Thermal Aging Rheological Behavior of Magnetorheological Elastomers Based on Silicone Rubber
Abstract
:1. Introduction
2. Results and Discussion
2.1. Weight of SR-MRE
2.2. Indentation Hardness Test of SR-MRE
2.3. Micrograph Analysis
2.4. Rheological Properties
3. Methodology
3.1. Samples Preparation
3.2. Sample Characterizations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, H.; Xu, G.; Chen, X.; Wang, R.; Shen, K. Effect of long-term laboratory aging on rheological properties and cracking resistance of polymer-modified asphalt binders at intermediate and low temperature range. Constr. Build. Mater. 2019, 226, 767–777. [Google Scholar] [CrossRef]
- Bus, T.; Dale, M.L.; Reynolds, K.J.; Bastiaansen, C.W.M. Thermoplastic, rubber-like marine antifouling coatings with micro-structures via mechanical embossing. Biofouling 2020, 36, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Fentahun, M.A.; Savas, M.A. Materials Used in Automotive Manufacture and Material Selection Using Ashby Charts. Int. J. Mater. Eng. 2018, 8, 40–54. [Google Scholar] [CrossRef]
- Louda, P. Applications of thin coatings in automotive industry. J. Achiev. Mater. Manuf. Eng. 2007, 24, 51–56. [Google Scholar]
- García-Moreno, I.; Caminero, M.; Rodríguez, G.; López-Cela, J. Effect of Thermal Ageing on the Impact and Flexural Damage Behaviour of Carbon Fibre-Reinforced Epoxy Laminates. Polymers 2019, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Kashi, S.; De Souza, M.; Al-Assafi, S.; Varley, R. Understanding the Effects of in-Service Temperature and Functional Fluid on the Ageing of Silicone Rubber. Polymers 2019, 11, 388. [Google Scholar] [CrossRef] [Green Version]
- Lokander, M.; Reitberger, T.; Stenberg, B. Oxidation of natural rubber-based magnetorheological elastomers. Polym. Degrad. Stab. 2004, 86, 467–471. [Google Scholar] [CrossRef]
- Kruželák, J.; Hudec, I.; Dosoudil, R. Influence of thermo-oxidative and ozone ageing on the properties of elastomeric magnetic composites. Polym. Degrad. Stab. 2012, 97, 921–928. [Google Scholar] [CrossRef]
- Zhao, G.; Shi, L.; Zhang, D.; Feng, X.; Yuan, S.; Zhuo, J. Synergistic effect of nanobarite and carbon black fillers in natural rubber matrix. Mater. Des. 2012, 35, 847–853. [Google Scholar] [CrossRef]
- Kashi, S.; Varley, R.; De Souza, M.; Al-Assafi, S.; Di Pietro, A.; de Lavigne, C.; Fox, B. Mechanical, Thermal, and Morphological Behavior of Silicone Rubber during Accelerated Aging. Polym. Plast. Technol. Eng. 2018, 57, 1687–1696. [Google Scholar] [CrossRef]
- Ahmed, K.; Sirajuddin Nizami, S.; Zahid Raza, N.; Shirin, K. Cure Characteristics, Mechanical and Swelling Properties of Marble Sludge Filled EPDM Modified Chloroprene Rubber Blends. Adv. Mater. Phys. Chem. 2012, 2, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Diyakon, L.V.; Dmytrenko, O.P.; Kulish, N.P.; Prylutskyy, Y.I.; Grabovskiy, Y.E.; Belyy, N.M.; Alekseev, S.A.; Alekseev, A.N.; Sementsov, Y.I.; Gavrylyuk, N.A.; et al. Radiation damage of isotactic polypropylene composites with multi-walled carbon nanotubes. Funct. Mater. 2008, 15, 5–10. [Google Scholar]
- Raja, S.N.; Basu, S.; Limaye, A.M.; Anderson, T.J.; Hyland, C.M.; Lin, L.; Alivisatos, A.P.; Ritchie, R.O. Strain-dependent dynamic mechanical properties of Kevlar to failure: Structural correlations and comparisons to other polymers. Mater. Today Commun. 2015, 2, e33–e37. [Google Scholar] [CrossRef] [Green Version]
