Endocrine-Disrupting Air Pollutants and Their Effects on the Hypothalamus-Pituitary-Gonadal Axis
Abstract
:1. Endocrine-Disrupting Chemicals
2. Hypothalamic—Pituitary—Gonadal Axis
3. Fertility
4. EDCs in Air Pollution
5. Flame Retardants
5.1. Male-Specific Responses
5.2. Female-Specific Responses
6. Diesel Exhaust and Polycyclic Aromatic Hydrocarbons
6.1. Male-Specific Responses
6.2. Female-Specific Responses
7. Polycyclic Aromatic Hydrocarbons
7.1. Male-Specific Responses
7.2. Female-Specific Responses
8. Cadmium and Lead
8.1. Male-Specific Responses
8.2. Female-Specific Responses
9. TCDD
9.1. Male-Specific Responses
9.2. Female-Specific Responses
10. Polychlorinated Biphenyls
10.1. Male-Specific Responses
10.2. Female-Specific Responses
11. Discussion
12. Conclusions
Chemical Measured | Model | Examples/Exposure | Effect * | Citation |
---|---|---|---|---|
BDE 209 | human | samples taken from men at fertility clinics | inversely related to testosterone levels | [29] |
higher levels associated with greater risk of subfertility | ||||
BDE 28 | inversely related to testosterone levels | |||
BDE153 | positive correlation with testosterone and estradiol | [29] | ||
negative correlation with sperm concentrations and testis size | [32] | |||
BDE 47, 99, 100 | negative correlation with FSH and LH serum | [30] | ||
BDE154 | prenatal exposure | testosterone levels positively associated with serum concentrations of BDE154 in mother’s serum | [39] | |
BDCIPP | male from couple undergoing IVF | concentrations correlated with decrease in number of best-quality embryos | [40] | |
BDE99 | rat | GD6, doses: 0.06 or 0.3 mg BDE99/kg | no effect | [34] |
BaP | inhalation | decreased concentrations of plasma testosterone | [69] | |
24 and 48 h exposure to 75 ug BaP/m3 | ||||
24,48, and 72 h exposure to 75 ug BaP/m3 | increased LH concentration | |||
1-OP | human | urine from infertile men | positive correlation between serum LH and urine concentrations of 1-OP (p = 0.048) | [70] |
TI-1 and TII-2 | semen samples | inverse relationship between sperm motility (confidence interval = 95%) | [66] | |
1-OHP | urine and semen samples from patients of infertility clinic | positive association between levels of 1-OHP in urine and total sex chromosome disomy and chromosome-18 disomy | [71] | |
PAH–DNA adducts | men from infertility clinic | positive associations with abnormalities of head of sperm (r = 0.30) | [72] | |
negative associations with abnormalities in neck of the sperm (r = −0.21) | ||||
PCBs | serum from boys over time | advances time of puberty | [119] | |
serum from Faroese men | total testosterone and total estradiol ratio increase (p = 0.01) | [122] | ||
PCB-118 | serum from men in US infertility clinic | testosterone levels positively associated with serum concentrations of BDE154 in mother’s serum | [123] | |
p,p′-DDE | subfertile couples | positive correlation with total sex chromosome disomy in sperm nuclei | [124] | |
positive correlation with IRRs | ||||
DE | rats | inhalation of DE | decrease in LH (p < 0.05) | [51] |
increase in testosterone and estradiol (p < 0.05) | ||||
cells | inhalation of high NR-DE | increases testosterone | [54] | |
F-DE | decreased testosterone | |||
DEP | murine Leydig TMC cells | decrease in ERα mRNA expression (p < 0.01) | [55] | |
increase in P450 1A1 mRNA expression (p < 0.01) | ||||
Cd | human | occupational exposure | blood Cd associated with decreased serum testosterone (p < 0.05) | [87] |
TCDD | exposed during infancy and prepuberty | decreased sperm count (p = 0.025) | [99] | |
decreased sperm motility (p < 0.001) | ||||
decreased number of total number of motile sperm (p = 0.018) |
Chemical Measured | Model | Matrix/Exposure | Effect * | Citation |
---|---|---|---|---|
BFR | rat | diet 2–3 weeks before mating until GD20 | increase in preantral and antral follicles | [37] |
dose: 0.06, 20, or 60 mg/kg/day | enlargements of antral follicles | |||
PBDE-47 | drinking water from GD6-PND21 | reduction in ovarian weight | [41] | |
dose: 140 ug/kg bw | ||||
700 ug/kg bw | decrease in tertiary follicles and serum estradiol concentrations | |||
BDE 47, 99, 100, and 153 | human | blood | no relationship between congener presence and menstrual cycle | [42] |
positive association between congener levels and time till pregnant | ||||
BDCIPP, DHPH, ip-PPP, tb-PPP, BCIPP | urine from women undergoing IVF | negative association between sum of metabolites and successful IVF | [43] | |
n/a | urine from heavy smokers | heavy smokers had shorter follicular phase | [73] | |
BaP | serum and follicular fluid | higher levels led to unsuccessful IVF (p < 0.001) | [74] | |
OH-PAH | urine | negatively associated with follicular LH concentrations | [60] | |
BaP | rats | inhalation | decreased progesterone (p < 0.01), LH, and estradiol levels | [76] |
50, 75, 100 μg BaP/m3 | ||||
increased FSH concentration | ||||
100 μg BaP/m3 | decreased number of pups per litter (p < 0.002) | |||
ovulation rate decreased | ||||
lengthened pro-estrous cycle (p < 0.05) | ||||
