Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review
Abstract
:1. Introduction
2. Review
2.1. Role of RT
2.1.1. Mechanism of RT
2.1.2. Mechanism of Immune Effects on RT
2.2. Case Reports of Abscopal Effects of RT
2.2.1. Biomarkers in Leukocytes
2.2.2. Biomarkers in the Serum
2.2.3. Biomarkers in Tumors
2.3. Animal Model for Evaluating the Abscopal Effect
2.3.1. Model of Metastasis
2.3.2. Verification of the Abscopal Effect Using Immunodeficient Mice
2.3.3. Other Models
3. Discussion
3.1. Immunogenicity of Melanoma Cells Is Immunostimulated Not Only by Immunotherapy But Also by RT
3.2. Enhanced RT Induced Immunity with Other Modern Therapies
3.3. Evaluation of the Abscopal Effect Using Nude Mice
3.4. Biomarker of Immune Response
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CTLA-4 | Cytotoxic T-lymphocyte-associated protein 4 |
ICAM-1 | Intercellular adhesion molecule 1 |
ICI | Immune checkpoint inhibitor |
DAMPs | Damage-associated molecular patterns |
HMGB1 | High-mobility group protein B1 |
IFN | Interferon |
LN | Lymph node |
MDSCs | Myeloid-derived suppressor cells |
MICA/B | Major histocompatibility complex class I-related chain A/B |
NK cells | Natural killer cells |
PD-1 | Programmed cell death 1 |
PD-L1 | Programmed death-ligand 1 |
ROS | Reactive oxygen species |
RT | Radiotherapy |
STING | Stimulator of IFN genes |
TILs | Tumor-infiltrating lymphocytes |
TNFRSF | Tumor necrosis factor receptor superfamily |
Tregs | Regulatory T lymphocytes |
VCAM-1 | Vascular cell adhesion molecule 1 |
References
- Francken, A.B.; Accortt, N.A.; Shaw, H.M.; Wiener, M.; Soong, S.J.; Hoekstra, H.J.; Thompson, J.F. Prognosis and determinants of outcome following locoregional or distant recurrence in patients with cutaneous melanoma. Ann. Surg. Oncol. 2008, 15, 1476–1484. [Google Scholar] [CrossRef] [PubMed]
- Barth, A.; Wanek, L.A.; Morton, D.L. Prognostic factors in 1521 melanoma patients with distant metastases. J. Am. Coll Surg. 1995, 181, 193–201. [Google Scholar] [PubMed]
- Olbryt, M.; Rajczykowski, M.; Widłak, W. Biological Factors behind Melanoma Response to Immune Checkpoint Inhibitors. Int. J. Mol. Sci. 2020, 21, 4071. [Google Scholar] [CrossRef] [PubMed]
- Walle, T.; Martinez Monge, R.; Cerwenka, A.; Ajona, D.; Melero, I.; Lecanda, F. Radiation effects on antitumor immune responses: Current perspectives and challenges. Ther. Adv. Med. Oncol. 2018, 18, 1758834017742575. [Google Scholar] [CrossRef] [PubMed]
- Chicas-Sett, R.; Zafra-Martin, J.; Morales-Orue, I.; Castilla-Martinez, J.; Berenguer-Frances, M.A.; Gonzalez-Rodriguez, E.; Rodriguez-Abreu, D.; Couñago, F. Immunoradiotherapy as An Effective Therapeutic Strategy in Lung Cancer: From Palliative Care to Curative Intent. Cancers 2020, 12, 2178. [Google Scholar] [CrossRef]
- Rogers, S.J.; Puric, E.; Eberle, B.; Datta, N.R.; Bodis, S.B. Radiotherapy for Melanoma: More than DNA Damage. Dermatol. Res. Pract. 2019, 2019, 9435389. [Google Scholar] [CrossRef] [Green Version]
- Walshaw, R.C.; Honeychurch, J.; Illidge, T.M. Stereotactic ablative radiotherapy and immunotherapy combinations: Turning the future into systemic therapy? Br. J. Radiol. 2016, 89, 20160472. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, J.D.; Mahadevan, A.; Floyd, S.R.; Dyer, M.A.; Catalano, P.J.; Alexander, B.M.; McDermott, D.F.; Kaplan, I.D. Ipilmumab and cranial radiation in metastatic melanoma patients: A case series and review. J. Immunother. Cancer. 2015, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Seyedin, S.N.; Schoenhals, J.E.; Lee, D.A.; Cortez, M.A.; Wang, X.; Niknam, S.; Tang, C.; Hong, D.S.; Naing, A.; Sharma, P.; et al. Strategies for combining immunotherapy with radiation for anticancer therapy. Immunotherapy 2015, 7, 967–980. [Google Scholar] [CrossRef] [Green Version]