- Motiee, F.; Bigdeli, T. Prediction of Mechanical and Functional Features of Aged Rubber Composites Based on BR/SBR. Structure-Properties Correlation. Mater. Res. 2019, 22. [Google Scholar] [CrossRef]
- Aziz, S.A.A.; Mazlan, S.A.; Ismail, N.I.N.; Ubaidillah; Choi, S.B.; Nordin, N.A.; Mohamad, N. A comparative assessment of different dispersing aids in enhancing magnetorheological elastomer properties. Smart Mater. Struct. 2018, 27, 117002. [Google Scholar] [CrossRef]
- Moučka, R.; Goňa, S.; Sedlačík, M. Accurate Measurement of the True Plane-Wave Shielding Effectiveness of Thick Polymer Composite Materials via Rectangular Waveguides. Polymers 2019, 11, 1603. [Google Scholar] [CrossRef] [Green Version]
- Cvek, M.; Kutalkova, E.; Moucka, R.; Urbanek, P.; Sedlacik, M. Lightweight, transparent piezoresistive sensors conceptualized as anisotropic magnetorheological elastomers: A durability study. Int. J. Mech. Sci. 2020, 183, 105816. [Google Scholar] [CrossRef]
- Kruželák, J.; Dosoudil, R.; Hudec, I. Thermooxidative aging of rubber composites based on NR and NBR with incorporated strontium ferrite. J. Elastomers Plast. 2018, 50, 71–91. [Google Scholar] [CrossRef]
- Moon, B.; Lee, J.; Park, S.; Seok, C.-S. Study on the Aging Behavior of Natural Rubber/Butadiene Rubber (NR/BR) Blends Using a Parallel Spring Model. Polymers 2018, 10, 658. [Google Scholar] [CrossRef] [Green Version]
- Cvek, M.; Kracalik, M.; Sedlacik, M.; Mrlik, M.; Sedlarik, V. Reprocessing of injection-molded magnetorheological elastomers based on TPE matrix. Compos. Part B Eng. 2019, 172, 253–261. [Google Scholar] [CrossRef]
- Masbowski, M.; Miedzianowska, J.; Strzelec, K. Reinforced, extruded, isotropic magnetic elastomer composites: Fabrication and properties. Adv. Polym. Technol. 2019, 2019. [Google Scholar] [CrossRef]
- Ye, W.; Jiang, W.; Shan, J.; Xu, S.; Lu, H.; Xiao, J. Research on Molecular Weight Distribution and Rheological Properties of Bitumen during Short-Term Aging. J. Mater. Civ. Eng. 2020, 32, 04019377. [Google Scholar] [CrossRef]
- Tang, N.; Lv, Q.; Huang, W.; Lin, P.; Yan, C. Chemical and rheological evaluation of aging characteristics of terminal blend rubberized asphalt binder. Constr. Build. Mater. 2019, 205, 87–96. [Google Scholar] [CrossRef]
- Ghouse Shaik, M.; Karuppaiyan, V. Effect of Ageing on the Tracking Characteristics of High-Temperature Vulcanized Silicone Rubber Hybrid Composites for High Voltage Insulation. Materials 2020, 13, 2242. [Google Scholar] [CrossRef] [PubMed]
- Manaila, E.; Stelescu, M.; Craciun, G. Degradation Studies Realized on Natural Rubber and Plasticized Potato Starch Based Eco-Composites Obtained by Peroxide Cross-Linking. Int. J. Mol. Sci. 2018, 19, 2862. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; Nizami, S.; Raza, N.; Mahmood, K. Mechanical, swelling, and thermal aging properties of marble sludge-natural rubber composites. Int. J. Ind. Chem. 2012, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Lascano, D.; Quiles-carrillo, L.; Torres-giner, S.; Boronat, T.; Montanes, N. Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness. Polymers 2019, 11, 1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addy, P.S.; Shivrayan, M.; Cencer, M.; Zhuang, J.; Moore, S.; Thayumanavan, S. Polymer with Competing Depolymerization Pathways: Chain Unzipping versus Chain Scission. ACS Macro Lett. 2020, 9, 855–859. [Google Scholar] [CrossRef]