PCB | embryonic days 16 and 18 | increased LH levels (p < 0.05) | [125] | |
pregnant rat treated with 1 mg/kg | ||||
PCB126 | mouse | 0.03 or 0.3 mg/kg | increase in endometriotic lesions 10 days post-exposure | [126] |
DEP | 3.0 mg DEP/m3 | lower thymus and ovary weight | [57] | |
earlier vaginal opening | ||||
1.0 mg DEP/m3 | earlier vaginal opening | |||
DE | Pre- and postnatal | decrease in primary follicles | [58] | |
TCDD | zebrafish | 40 and 100 ppb 5 days a week for 4 weeks | decrease in egg production (p = 0.04) | [111] |
8–10% decrease in size of secondary growth follicles | ||||
decrease in spawning success (p < 0.0001) | ||||
40 and 100 ppb 5 days | >36% decreased levels of serum E2 | |||
40 and 100 ppb 15 days | >50% decrease in serum E2 | |||
100 ppb 20 days | 84% reduction in total number of follicles |
Funding
Conflicts of Interest
Abbreviations
AhR | aryl hydrocarbon receptor |
AMH | anti-Mullerian hormone |
Ar | androgen receptor |
Atrazine | 2-chloro-4-ethylamino-6-isopropulamino-1,3,5-triazine |
BaP | benzo(a)pyrene |
BDE | brominated diphenyl ethers |
Cd | cadmium |
DE | diesel exhaust |
DEP | diesel exhaust particles |
EDCs | endocrine-disrupting chemicals |
EPA | Environmental Protection Agency |
E2 | 17(beta) estradiol |
FSH | follicle-stimulating hormone |
fT | free testosterone |
GD | gestational day |
GnRH | gonadotropin release hormone |
GnRHR | gonadotropin release hormone receptor |
HPG | hypothalamus-pituitary-gonadal |
LD | lactational day |
LH | luteinizing hormone |
PAH | polycyclic aromatic hydrocarbons |
PCB | polychlorinated biphenyl |
Pb | lead |
PBDEs | polybrominated diphenyl ethers |
PM | particulate matter |
PND | postnatal day |
POPs | persistent organic pollutants |
Ppb | parts per billion |
PR | progesterone |
PRL | prolactin |
SHBG | sex hormone-binding globulin |
SVOCs | semi-volatile organic compounds |
VOCs | volatile organic compounds |
T | testosterone |
TCDD | 2,3,7,8-tetrachlorodibenzo-p-dioxin |
References
- Wirbisky, S.E.; Freeman, J.L. Atrazine Exposure and Reproductive Dysfunction through the Hypothalamus-Pituitary-Gonadal (HPG) Axis. Toxics 2015, 3, 414–450. [Google Scholar] [CrossRef] [Green Version]
- De Coster, S.; Van Larebeke, N. Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action. J. Environ. Public Health 2012, 2012, 713696. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Darbre, P.D. Overview of air pollution and endocrine disorders. Int. J. Gen. Med. 2018, 11, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Agrawal, N.K.; Verma, R. HPG Axis: The Central Regulator of Spermatogenesis and Male Fertility. In Male Infertility: Understanding, Causes and Treatment; Springer: Berlin/Heidelberg, Germany, 2017; pp. 25–36. [Google Scholar]
- Darbre, P.D. Endocrine Disruption and Human Health; Elsevier: New York, NY, USA, 2015. [Google Scholar]
- Svechnikov, K.; Izzo, G.; Landreh, L.; Weisser, J.; Söder, O. Endocrine Disruptors and Leydig Cell Function. J. Biomed. Biotechnol. 2010, 2010, 684504. [Google Scholar] [CrossRef] [Green Version]
- Rattan, S.; Zhou, C.; Chiang, C.; Mahalingam, S.; Brehm, E.; Flaws, J.A. Exposure to endocrine disruptors during adulthood: Consequences for female fertility. J. Endocrinol. 2017, 233, R109–R129. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, S.M.; Gore, A. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. Rev. Endocr. Metab. Disord. 2007, 8, 143–159. [Google Scholar] [CrossRef]
- Meethal, S.V.; Atwood, C.S. The role of hypothalamic-pituitary-gonadal hormones in the normal structure and function of the brain. Cell. Mol. Life Sci. 2005, 62, 257–270. [Google Scholar]
- Gerritsen, M.E. Angiogenesis. In Microcirculation, 2nd ed.; Elsevier: New York, NY, USA, 2008; pp. 351–383. [Google Scholar]
- Welt, C.K. The physiology and pathophysiology of inhibin, activin and follistatin in female reproduction. Curr. Opin. Obstet. Gynecol. 2002, 14, 317–323. [Google Scholar] [CrossRef]
- Bliss, S.P.; Navratil, A.M.; Xie, J.; Roberson, M.S. GnRH signaling, the gonadotrope and endocrine control of fertility. Front. Neuroendocr. 2010, 31, 322–340. [Google Scholar] [CrossRef] [Green Version]
- Reichlin, S. Neuroendocrinology. In Williams Textbook of Endocrinology, 10th ed.; Elsevier: New York, NY, USA, 1998. [Google Scholar]
- Casarini, L.; Santi, D.; Brigante, G.; Simoni, M. Two Hormones for One Receptor: Evolution, Biochemistry, Actions, and Pathophysiology of LH and hCG. Endocr. Rev. 2018, 39, 549–592. [Google Scholar] [CrossRef]
- Thorner, M.O.; Vance, M.L.; Laws, E.R., Jr.; Horvath, E.; Kovacs, K. The anterior pituitary. In Williams Textbook of Endocrinology; Wilson, J.D., Foster, D.W., Kronenberg, H.M., Larsen, P.R., Eds.; Saunders: Philadelphia, UK, 1998; pp. 249–340. [Google Scholar]
- Feher, J. 9.10–Male Reproductive Physiology. In Quantitative Human Physiology; Academic Press: Cambridge, MA, USA, 2012; pp. 856–866. [Google Scholar]
- Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss. Fertil. Steril. 2008, 90, S60.
