [41] | 2018 | Retrospective | IgA aB2GP1 showed no association with thrombosis (arterial or venous) or pregnancy morbidity. | INOVA Diagnostics QUANTA Lite® ELISA. | 314 |
Morales et al. Frontiers in Immunology [42] | 2018 | Prospective | In renal transplantation, IgA aB2GP1 was an independent risk factor for graft thrombosis. | ELISAs developed by INOVA Diagnostics. | 740 |
Žigon et al. Clinical Rheumatology [43] | 2018 | Retrospective | 15.5% of patients with thrombosis were positive for IgA aB2GP1, and 16.3% of the patients with obstetric complications. | In-house ELISA | 106 |
Litvinova et al. Frontiers in Immunology [44] | 2018 | Prospective | IgA aβ2GP1 was present only in patients positive for criteria aPL. IgA aβ2GP1 displayed an excellent specificity, but low sensitivity. | BIOFLASH® instrument (INOVA Diagnostic). | 87 |
Truglia et al. Frontiers in Immunology [45] | 2018 | Prospective | In this study, the contribution of IgA aB2GP1 was insignificant. | INOVA Diagnostics QUANTA Lite® ELISA. | 61 |
Grosso et al. Annals of Internal Medicine [46] | 2019 | Letter | No differences between patients with Myocardial Infarction and controls regarding the IgA aβ2GP1. | Bioplex (BIO-RAD) | 805 |
Gašperšič et al. Clinical Rheumatology [47] | 2019 | Prospective | Three patients of the Gašperšič cohort had only non-criteria aPL. One of these had aB2GP1 IgA together with aPS/PT IgM. | In-house ELISA | 89 |
Selmi et al. Inernational Journal of Cardiology [48] | 2019 | Prospective | IgA aβ2GP1 was the only aPL significantly and independently associated with increased inter-adventitia common carotid artery diameters. | ELISA tests (AESKU diagnostic) | 1712 |
Liu et al. Arthritis Research and Therapy [49] | 2020 | Retrospective | Liu et al. reported that the IgA isotypes of aCL/aB2GP1 far exceeded the IgM isotypes in sensitivity, with also very high specificity. Clinically, the IgA aPL were related to thrombosis and pregnancy. The prevalence of IgA aβ2GP1 was lower than the other non-criteria aPL, | BIOFLASH® instrument (INOVA Diagnostic). | 595 |
Wan et al. International Journal of Laboratory Hematology [50] | 2020 | Retrospective | The IgA aB2GP1 showed a significant association with APS diagnosis (ORs 5.85). | ELISAs developed by INOVA Diagnostics and BIOFLASH® instrument (INOVA Diagnostic). | 505 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera-Marante, O.; Rodríguez de Frías, E.; Serrano, M.; Lozano Morillo, F.; Naranjo, L.; Gil-Etayo, F.J.; Paz-Artal, E.; Pleguezuelo, D.E.; Serrano, A. The Weight of IgA Anti-β2glycoprotein I in the Antiphospholipid Syndrome Pathogenesis: Closing the Gap of Seronegative Antiphospholipid Syndrome. Int. J. Mol. Sci. 2020, 21, 8972. https://doi.org/10.3390/ijms21238972
Cabrera-Marante O, Rodríguez de Frías E, Serrano M, Lozano Morillo F, Naranjo L, Gil-Etayo FJ, Paz-Artal E, Pleguezuelo DE, Serrano A. The Weight of IgA Anti-β2glycoprotein I in the Antiphospholipid Syndrome Pathogenesis: Closing the Gap of Seronegative Antiphospholipid Syndrome. International Journal of Molecular Sciences. 2020; 21(23):8972. https://doi.org/10.3390/ijms21238972
Chicago/Turabian StyleCabrera-Marante, Oscar, Edgard Rodríguez de Frías, Manuel Serrano, Fernando Lozano Morillo, Laura Naranjo, Francisco J. Gil-Etayo, Estela Paz-Artal, Daniel E. Pleguezuelo, and Antonio Serrano. 2020. "The Weight of IgA Anti-β2glycoprotein I in the Antiphospholipid Syndrome Pathogenesis: Closing the Gap of Seronegative Antiphospholipid Syndrome" International Journal of Molecular Sciences 21, no. 23: 8972. https://doi.org/10.3390/ijms21238972
APA StyleCabrera-Marante, O., Rodríguez de Frías, E., Serrano, M., Lozano Morillo, F., Naranjo, L., Gil-Etayo, F. J., Paz-Artal, E., Pleguezuelo, D. E., & Serrano, A. (2020). The Weight of IgA Anti-β2glycoprotein I in the Antiphospholipid Syndrome Pathogenesis: Closing the Gap of Seronegative Antiphospholipid Syndrome. International Journal of Molecular Sciences, 21(23), 8972. https://doi.org/10.3390/ijms21238972