- Bodnaruk, A.V.; Brunhuber, A.; Kalita, V.M.; Kulyk, M.M.; Snarskii, A.A.; Lozenko, A.F.; Ryabchenko, S.M.; Shamonin, M. Temperature-dependent magnetic properties of a magnetoactive elastomer: Immobilization of the soft-magnetic filler. J. Appl. Phys. 2018, 123, 115118. [Google Scholar] [CrossRef] [Green Version]
- Matchawet, S.; Kaesaman, A.; Bomlai, P.; Nakason, C. Effects of multi-walled carbon nanotubes and conductive carbon black on electrical, dielectric, and mechanical properties of epoxidized natural rubber composites. Polym. Compos. 2015, 16. [Google Scholar] [CrossRef]
- Marins, J.A.; Mija, A.; Pin, J.; Giulieri, F.; Soares, B.G.; Sbirrazzuoli, N.; Lançon, P.; Bossis, G. Anisotropic reinforcement of epoxy-based nanocomposites with aligned magnetite–sepiolite hybrid nanofiller. Compos. Sci. Technol. 2015, 112, 34–41. [Google Scholar] [CrossRef]
- Brown, R.P.; Soulagnet, G. Microhardness profiles on aged rubber compounds. Polym. Test. 2001, 20, 295–303. [Google Scholar] [CrossRef]
Sample | Before Thermal Aging (g) | After Thermal Aging (g) | Weight Loss Rate |
---|---|---|---|
SR-MRE (1) | 1.0897 | 1.0767 | 1.19% |
SR-MRE (2) | 1.0911 | 1.0784 | 1.16% |
Sample | Before Thermal Aging | After Thermal Aging | Hardness Depletion | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
SR-MRE (1) | 59.7 | 1.6 | 55.4 | 1.8 | 7.2% |
SR-MRE (2) | 57.6 | 3.1 | 53.4 | 2.9 | 7.3% |
Magnetic Field | Minimum Loss Modulus (MPa) | Maximum Loss Modulus (MPa) | ||
---|---|---|---|---|
Before Aging | After Aging | Before Aging | After Aging | |
0T | 0.021 | 0.023 | 0.059 | 0.071 |
0.19T | 0.023 | 0.023 | 0.066 | 0.080 |
0.39T | 0.026 | 0.026 | 0.071 | 0.103 |
0.58T | 0.028 | 0.031 | 0.081 | 0.116 |
0.73T | 0.031 | 0.032 | 0.094 | 0.121 |
0.85T | 0.032 | 0.033 | 0.111 | 0.119 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, S.A.A.; Mazlan, S.A.; Ubaidillah, U.; Mohamad, N.; Choi, S.-B.; Che Aziz, M.A.; Johari, M.A.F.; Homma, K. Thermal Aging Rheological Behavior of Magnetorheological Elastomers Based on Silicone Rubber. Int. J. Mol. Sci. 2020, 21, 9007. https://doi.org/10.3390/ijms21239007
Aziz SAA, Mazlan SA, Ubaidillah U, Mohamad N, Choi S-B, Che Aziz MA, Johari MAF, Homma K. Thermal Aging Rheological Behavior of Magnetorheological Elastomers Based on Silicone Rubber. International Journal of Molecular Sciences. 2020; 21(23):9007. https://doi.org/10.3390/ijms21239007
Chicago/Turabian StyleAziz, Siti Aishah Abdul, Saiful Amri Mazlan, U Ubaidillah, Norzilawati Mohamad, Seung-Bok Choi, Mohamad Amirul Che Aziz, Mohd Aidy Faizal Johari, and Koji Homma. 2020. "Thermal Aging Rheological Behavior of Magnetorheological Elastomers Based on Silicone Rubber" International Journal of Molecular Sciences 21, no. 23: 9007. https://doi.org/10.3390/ijms21239007
APA StyleAziz, S. A. A., Mazlan, S. A., Ubaidillah, U., Mohamad, N., Choi, S. -B., Che Aziz, M. A., Johari, M. A. F., & Homma, K. (2020). Thermal Aging Rheological Behavior of Magnetorheological Elastomers Based on Silicone Rubber. International Journal of Molecular Sciences, 21(23), 9007. https://doi.org/10.3390/ijms21239007