- Turek, P.J.; Pera, R.R. Encyclopedia of Genetics; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Chandra, A.; Copen, C.E.; Stephen, E.H. Infertility and impaired fecundity in the United States, 1982-2010: Data from the National Survey of Family Growth. Natl. Health Stat. Rep. 2013, 67, 1–19. [Google Scholar]
- Sreenivasan, L. Chapter 21—Nutrition and Hormones: Role in Male Infertility. In Handbook of Fertility Nutrition, Diet, Lifestyle and Reproductive Health; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Unuane, D.; Tournaye, H.; Velkeniers, B.; Poppe, K. Endocrine disorders and female infertility. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 861–873. [Google Scholar] [CrossRef]
- Rudel, R.A.; Perovich, L.J. Endocrine disrupting chemicals in indoor and outdoor air. Atmos. Environ. 2009, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Teil, M.-J.; Moreau-Guigon, E.; Blanchard, M.; Alliot, F.; Gasperi, J.; Cladière, M.; Mandin, C.; Moukhtar, S.; Chevreuil, M. Endocrine disrupting compounds in gaseous and particulate outdoor air phases according to environmental factors. Chemosphere 2016, 146, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particular matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Speight, J.G. Sources and Types of Organic Pollutants. Environ. Org. Chem. Eng. 2017, 153–201. [Google Scholar] [CrossRef]
- Roosens, L.; Cornelis, C.; D’Hollander, W.; Bervoets, L.; Reynders, H.; Van Campenhout, K.; Heuvel, R.V.D.; Neels, H.; Covaci, A. Exposure of the Flemish population to brominated flame retardants: Model and risk assessment. Environ. Int. 2010, 36, 368–376. [Google Scholar] [CrossRef]
- Den Hond, E.; Tournaye, H.; De Sutter, P.; Ombelet, W.; Baeyens, W.; Covaci, A.; Cox, B.; Nawrot, T.S.; Van Larebeke, N.; D’Hooghe, T. Human exposure to endocrine disrupting chemicals and fertility: A case-control study in male subfertility patients. Environ. Int. 2015, 84, 154–160. [Google Scholar] [CrossRef]
- Meeker, J.D.; Johnson, P.I.; Camann, D.; Hauser, R. Polybrominated diphenyl ether (PBDE) concentrations in house dust are related to hormone levels in men. Sci. Total. Environ. 2009, 407, 3425–3429. [Google Scholar] [CrossRef] [Green Version]
- Akutsu, K.; Takatori, S.; Nozawa, S.; Yoshiike, M.; Nakazawa, H.; Hayakawa, K.; Makino, T.; Iwamoto, T. Polybrominated Diphenyl Ethers in Human Serum and Sperm Quality. Bull. Environ. Contam. Toxicol. 2008, 80, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, L.S.; Staskal, D.F. Brominated flame retardants: Cause for concern? Environ. Health Perspect. 2004, 112, 9–17. [Google Scholar] [CrossRef]
- Meerts, I.A.T.M.; Letcher, R.; Hoving, S.; Marsh, G.; Bergman, Å.; Lemmen, J.G.; Van Der Burg, B.; Brouwer, A. In Vitro Estrogenicity of Polybrominated Diphenyl Ethers, Hydroxylated PBDEs, and Polybrominated Bisphenol A Compounds. Environ. Health Perspect. 2001, 109, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Kuriyama, S.N.; Talsness, C.E.; Grote, K.; Chahoud, I. Developmental Exposure to Low-Dose PBDE-99: Effects on Male Fertility and Neurobehavior in Rat Offspring. Environ. Health Perspect. 2005, 113, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Czerska, M.; Zieliński, M.; Kaminska, J.; Ligocka, D. Effects of polybrominated diphenyl ethers on thyroid hormone, neurodevelopment and fertility in rodents and humans. Int. J. Occup. Med. Environ. Health 2013, 26, 498–510. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Lee, B.M. Endocrine Disrupting Chemicals and Human Cancer. Encycl. Environ. Health 2011, 296–305. [Google Scholar] [CrossRef]
- Lefevre, P.L.; Berger, R.G.; Ernest, S.R.; Gaertner, D.W.; Rawn, R.F.; Wade, M.G.; Robaire, B.; Hales, B.F. Exposure of Female Rats to an Environmentally Relevant Mixture of Brominated Flame Retardants Targets the Ovary, Affecting Folliculogenesis and Steroidogenesis. Biol. Reprod. 2016, 94, 9. [Google Scholar] [CrossRef] [Green Version]
- Asante, K.A.; Adu-Kumi, S.; Nakahiro, K.; Takahashi, S.; Isobe, T.; Sudaryanto, A.; Devanathan, G.; Clarke, E.; Ansa-Asare, O.D.; Dapaah-Siakwan, S.; et al. Human exposure to PCBs, PBDEs and HBCDs in Ghana: Temporal variation, sources of exposure and estimation of daily intakes by infants. Environ. Int. 2011, 37, 921–928. [Google Scholar] [CrossRef]
- Meijer, L.; Brouwer, B.; De Jong, F.H.J.; Bergman, A.; Sauer, P.J.J. Influences of prenatal exposure to selected organohalogens on infant sexual and neurological development. Organohal Compd. 2008, 70, 658–661. [Google Scholar]