- Vacchelli, E.; Vitale, I.; Tartour, E.; Eggermont, A.; Sautès-Fridman, C.; Galon, J.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Anticancer radioimmunotherapy. Oncoimmunology. 2013, 2, e25595. [Google Scholar] [CrossRef] [Green Version]
- Connell, P.P.; Hellman, S. Advances in radiotherapy and implications for the next century: A historical perspective. Cancer Res. 2009, 69, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.-W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wani, S.Q.; Dar, I.A.; Khan, T.; Lone, M.M.; Afroz, F. Radiation Therapy and its Effects beyond the Primary Target: An Abscopal Effect. Cureus 2019, 19, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mothersill, C.; Seymour, C. Radiation-induced bystander effects: Past history and future directions. Radiat. Res. 2001, 155, 759–767. [Google Scholar] [CrossRef]
- Prise, K.M.; O’Sullivan, J.M. Radiation-induced bystander signalling in cancer therapy. Nat. Rev. Cancer. 2009, 9, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Mothersill, C.; Seymour, C. Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int. J. Radiat. Biol. 1997, 71, 421–427. [Google Scholar]
- Finger, P.T. Radiation therapy for choroidal melanoma. Surv. Ophthalmol. 1997, 42, 215–232. [Google Scholar] [CrossRef]
- Nag, S.; Quivey, J.M.; Earle, J.D.; Followill, D.; Fontanesi, J.; Finger, P.T. American Brachytherapy Society. The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 544–555. [Google Scholar] [CrossRef]
- Scaringi, C.; Agolli, L.; Minniti, G. Technical Advances in Radiation Therapy for Brain Tumors. Anticancer. Res. 2018, 38, 6041–6045. [Google Scholar] [CrossRef] [Green Version]
- Podder, T.K.; Fredman, E.T.; Ellis, R.J. Advances in Radiotherapy for Prostate Cancer Treatment. Adv. Exp. Med. Biol. 2018, 1096, 31–47. [Google Scholar]
- Paunesku, T.; Woloschak, G.E. Future Directions of Intraoperative Radiation Therapy: A Brief Review. Front. Oncol. 2017, 7, 300. [Google Scholar] [CrossRef] [Green Version]
- Kolesnick, R.; Fuks, Z. Radiation and ceramide-induced apoptosis. Oncogene 2003, 22, 5897–5906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, S.S.; Duke, S.; Jena, R.; Williams, M.V.; Burnet, N.G. Advances in radiotherapy. BMJ 2012, 345, e7765. [Google Scholar] [CrossRef]
- Shuff, J.H.; Siker, M.L.; Daly, M.D.; Schultz, C.J. Role of radiation therapy in cutaneous melanoma. Clin. Plast. Surg. 2010, 37, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Fenig, E.; Eidelevich, E.; Njuguna, E.; Katz, A.; Gutman, H.; Sulkes, A.; Schechter, J. Role of radiation therapy in the management of cutaneous malignant melanoma. Am. J. Clin. Oncol. 1999, 22, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Mole, R.H. Whole body irradiation; radiobiology or medicine? Br. J. Radiol. 1953, 26, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Palata, O.; Hradilova Podzimkova, N.; Nedvedova, E.; Umprecht, A.; Sadilkova, L.; Palova Jelinkova, L.; Spisek, R.; Adkins, I. Radiotherapy in Combination With Cytokine Treatment. Front. Oncol. 2019, 9, 367. [Google Scholar] [CrossRef]
- Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 2012, 12, 860–875. [Google Scholar] [CrossRef]
- Golden, E.B.; Frances, D.; Pellicciotta, I.; Demaria, S.; Helen Barcellos-Hoff, M.; Formenti, S.C. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 2014, 3, e28518. [Google Scholar] [CrossRef] [Green Version]
- Ko, A.; Kanehisa, A.; Martins, I.; Senovilla, L.; Chargari, C.; Dugue, D.; Mariño, G.; Kepp, O.; Michaud, M.; Perfettini, J.L.; et al. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ. 2014, 21, 92–99. [Google Scholar] [CrossRef]