- Carignan, C.C.; Mínguez-Alarcón, L.; Williams, P.L.; Meeker, J.D.; Stapleton, H.M.; Butt, C.M.; Toth, T.L.; Ford, J.B.; Hauser, R. Paternal urinary concentrations of organophosphate flame retardant metabolites, fertility measures, and pregnancy outcomes among couples undergoing in vitro fertilization. Environ. Int. 2018, 111, 232–238. [Google Scholar] [CrossRef]
- Talsness, C.E.; Kuriyama, S.N.; Sterner-Kock, A.; Schnitker, P.; Grande, S.W.; Shakibaei, M.; Andrade, A.; Grote, K.; Chahoud, I. In Utero and Lactational Exposures to Low Doses of Polybrominated Diphenyl Ether-47 Alter the Reproductive System and Thyroid Gland of Female Rat Offspring. Environ. Health Perspect. 2008, 116, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Harley, K.G.; Marks, A.R.; Chevrier, J.; Bradman, A.; Sjödin, A.; Eskenazi, B. PBDE Concentrations in Women’s Serum and Fecundability. Environ. Health Perspect. 2010, 118, 699–704. [Google Scholar] [CrossRef]
- Carignan, C.C.; Mínguez-Alarcón, L.; Butt, C.M.; Williams, P.L.; Meeker, J.D.; Stapleton, H.M.; Toth, T.L.; Ford, J.B.; Hauser, R.; EARTH Study Team. Urinary Concentrations of Organophosphate Flame Retardant Metabolites and Pregnancy Outcomes among Women Undergoing in Vitro Fertilization. Environ. Health Perspect. 2017, 125, 087018. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Tsukue, N.; Yoshida, S. Endocrine-disrupting activity of chemicals in diesel exhaust and diesel exhaust particles. Environ. Sci. 2004, 11, 33–45. [Google Scholar]
- Wichmann, H.-E. Diesel Exhaust Particles. Inhal. Toxicol. 2008, 19, 241–244. [Google Scholar] [CrossRef]
- Alam, M.S.; Zeraati-Rezaei, S.; Stark, C.P.; Liang, Z.; Xu, H.; Harrison, R.M. The characterisation of diesel exhaust particles – composition, size distribution and partitioning. Faraday Discuss. 2016, 189, 69–84. [Google Scholar] [CrossRef]
- Kittelson, D.B. Engines and nanoparticles: A review. J. Aerosol Sci. 1998, 575–588. [Google Scholar] [CrossRef]
- Oh, S.M.; Ryu, B.T.; Chung, K.H. Identification of estrogenic and antiestrogenic activities of respirable diesel exhaust particles by bioassay-directed fractionation. Arch. Pharmacal Res. 2008, 31, 75–82. [Google Scholar] [CrossRef]
- Taneda, S.; Hayashi, H.; Sakata, M.; Yoshino, S.; Suzuki, A.; Sagai, M.; Mori, Y. Anti-estrogenic Activity of Diesel Exhaust Particles. Biol. Pharm. Bull. 2000, 23, 1477–1480. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, K.; Toriba, A.; Chung, S.W.; Kizu, R.; Hayakawa, K. Identification of estrogenic/anti-estrogenic compounds in diesel exhaust particulate extract. Biomed. Chromatogr. 2007, 21, 1135–1142. [Google Scholar] [CrossRef]
- Watanabe, N.; Oonuki, Y. Inhalation of diesel engine exhaust affects spermatogenesis in growing male rats. Environ. Health Perspect. 1999, 107, 539–544. [Google Scholar] [CrossRef]
- Yoshida, S.; Sagai, M.; Oshio, S.; Umeda, T.; Ihara, T.; Sugamata, M.; Sugawara, I.; Takeda, K. Exposure to diesel exhaust affects the male reproductive system of mice. Int. J. Androl. 1999, 22, 307–315. [Google Scholar] [CrossRef]
- Dziendzikowska, K.; Oczkowski, M.; Stachoń, M.; Wilczak, J.; Królikowski, T.; Mruk, R.; Gromadzka-Ostrowska, J.; Øvrevik, J.; Kowalska, M.; Wegierek-Ciuk, A.; et al. Inhalation of diesel engine exhaust from combustion of 1st generation biodiesel fuel (B20) affects endocrine regulation of reproduction in male rats. Toxicol. Lett. 2016, 258, S182. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Jigami, J.; Hasegawa, C.; Suzuki, A.K.; Zhang, Y.; Fujitani, Y.; Nagaoka, K.; Watanabe, G.; Taya, K. Effect of nanoparticle-rich diesel exhaust on testosterone biosynthesis in adult male mice. Inhal. Toxicol. 2012, 24, 599–608. [Google Scholar] [CrossRef]
- Yoshida, S.; Hirano, S.; Shikagawa, K.; Hirata, S.; Rokuta, S.; Takano, H.; Ichinose, T.; Takeda, K. Diesel exhaust particles suppress expression of sex steroid hormone receptors in TM3 mouse Leydig cells. Environ. Toxicol. Pharmacol. 2007, 24, 292–296. [Google Scholar] [CrossRef]
- Hemmingsen, J.G.; Hougaard, K.; Talsness, C.; Wellejus, A.; Loft, S.; Wallin, H.; Moller, P. Prenatal exposure to diesel exhaust particles and effect on the male reproductive system in mice. Toxicology 2009, 264, 61–68. [Google Scholar] [CrossRef]
- Tsukue, N.; Tsubone, H.; Suzuki, A.K. Diesel exhaust affects the abnormal delivery in pregnant mice and the growth of their young. Inhal. Toxicol. 2002, 14, 635–651. [Google Scholar] [CrossRef]