- Gameiro, S.R.; Jammeh, M.L.; Wattenberg, M.M.; Tsang, K.Y.; Ferrone, S.; Hodge, J.W. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 2014, 5, 403–416. [Google Scholar] [CrossRef] [Green Version]
- Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G.M.; Apetoh, L.; Perfettini, J.L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N.; et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007, 13, 54–61. [Google Scholar] [CrossRef]
- Elliott, M.R.; Chekeni, F.B.; Trampont, P.C.; Lazarowski, E.R.; Kadl, A.; Walk, S.F.; Park, D.; Woodson, R.I.; Ostankovich, M.; Sharma, P.; et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009, 461, 282–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apetoh, L.; Ghiringhelli, F.; Tesniere, A.; Obeid, M.; Ortiz, C.; Criollo, A.; Mignot, G.; Maiuri, M.C.; Ullrich, E.; Saulnier, P.; et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 2007, 13, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Burnette, B.C.; Liang, H.; Lee, Y.; Chlewicki, L.; Khodarev, N.N.; Weichselbaum, R.R.; Fu, Y.X.; Auh, S.L. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 2011, 71, 2488–2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lugade, A.A.; Sorensen, E.W.; Gerber, S.A.; Moran, J.P.; Frelinger, J.G.; Lord, E.M. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J. Immunol. 2008, 180, 3132–3139. [Google Scholar] [CrossRef]
- Lim, J.Y.; Gerber, S.A.; Murphy, S.P.; Lord, E.M. Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8(+) T cells. Cancer Immunol. Immunother. 2014, 63, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Liang, H.; Xu, M.; Yang, X.; Burnette, B.; Arina, A.; Li, X.D.; Mauceri, H.; Beckett, M.; Darga, T.; et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity 2014, 41, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Reits, E.A.; Hodge, J.W.; Herberts, C.A.; Groothuis, T.A.; Chakraborty, M.; Wansley, E.K.; Camphausen, K.; Luiten, R.M.; de Ru, A.H.; Neijssen, J.; et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 2006, 203, 1259–1271. [Google Scholar] [CrossRef]
- Garnett, C.T.; Palena, C.; Chakraborty, M.; Tsang, K.Y.; Schlom, J.; Hodge, J.W. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 2005, 64, 7985–7994. [Google Scholar] [CrossRef]
- Gasser, S.; Orsulic, S.; Brown, E.J.; Raulet, D.H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005, 436, 1186–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Rao, G.S.; Groh, V.; Spies, T.; Gattuso, P.; Kaufman, H.L.; Plate, J.; Prinz, R.A. Major histocompatibility complex class I-related chain A/B (MICA/B) expression in tumor tissue and serum of pancreatic cancer: Role of uric acid accumulation in gemcitabine-induced MICA/B expression. BMC Cancer 2011, 11, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedel, R.; Thiery-Vuillemin, A.; Grandclement, C.; Balland, J.; Remy-Martin, J.P.; Kantelip, B.; Pallandre, J.R.; Pivot, X.; Ferrand, C.; Tiberghien, P.; et al. Novel role for STAT3 in transcriptional regulation of NK immune cell targeting receptor MICA on cancer cells. Cancer Res. 2011, 71, 1615–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinle, A.; Li, P.; Morris, D.L.; Groh, V.; Lanier, L.L.; Strong, R.K.; Spies, T. Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 2001, 53, 279–287. [Google Scholar] [CrossRef]
- Ames, E.; Canter, R.J.; Grossenbacher, S.K.; Mac, S.; Smith, R.C.; Monjazeb, A.M.; Chen, M.; Murphy, W.J. Enhanced targeting of stem-like solid tumor cells with radiation and natural killer cells. Oncoimmunology 2015, 4, e1036212. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Mimura, K.; Yoshimoto, Y.; Watanabe, M.; Ohkubo, Y.; Izawa, S.; Murata, K.; Fujii, H.; Nakano, T.; Kono, K. Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res. 2012, 72, 3967–3976. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Li, X.; Jiang, T.; Xie, H.; Zhu, Z.; Zhou, F.; Zhou, C. Combined Radiotherapy and Anti-PD-L1 Antibody Synergistically Enhances Antitumor Effect in Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2017, 12, 1085–1097. [Google Scholar] [CrossRef] [Green Version]