- Ogliari, K.S.; Lichtenfels, A.J.D.F.C.; De Marchi, M.R.R.; Ferreira, A.T.; Dolhnikoff, M.; Saldiva, P.H.N. Intrauterine exposure to diesel exhaust diminishes adult ovarian reserve. Fertil. Steril. 2013, 99, 1681–1688e2. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Jahan, S.A.; Kabir, E.; Brown, R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Luderer, U.; Christensen, F.; Johnson, W.O.; She, J.; Ip, H.S.S.; Zhou, J.; Alvaran, J.; Krieg, E.F., Jr.; Kesner, J.S. Associations between urinary biomarkers of polycyclic aromatic hydrocarbon exposure and reproductive function during menstrual cycles in women. Environ. Int. 2017, 100, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Bolden, A.L.; Rochester, J.R.; Schultz, K.; Kwiatkowski, C.F. Polycyclic aromatic hydrocarbons and female reproductive health: A scoping review. Reprod. Toxicol. 2017, 73, 61–74. [Google Scholar] [CrossRef]
- Keith, L.H. The Source of U.S. EPA’s Sixteen PAH Priority Pollutants. Polycycl. Aromat. Compd. 2015, 35, 147–160. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, S.; Wang, H.; Tao, S.; Kiyama, R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ. Pollut. 2016, 213, 809–824. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Basagaña, X.; Dadvand, P.; Martinez, D.; Cirach, M.; Beelen, R.; Jacquemin, B. Air pollution and human fertility rates. Environ. Int. 2014, 70, 9–14. [Google Scholar] [CrossRef]
- Mahalingaiah, S.; Hart, J.; Laden, F.; Farland, L.; Hewlett, M.; Chavarro, J.; Aschengrau, A.; Missmer, S. Adult air pollution exposure and risk of infertility in the Nurses’ Health Study II. Hum. Reprod. 2016, 31, 638–647. [Google Scholar] [CrossRef]
- Conti, G.O.; Calogero, A.E.; Giacone, F.; Fiore, M.; Barchitta, M.; Agodi, A.; Ferrante, M. B(a)P adduct levels and fertility: A cross-sectional study in a Sicilian population. Mol. Med. Rep. 2017, 15, 3398–3404. [Google Scholar] [CrossRef] [Green Version]
- Rekhadevi, P.V.; Diggs, D.L.; Huderson, A.C.; Harris, K.L.; Archibong, A.E.; Ramesh, A. Metabolism of the environmental toxicant benzo(a)pyrene by subcellular fractions of human ovary. Hum. Exp. Toxicol. 2014, 33, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Grimmer, G.; Naujack, K.W.; Dettbarn, G. Gas chromatographic determination of polycyclic aromatic hydrocarbon, aza-arenes, aromatic amines in the particles and vapor phase of mainstream smoke of cigarettes. Toxicol. Lett. 1987, 35, 117–124. [Google Scholar] [CrossRef]
- Inyang, F.; Ramesh, A.; Kopsombut, P.; Niaz, M.S.; Hood, D.B.; Nyanda, A.M.; Archibong, A.E. Disruption of testicular steroidogenesis and epididymal function by inhaled benzo(a)pyrene. Reprod. Toxicol. 2003, 17, 527–537. [Google Scholar] [CrossRef]
- Han, Y.; Xia, Y.; Zhu, P.; Qiao, S.; Zhao, R.; Jin, N.; Wang, S.; Song, L.; Fu, G.; Wang, X. Reproductive hormones in relation to polycyclic aromatic hydrocarbon (PAH) metabolites among non-occupational exposure of males. Sci. Total. Environ. 2010, 408, 768–773. [Google Scholar] [CrossRef]
- Radwan, M.; Jurewicz, J.; Sobala, W.; Brzeźnicki, S.; Radwan, P.; Jakubowski, L.; Hawuła, W.; Ulańska, A.; Hanke, W.; Nicki, S.B. Human sperm aneuploidy after exposure to polycyclic aromatic hydrocarbons. Reprod. Fertil. Dev. 2016, 28, 1376. [Google Scholar] [CrossRef]
- Gaspari, L.; Chang, S.S.; Santella, R.M.; Garte, S.; Pedotti, P.; Taioli, E. Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as a marker of DNA damage and infertility. Mutat. Res. Mol. Mech. Mutagenesis 2003, 535, 155–160. [Google Scholar] [CrossRef]
- Windham, G.C.; Elkin, E.P.; Swan, S.H.; Waller, K.O.; Fenster, L. Cigarette smoking and effects on menstrual function. Obstet. Gynecol. 1999, 93, 59–65. [Google Scholar]
- Neal, M.S.; Zhu, J.; Foster, W. Quantification of benzo[a]pyrene and other PAHs in the serum and follicular fluid of smokers versus non-smokers. Reprod. Toxicol. 2008, 25, 100–106. [Google Scholar] [CrossRef]
- Seyler, L.E.; Pomerleau, O.F.; Fertig, J.B.; Hunt, D.; Parker, K. Pituitary hormone response to cigarette smoking. Pharmacol. Biochem. Behav. 1986, 24, 159–162. [Google Scholar] [CrossRef]
- Archibong, A.E.; Ramesh, A.; Inyang, F.; Niaz, M.S.; Hood, D.B.; Kopsombut, P. Endocrine disruptive actions of inhaled benzo(a)pyrene on ovarian function and fetal survival in fisher F-344 adult rats. Reprod. Toxicol. 2012, 34, 635–643. [Google Scholar] [CrossRef] [Green Version]
- ATSDR. Toxicological Profile for Cadmium; Agency for Toxic Substances and Disease Registry: Arlanta, GA, USA, 2012. [Google Scholar]