- Derer, A.; Spiljar, M.; Bäumler, M.; Hecht, M.; Fietkau, R.; Frey, B.; Gaipl, U.S. Chemoradiation Increases PD-L1 Expression in Certain Melanoma and Glioblastoma Cells. Front. Immunol. 2016, 7, 610. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Niimi, A.; Yasuhara, T.; Permata, T.; Hagiwara, Y.; Isono, M.; Nuryadi, E.; Sekine, R.; Oike, T.; Kakoti, S.; et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat. Commun. 2017, 8, 1751. [Google Scholar] [CrossRef]
- Sato, H.; Jeggo, P.A.; Shibata, A. Regulation of programmed death-ligand 1 expression in response to DNA damage in cancer cells: Implications for precision medicine. Cancer Sci. 2019, 110, 3415–3423. [Google Scholar] [CrossRef] [Green Version]
- Verbrugge, I.; Hagekyriakou, J.; Sharp, L.L.; Galli, M.; West, A.; McLaughlin, N.M.; Duret, H.; Yagita, H.; Johnstone, R.W.; Smyth, M.J.; et al. Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res. 2012, 72, 3163–3174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y.X. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 2014, 124, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.F.; Chen, P.T.; Chen, W.C.; Lu, M.S.; Lin, P.Y.; Lee, K.D. The role of PD-L1 in the radiation response and prognosis for esophageal squamous cell carcinoma related to IL-6 and T-cell immunosuppression. Oncotarget 2016, 7, 7913–7924. [Google Scholar] [CrossRef]
- Barker, H.E.; Paget, J.T.E.; Khan, A.A.; Harrington, K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer 2015, 15, 409–425. [Google Scholar] [CrossRef] [PubMed]
- Vanpouille-Box, C.; Diamond, J.M.; Pilones, K.A.; Zavadil, J.; Babb, J.S.; Formenti, S.C.; Barcellos-Hoff, M.H.; Demaria, S. TGFβ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity. Cancer Res. 2015, 75, 2232–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Escamilla, J.; Mok, S.; David, J.; Priceman, S.; West, B.; Bollag, G.; McBride, W.; Wu, L. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 2013, 73, 2782–2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuoka, Y.; Nakayama, H.; Yoshida, R.; Hirosue, A.; Nagata, M.; Tanaka, T.; Kawahara, K.; Sakata, J.; Arita, H.; Nakashima, H.; et al. IL-6 controls resistance to radiation by suppressing oxidative stress via the Nrf2-antioxidant pathway in oral squamous cell carcinoma. Br. J. Cancer 2016, 115, 1234–1244. [Google Scholar] [CrossRef] [Green Version]
- Klug, F.; Prakash, H.; Huber, P.E.; Seibel, T.; Bender, N.; Halama, N.; Pfirschke, C.; Voss, R.H.; Timke, C.; Umansky, L.; et al. Low-dose irradiation programs macrophage differentiation to an iNOS⁺/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013, 24, 589–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; Demaria, S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 2017, 8, 15618. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, S.; Wang, B.; Kawashima, N.; Braunstein, S.; Badura, M.; Cameron, T.O.; Babb, J.S.; Schneider, R.J.; Formenti, S.C.; Dustin, M.L.; et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J. Immunol. 2008, 181, 3099–3107. [Google Scholar] [CrossRef]