- IARC. IARC monographs vol. 100C. In Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2012. [Google Scholar]
- De Angelis, C.; Galdiero, M.; Pivonello, C.; Salzano, C.; Gianfrilli, D.; Piscitelli, P.; Lenzi, A.; Colao, A.; Pivonello, R. The environment and male reproduction: The effect of cadmium exposure on reproductive function and its implication in fertility. Reprod. Toxicol. 2017, 73, 105–127. [Google Scholar] [CrossRef]
- Mielke, H.W.; Reagan, P.L. Soil is an Important Pathway of Human Lead Exposure. Environ. Health Perspect. 1998, 106, 217–229. [Google Scholar]
- NAS. Measuring Lead Exposure in Infants Children and Other Sensitive Populations; National Academy of Sciences: Washington, DC, USA, 1993; p. 7. [Google Scholar]
- Xintaras, C. Analysis Paper: Impact of Lead Contaminated Soil on Public Health; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 1992. [Google Scholar]
- Wijesekara, G.; Fernando, D.; Wijerathna, S.; Bandara, N. Environmental and occupational exposures as a cause of male infertility: A caveat. Ceylon Med. J. 2015, 60, 52–56. [Google Scholar] [CrossRef]
- Needham, L.L.; Grandjean, P.; Heinzow, B.; Jørgensen, P.J.; Nielsen, F.; Patterson, J.D.G.; Sjödin, A.; Turner, W.E.; Weihe, P. Partition of Environmental Chemicals between Maternal and Fetal Blood and Tissues. Environ. Sci. Technol. 2011, 45, 1121–1126. [Google Scholar] [CrossRef] [Green Version]
- Saradha, B.; Mathur, P. Effect of environmental contaminants on male reproduction. Environ. Toxicol. Pharmacol. 2006, 21, 34–41. [Google Scholar] [CrossRef]
- Pandya, C.; Pillai, P.; Nampoothiri, L.P.; Bhatt, N.; Gupta, S. Effect of lead and cadmium co-exposure on testicular steroid metabolism and antioxidant system of adult male rats. Andrology 2012, 44, 813–822. [Google Scholar] [CrossRef]
- Telisman, S.; Cvitkovic, P.; Jurasovic, J.; Pizent, A.; Gavella, M.; Rocic, B. Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environ. Health Perspect. 2000, 108, 45–53. [Google Scholar] [CrossRef]
- Pillai, A.; Priya, L.; Gupta, S. Effects of combined exposure to lead and cadmium on the hypothalamic-pituitary axis function in proestrous rats. Food Chem. Toxicol. 2003, 41, 379–384. [Google Scholar] [CrossRef]
- Pillai, A.; Priya, P.L.; Gupta, S. Effects of combined exposure to lead and cadmium on pituitary membrane of female rats. Arch. Toxicol. 2002, 76, 671–675. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, J.; Wu, T.; Jiang, X.; Jia, H.; Qing, S.; An, Q.; Zhang, Y.; Su, J. Reproductive toxicity of acute Cd exposure in mouse: Resulting in oocyte defects and decreased female fertility. Toxicol. Appl. Pharmacol. 2019, 379, 114684. [Google Scholar] [CrossRef]
- Tanrikut, E.; Karaer, A.; Celik, O.; Celik, E.; Otlu, B.; Yilmaz, E.; Ozgul, O.; Tanrıkut, E. Role of endometrial concentrations of heavy metals (cadmium, lead, mercury and arsenic) in the aetiology of unexplained infertility. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 179, 187–190. [Google Scholar] [CrossRef]
- Gollenberg, A.L.; Hediger, M.L.; Lee, P.A.; Himes, J.H.; Louis, G.M.B. Association between Lead and Cadmium and Reproductive Hormones in Peripubertal U.S. Girls. Environ. Health Perspect. 2010, 118, 1782–1787. [Google Scholar] [CrossRef] [Green Version]
- Kakeyama, M.; Tohyama, C. Developmental Neurotoxicity of Dioxin and Its Related Compounds. Ind. Health 2003, 41, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Bjerke, D.; Sommer, R.; Moore, R.W.; Peterson, R. Effects of in Utero and Lactational 2,3,7,8-Tetrachlorodibenzo-p-dioxin Exposure on Responsiveness of the Male Rat Reproductive System to Testosterone Stimulation in Adulthood. Toxicol. Appl. Pharmacol. 1994, 127, 250–257. [Google Scholar] [CrossRef]
- Sany, S.B.T.; Hashim, R.; Salleh, A.; Rezayi, M.; Karlen, D.J.; Razavizadeh, B.B.M.; Abouzari-Lotf, E. Dioxin risk assessment: Mechanisms of action and possible toxicity in human health. Environ. Sci. Pollut. Res. 2015, 22, 19434–19450. [Google Scholar] [CrossRef]
- Lin, T.-M.; Ko, K.; Moore, R.W.; Buchanan, D.L.; Cooke, P.S.; Peterson, R.E. Role of the aryl hydrocarbon receptor in the development of control and 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed male mice. J. Toxicol. Environ. Health Part A 2010, 64, 327–342. [Google Scholar] [CrossRef]
- Fukuzawa, N.; Ohsako, S.; Wu, Q.; Sakaue, M.; Fujii-Kuriyama, Y.; Baba, T.; Tohyama, C. Testicular cytochrome P450scc and LHR as possible targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the mouse. Mol. Cell. Endocrinol. 2004, 221, 87–96. [Google Scholar] [CrossRef]