- Kozin, S.V.; Kamoun, W.S.; Huang, Y.; Dawson, M.R.; Jain, R.K.; Duda, D.G. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res. 2010, 70, 5679–5685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kioi, M.; Vogel, H.; Schultz, G.; Hoffman, R.M.; Harsh, G.R.; Brown, J.M. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Investig. 2010, 120, 694–705. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, G.; Fridman, M. Abscopal effect of radiation in papillary adenocarcinoma. Br. J. Radiol. 1973, 46, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Antoniades, J.; Brady, L.W.; Lightfoot, D.A. Lymphangiographic demonstration of the abscopal effect in patients with malignant lymphomas. Int. J. Radiat. Oncol. Biol. Phys. 1977, 2, 141–147. [Google Scholar] [CrossRef]
- Rees, G.J. Abscopal regression in lymphoma: A mechanism in common with total body irradiation? Clin. Radiol. 1981, 32, 475–480. [Google Scholar] [CrossRef]
- Ohba, K.; Omagari, K.; Nakamura, T.; Ikuno, N.; Saeki, S.; Matsuo, I.; Kinoshita, H.; Masuda, J.; Hazama, H.; Sakamoto, I.; et al. Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut 1998, 43, 575–577. [Google Scholar] [CrossRef] [PubMed]
- Wersäll, P.J.; Blomgren, H.; Pisa, P.; Lax, I.; Kälkner, K.M.; Svedman, C. Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol. 2006, 45, 493–497. [Google Scholar] [CrossRef]
- Takaya, M.; Niibe, Y.; Tsunoda, S.; Jobo, T.; Imai, M.; Kotani, S.; Unno, N.; Hayakawa, K. Abscopal effect of radiation on toruliform para-aortic lymph node metastases of advanced uterine cervical carcinoma--a case report. Anticancer Res. 2007, 27, 499–503. [Google Scholar]
- Lakshmanagowda, P.B.; Viswanath, L.; Thimmaiah, N.; Dasappa, L.; Supe, S.S.; Kallur, P. Abscopal effect in a patient with chronic lymphocytic leukemia during radiation therapy: A case report. Cases J. 2009, 2, 204. [Google Scholar] [CrossRef] [Green Version]
- Okuma, K.; Yamashita, H.; Niibe, Y.; Hayakawa, K.; Nakagawa, K. Abscopal effect of radiation on lung metastases of hepatocellular carcinoma: A case report. J. Med. Case Rep. 2011, 5, 111. [Google Scholar] [CrossRef] [Green Version]
- Cotter, S.E.; Dunn, G.P.; Collins, K.M.; Sahni, D.; Zukotynski, K.A.; Hansen, J.L.; O’Farrell, D.A.; Ng, A.K.; Devlin, P.M.; Wang, L.C. Abscopal effect in a patient with metastatic Merkel cell carcinoma following radiation therapy: Potential role of induced antitumor immunity. Arch. Dermatol. 2011, 147, 870–872. [Google Scholar] [CrossRef]
- Tubin, S.; Casamassima, F.; Menichelli, C.; Pastore, G.; Fanelli, A.; Crisci, R. A case report on metastatic thyroid carcinoma: Radiation-induced bystander or abscopal effect? J. Cancer Sci. Ther. 2012, 4, 408–411. [Google Scholar] [CrossRef] [Green Version]
- Ishiyama, H.; Teh, B.S.; Ren, H.; Chiang, S.; Tann, A.; Blanco, A.I.; Paulino, A.C.; Amato, R. Spontaneous regression of thoracic metastases while progression of brain metastases after stereotactic radiosurgery and stereotactic body radiotherapy for metastatic renal cell carcinoma: Abscopal effect prevented by the blood-brain barrier? Clin. Genitourin. Cancer 2012, 10, 196–198. [Google Scholar] [CrossRef]
- Postow, M.A.; Callahan, M.K.; Barker, C.A.; Yamada, Y.; Yuan, J.; Kitano, S.; Mu, Z.; Rasalan, T.; Adamow, M.; Ritter, E.; et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 2012, 366, 925–931. [Google Scholar] [CrossRef] [Green Version]
- Siva, S.; Callahan, J.; MacManus, M.P.; Martin, O.; Hicks, R.J.; Ball, D.L. Abscopal [corrected] effects after conventional and stereotactic lung irradiation of non-small-cell lung cancer. J. Thorac. Oncol. 2013, 8, e71–e72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golden, E.B.; Demaria, S.; Schiff, P.B.; Chachoua, A.; Formenti, S.C. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol. Res. 2013, 1, 365–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamell, E.F.; Wolchok, J.D.; Gnjatic, S.; Lee, N.Y.; Brownell, I. The abscopal effect associated with a systemic anti-melanoma immune response. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 293–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thallinger, C.; Prager, G.; Ringl, H.; Zielinski, C. Abscopal-Effekt in der Therapie des malignen Melanoms [Abscopal effect in the treatment of malignant melanoma]. Hautarzt 2015, 66, 545–548. [Google Scholar] [CrossRef]