- Boda, H.; Nghi, T.N.; Nishijo, M.; Thao, P.N.; Tai, P.T.; Van Luong, H.; Anh, T.H.; Morikawa, Y.; Nishino, Y.; Nishijo, H. Prenatal dioxin exposure estimated from dioxins in breast milk and sex hormone levels in umbilical cord blood in Vietnamese newborn infants. Sci. Total Environ. 2018, 615, 1312–1318. [Google Scholar] [CrossRef]
- Mocarelli, P.; Gerthoux, P.M.; Patterson, D.G.; Milani, S.; Limonta, G.; Bertona, M.; Signorini, S.; Tramacere, P.; Colombo, L.; Crespi, C.; et al. Dioxin Exposure, from Infancy through Puberty, Produces Endocrine Disruption and Affects Human Semen Quality. Environ. Health Perspect. 2008, 116, 70–77. [Google Scholar] [CrossRef]
- Baba, T.; Mimura, J.; Nakamura, N.; Harada, N.; Yamamoto, M.; Morohashi, K.-I.; Fujii-Kuriyama, Y. Intrinsic Function of the Aryl Hydrocarbon (Dioxin) Receptor as a Key Factor in Female Reproduction. Mol. Cell. Biol. 2005, 25, 10040–10051. [Google Scholar] [CrossRef] [Green Version]
- Morán, F.M.; Vandevoort, C.A.; Overstreet, J.W.; Lasley, B.L.; Conley, A.J. Molecular Target of Endocrine Disruption in Human Luteinizing Granulosa Cells by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin: Inhibition of Estradiol Secretion Due to Decreased 17α-Hydroxylase/17,20-Lyase Cytochrome P450 Expression. Endocrinology 2003, 144, 467–473. [Google Scholar] [CrossRef]
- Baldridge, M.; Marks, G.; Rawlins, R.; Hutz, R. Very low-dose (femtomolar) 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) disrupts steroidogenic enzyme mRNAs and steroid secretion by human luteinizing granulosa cells. Reprod. Toxicol. 2015, 52, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Soave, I.; Caserta, D.; Wenger, J.M.; Dessole, S.; Perino, A.; Marci, R. Environment and Endometriosis: A toxic relationship. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1964–1972. [Google Scholar]
- Alali, Z.; Swan, K.; Nothnick, W.B. Matrix Metalloproteinases and Endometriosis: Their ROle in Disease Pathophysiology and Potential as Therapeutic Targets. Curr. Womens Health Rev. 2018, 14, 147–153. [Google Scholar] [CrossRef]
- Bruner-Tran, K.L.; Yeaman, G.R.; Crispens, M.A.; Igarashi, T.M.; Osteen, K.G. Dioxin may promote inflammation-related development of endometriosis. Fertil. Steril. 2008, 89, 1287–1298. [Google Scholar] [CrossRef] [Green Version]
- Karman, B.N.; Basavarajappa, M.S.; Craig, Z.R.; Flaws, J.A. 2,3,7,8-Tetrachlorodibenzo-p-dioxin activates the aryl hydrocarbon receptor and alters sex steroid hormone secretion without affecting growth of mouse antral follicles in vitro. Toxicol. Appl. Pharmacol. 2012, 261, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Pesonen, S.A.; Haavisto, T.E.; Viluksela, M.; Toppari, J.; Paranko, J. Effects of in utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on rat follicular steroidogenesis. Reprod. Toxicol. 2006, 22, 521–528. [Google Scholar] [CrossRef]
- Myllymäki, S.A.; Haavisto, T.E.; Brokken, L.J.S.; Viluksela, M.; Toppari, J.; Paranko, J. In Utero and Lactational Exposure to TCDD; Steroidogenic Outcomes Differ in Male and Female Rat Pups. Toxicol. Sci. 2005, 88, 534–544. [Google Scholar] [CrossRef] [Green Version]
- Bruner-Tran, K.L.; Osteen, K.G. Developmental exposure to TCDD reduces fertility and negatively affects pregnancy outcomes across multiple generations. Reprod. Toxicol. 2011, 31, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Miniero, R.; De Felip, E.; Ferri, F.; Di Domenico, A. An overview of TCDD half-life in mammals and its correlation to body weight. Chemosphere 2001, 43, 839–844. [Google Scholar] [CrossRef]
- Heiden, T.K.; Carvan, M.J., III; Hutz, R.J. Inhibition of Follicular Development, Vitellogenesis, and Serum 17β-Estradiol Concentrations in Zebrafish Following Chronic, Sublethal Dietary Exposure to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. Toxicol. Sci. 2006, 90, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Winneke, G.; Ranft, U.; Wittsiepe, J.; Kasper-Sonnenberg, M.; Fürst, P.; Krämer, U.; Seitner, G.; Wilhelm, M. Behavioral Sexual Dimorphism in School-Age Children and Early Developmental Exposure to Dioxins and PCBs: A Follow-Up Study of the Duisburg Cohort. Environ. Health Perspect. 2013, 122, 292–298. [Google Scholar] [CrossRef] [Green Version]
- ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Polychlorinated Biphenyls (PCBs); U.S. Department of Health and Human Services: Atlanta, GA, USA; Public Health Service: Washington, DC, USA, 2000.