- Joe, M.B.; Lum, J.J.; Watson, P.H.; Tonseth, R.P.; McGhie, J.P.; Truong, P.T. Radiation generates an abscopal response and complete resolution of metastatic squamous cell carcinoma of the anal canal: A case report. J. Gastrointest. Oncol. 2017, 8, E84–E89. [Google Scholar] [CrossRef] [Green Version]
- Sperduto, W.; King, D.M.; Watanabe, Y.; Lou, E.; Sperduto, P.W. Case Report of Extended Survival and Quality of Life in a Melanoma Patient with Multiple Brain Metastases and Review of Literature. Cureus 2017, 9, e1947. [Google Scholar] [CrossRef] [Green Version]
- Van Gysen, K.; Kneebone, A.; Eade, T.; Guminski, A.; Hruby, G. Advanced Renal Cell Cancer and Low-Dose Palliative Radiation Treatment: A Case of a Substantial and Sustained Treatment Response. Case Rep. Oncol. 2018, 11, 756–762. [Google Scholar] [CrossRef]
- Bruton Joe, M.; Truong, P.T. Abscopal Effect after Palliative Radiation Therapy for Metastatic Adenocarcinoma of the Esophagus. Cureus 2018, 10, e3089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chantharasamee, J.; Treetipsatit, J. Metastatic Melanoma of Uncertain Primary with 5-Year Durable Response after Conventional Therapy: A Case Report with Literature Review. Case Rep. Oncol. Med. 2018, 2018, 7289896. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.J.; Wu, S.; Daud, A.I.; Yu, S.S.; Yom, S.S. In-field and abscopal response after short-course radiation therapy in patients with metastatic Merkel cell carcinoma progressing on PD-1 checkpoint blockade: A case series. J. Immunother. Cancer 2018, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Tsui, J.M.; Mihalcioiu, C.; Cury, F.L. Abscopal Effect in a Stage IV Melanoma Patient who Progressed on Pembrolizumab. Cureus 2018, 10, e2238. [Google Scholar] [CrossRef] [Green Version]
- Bonilla, C.E.; Esguerra, J.; Mendoza Díaz, S.; Álvarez, A.; Morales, R.L. Abscopal Effect After Palliative Radiotherapy in a Patient with a Gastric Adenocarcinoma Disseminated to Retroperitoneal Space: Case Report from a Latin American Reference Center and Review of the Literature. Cureus 2019, 11, e6235. [Google Scholar] [CrossRef] [Green Version]
- Brenneman, R.J.; Sharifai, N.; Fischer-Valuck, B.; Hassanzadeh, C.; Guzelian, J.; Chrisinger, J.; Michalski, J.M.; Oppelt, P.; Baumann, B.C. Abscopal Effect Following Proton Beam Radiotherapy in a Patient With Inoperable Metastatic Retroperitoneal Sarcoma. Front. Oncol. 2019, 9, 922. [Google Scholar] [CrossRef]
- Shinde, A.; Novak, J.; Freeman, M.L.; Glaser, S.; Amini, A. Induction of the Abscopal Effect with Immunotherapy and Palliative Radiation in Metastatic Head and Neck Squamous Cell Carcinoma: A Case Report and Review of the Literature. Cureus 2019, 11, e4201. [Google Scholar] [CrossRef] [Green Version]
- Abbas, W.; Goel, V.; Verma, A.; Gupta, V.G.; Rao, R.R. Harnessing the Immunomodulatory Effects of Radiation in Urinary Bladder Cancer. Cureus 2019, 11, e4108. [Google Scholar] [CrossRef] [Green Version]
- Barsky, A.R.; Cengel, K.A.; Katz, S.I.; Sterman, D.H.; Simone, C.B., 2nd. First-ever Abscopal Effect after Palliative Radiotherapy and Immuno-gene Therapy for Malignant Pleural Mesothelioma. Cureus 2019, 11, e4102. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.O.; Kim, C.A. Abscopal Resolution of a Hepatic Metastasis in a Patient with Metastatic Cholangiocarcinoma Following Radical Stereotactic Body Radiotherapy to a Synchronous Early Stage Non-small Cell Lung Cancer. Cureus 2019, 11, e4082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaguchi, D.; Ichikawa, M.; Ito, M.; Okamoto, S.; Kimura, H.; Watanabe, K. Dramatic response to nivolumab after local radiotherapy in pulmonary pleomorphic carcinoma with rapid progressive post-surgical recurrence. Thorac. Cancer. 2019, 10, 1263–1266. [Google Scholar] [CrossRef]
- D’Andrea, M.A.; Reddy, G.K. Extracranial systemic antitumor response through the abscopal effect induced by brain radiation in a patient with metastatic melanoma. Radiat. Oncol. J. 2019, 37, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, Y.; Nakamura, K.; Furuse, H.; Ichinohe, K.; Miyake, H. Marked response to nivolumab combined with external radiation therapy for metastatic renal cell carcinoma: Report of two cases. Int. Cancer. Conf. J. 2018, 8, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Moran, A.; Azghadi, S.; Maverakis, E.M.; Christensen, S.; Dyer, B.A. Combined Immune Checkpoint Blockade and Stereotactic Ablative Radiotherapy Can Stimulate Response to Immunotherapy in Metastatic Melanoma: A Case Report. Cureus 2019, 11, e4038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohal, R.J.; Sohal, S.; Wazir, A.; Benjamin, S. Mucosal Melanoma: A Rare Entity and Review of the Literature. Cureus 2020, 12, e9483. [Google Scholar] [CrossRef]
- Ellerin, B.E.; Demandante, C.; Martins, J.T. Pure abscopal effect of radiotherapy in a salivary gland carcinoma: Case report, literature review, and a search for new approaches. Cancer Radiother. 2020, 24, 226–246. [Google Scholar] [CrossRef]
- Hori, K.; Hirohashi, Y.; Aoyagi, T.; Taniguchi, N.; Murakumo, M.; Miyata, H.; Torigoe, T.; Abe, T.; Shinohara, N.; Morita, K. Abscopal effect following nivolumab induction in a patient with metastatic renal cell carcinoma-unique pathological features of the primary specimen: A case report. Exp. Ther. Med. 2020, 19, 1903–1907. [Google Scholar] [CrossRef]
- Ku, G.Y.; Yuan, J.; Page, D.B.; Schroeder, S.E.; Panageas, K.S.; Carvajal, R.D.; Chapman, P.B.; Schwartz, G.K.; Allison, J.P.; Wolchok, J.D. Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting: Lymphocyte count after 2 doses correlates with survival. Cancer 2010, 116, 1767–1775. [Google Scholar] [CrossRef]
- Callahan, M.K.; Wolchok, J.D.; Allison, J.P. Anti-CTLA-4 antibody therapy: Immune monitoring during clinical development of a novel immunotherapy. Semin. Oncol. 2010, 37, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Delyon, J.; Mateus, C.; Lefeuvre, D.; Lanoy, E.; Zitvogel, L.; Chaput, N.; Roy, S.; Eggermont, A.M.; Routier, E.; Robert, C. Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma: An early increase in lymphocyte and eosinophil counts is associated with improved survival. Ann. Oncol. 2013, 24, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Jungbluth, A.A.; Chen, Y.T.; Stockert, E.; Busam, K.J.; Kolb, D.; Iversen, K.; Coplan, K.; Williamson, B.; Altorki, N.; Old, L.J. Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. Int. J. Cancer 2001, 92, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Carthon, B.C.; Wolchok, J.D.; Yuan, J.; Kamat, A.; Ng Tang, D.S.; Sun, J.; Ku, G.; Troncoso, P.; Logothetis, C.J.; Allison, J.P.; et al. Preoperative CTLA-4 blockade: Tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin. Cancer Res. 2010, 16, 2861–2871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodge, J.W.; Sharp, H.J.; Gameiro, S.R. Abscopal regression of antigen disparate tumors by antigen cascade after systemic tumor vaccination in combination with local tumor radiation. Cancer Biother. Radiopharm. 2012, 27, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Camphausen, K.; Moses, M.A.; Ménard, C.; Sproull, M.; Beecken, W.D.; Folkman, J.; O’Reilly, M.S. Radiation abscopal antitumor effect is mediated through p53. Cancer Res. 2003, 63, 1990–1993. [Google Scholar]