- Begriche, K.; Massart, J.; Fromenty, B. Chapter 15—Mitochondrial Dysfunction Induced by Xenobiotics: Involvement in Steatosis and Steatohepatitis. In Mitochondria in Obesity and Type 2 Diabetes; Academic Press: Cambridge, MA, USA, 2019; pp. 347–364. [Google Scholar]
- Stohs, S.J. Polychlorinated Biphenyls (PCBs). In Encyclopedia of Toxicology, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 1035–1037. [Google Scholar]
- Boer, J. Encyclopedia of Analytical Science 2nd Edition, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2005; pp. 214–225. [Google Scholar]
- Ochiai, S.; Shimojo, N.; Yuka, I.; Watanabe, M.; Matsuno, Y.; Suzuki, S.; Kohno, Y.; Mori, C. A pilot study for foetal exposure to multiple persistent organic pollutants and the development of infant atopic dermatitis in modern Japanese society. Chemosphere 2014, 94, 48–52. [Google Scholar] [CrossRef]
- Mori, C.; Kakuta, K.; Matsuno, Y.; Todaka, E.; Watanabe, M.; Hanazato, M.; Kawashiro, Y.; Fukata, H. Polychlorinated biphenyl levels in the blood of Japanese individuals ranging from infants to over 80 years of age. Environ. Sci. Pollut. Res. 2013, 21, 6434–6439. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.S.; Lee, M.M.; Williams, P.L.; Korrick, S.A.; Sergeyev, O.; Lam, T.; Revich, B.; Hauser, R. Associations of Peripubertal Serum Dioxin and Polychlorinated Biphenyl Concentrations with Pubertal Timing among Russian Boys. Environ. Health Perspect. 2016, 124, 1801–1807. [Google Scholar] [CrossRef] [Green Version]
- Moltó, J.; Paul, R.; Ortuño, N.; Medrano, M.L.; Aizpurua, J.; Gómez-Torres, M.J.; Ortuño, N. Levels of dioxin-like PCBs in low-volume serum samples of male patients attending fertility clinics. Environ. Sci. Pollut. Res. 2016, 23, 3463–3468. [Google Scholar] [CrossRef] [Green Version]
- Ronn, A.; Hardy, M.L.; Mills, S. Botanical Medicine for Women’s Health; Elsevier: New York, NY, USA, 2010; pp. 334–346. [Google Scholar]
- Petersen, M.S.; Halling, J.; Jørgensen, N.; Nielsen, F.; Grandjean, P.; Jensen, T.K.; Weihe, P. Reproductive Function in a Population of Young Faroese Men with Elevated Exposure to Polychlorinated Biphenyls (PCBs) and Perfluorinated Alkylate Substances (PFAS). Int. J. Environ. Res. Public Health 2018, 15, 1880. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, K.K.; Hauser, R.; Altshul, L.; Meeker, J.D. Serum concentrations of p, p′-DDE, HCB, PCBs and reproductive hormones among men of reproductive age. Reprod. Toxicol. 2012, 34, 429–435. [Google Scholar] [CrossRef]
- McAuliffe, M.E.; Williams, P.L.; Korrick, S.A.; Altshul, L.M.; Perry, M.J. Environmental Exposure to Polychlorintated Biphenyls and p,p′-DDE and Sperm Sex-Chromosome Disomy. Environ. Health Perspect. 2012, 120, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, R.M.; Walker, D.M.; Juenger, T.E.; Woller, M.J.; Gore, A.C. Effects of Perinatal Polychlorinated Biphenyls on Adult Female Rat Reproduction: Development, Reproductive Physiology, and Second Generational Effects1. Biol. Reprod. 2008, 78, 1091–1101. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Chen, Y.; Chen, Q.; Zhang, H.; Lin, Y.; Zhu, M.; Dong, S. Dioxin-like rather than non-dioxin-like PCBs promote the development of endometriosis through stimulation of endocrine–inflammation interactions. Arch. Toxicol. 2016, 91, 1915–1924. [Google Scholar] [CrossRef]
- Bjørklund, G.; Chirumbolo, S.; Dadar, M.; Pivina, L.; Lindh, U.; Butnariu, M.; Aaseth, J. Mercury exposure and its effects on fertility and pregnancy outcome. Basic Clin. Pharmacol. Toxicol. 2019, 125, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Benvenga, S.; Micali, A.; Pallio, G.; Vita, R.; Malta, C.; Puzzolo, D.; Irrera, N.; Squadrito, F.; Altavilla, D.; Minutoli, L. Effects of Myo-inositol Alone and in Combination with Seleno-Lmethionine on Cadmium-Induced Testicular Damage in Mice. Curr. Mol. Pharmacol. 2019, 12, 311–323. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plunk, E.C.; Richards, S.M. Endocrine-Disrupting Air Pollutants and Their Effects on the Hypothalamus-Pituitary-Gonadal Axis. Int. J. Mol. Sci. 2020, 21, 9191. https://doi.org/10.3390/ijms21239191
Plunk EC, Richards SM. Endocrine-Disrupting Air Pollutants and Their Effects on the Hypothalamus-Pituitary-Gonadal Axis. International Journal of Molecular Sciences. 2020; 21(23):9191. https://doi.org/10.3390/ijms21239191
Chicago/Turabian StylePlunk, Elizabeth C., and Sean M. Richards. 2020. "Endocrine-Disrupting Air Pollutants and Their Effects on the Hypothalamus-Pituitary-Gonadal Axis" International Journal of Molecular Sciences 21, no. 23: 9191. https://doi.org/10.3390/ijms21239191
APA StylePlunk, E. C., & Richards, S. M. (2020). Endocrine-Disrupting Air Pollutants and Their Effects on the Hypothalamus-Pituitary-Gonadal Axis. International Journal of Molecular Sciences, 21(23), 9191. https://doi.org/10.3390/ijms21239191