- Blanquicett, C.; Saif, M.W.; Buchsbaum, D.J.; Eloubeidi, M.; Vickers, S.M.; Chhieng, D.C.; Carpenter, M.D.; Sellers, J.C.; Russo, S.; Diasio, R.B.; et al. Antitumor efficacy of capecitabine and celecoxib in irradiated and lead-shielded, contralateral human BxPC-3 pancreatic cancer xenografts: Clinical implications of abscopal effects. Clin. Cancer Res. 2005, 11, 8773–8781. [Google Scholar] [CrossRef] [Green Version]
- Dewan, M.Z.; Galloway, A.E.; Kawashima, N.; Dewyngaert, J.K.; Babb, J.S.; Formenti, S.C.; Demaria, S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 2009, 15, 5379–5388. [Google Scholar] [CrossRef]
- Yasuda, K.; Nirei, T.; Tsuno, N.H.; Nagawa, H.; Kitayama, J. Intratumoral injection of interleukin-2 augments the local and abscopal effects of radiotherapy in murine rectal cancer. Cancer Sci. 2011, 102, 1257–1263. [Google Scholar] [CrossRef]
- Strigari, L.; Mancuso, M.; Ubertini, V.; Soriani, A.; Giardullo, P.; Benassi, M.; D’Alessio, D.; Leonardi, S.; Soddu, S.; Bossi, G. Abscopal effect of radiation therapy: Interplay between radiation dose and p53 status. Int. J. Radiat. Biol. 2014, 90, 248–255. [Google Scholar] [CrossRef]
- Aravindan, S.; Natarajan, M.; Ramraj, S.K.; Pandian, V.; Khan, F.H.; Herman, T.S.; Aravindan, N. Abscopal effect of low-LET γ-radiation mediated through Rel protein signal transduction in a mouse model of nontargeted radiation response. Cancer Gene Ther. 2014, 21, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.; Wu, H.; Qian, W. Irradiation enhanced the effects of PD-1 blockade in brain metastatic osteosarcoma. J. Bone Oncol. 2018, 12, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Markovsky, E.; Budhu, S.; Samstein, R.M.; Li, H.; Russell, J.; Zhang, Z.; Drill, E.; Bodden, C.; Chen, Q.; Powell, S.N.; et al. An Antitumor Immune Response Is Evoked by Partial-Volume Single-Dose Radiation in 2 Murine Models. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Pfannenstiel, L.W.; McNeilly, C.; Xiang, C.; Kang, K.; Diaz-Montero, C.M.; Yu, J.S.; Gastman, B.R. Combination PD-1 blockade and irradiation of brain metastasis induces an effective abscopal effect in melanoma. Oncoimmunology 2018, 8, e1507669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudzinski, S.O.; Cameron, B.D.; Wang, J.; Rathmell, J.C.; Giorgio, T.D.; Kirschner, A.N. Combination immunotherapy and radiotherapy causes an abscopal treatment response in a mouse model of castration resistant prostate cancer. J. Immunother. Cancer 2019, 7, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayakumar, G.; Palese, P.; Goff, P.H. Oncolytic Newcastle disease virus expressing a checkpoint inhibitor as a radioenhancing agent for murine melanoma. EBioMedicine 2019, 49, 96–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuchi, R.; Sukhbaatar, A.; Sakamoto, M.; Mori, S.; Kodama, T. A model system for studying superselective radiotherapy of lymph node metastasis in mice with swollen lymph nodes. Clin. Transl. Radiat. Oncol. 2019, 20, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Baba, K.; Nomura, M.; Ohashi, S.; Hiratsuka, T.; Nakai, Y.; Saito, T.; Kondo, Y.; Fukuyama, K.; Kikuchi, O.; Yamada, A.; et al. Experimental model for the irradiation-mediated abscopal effect and factors influencing this effect. Am. J. Cancer Res. 2020, 10, 440–453. [Google Scholar]
- Zhang, P.; Darmon, A.; Marill, J.; Mohamed Anesary, N.; Paris, S.; Zhang, P.; Darmon, A.; Marill, J.; Mohamed Anesary, N.; Paris, S. Radiotherapy-Activated Hafnium Oxide Nanoparticles Produce Abscopal Effect in a Mouse Colorectal Cancer Model. Int. J. Nanomed. 2020, 15, 3843–3850. [Google Scholar] [CrossRef]
- Antohe, M.; Nedelcu, R.I.; Nichita, L.; Popp, C.G.; Cioplea, M.; Brinzea, A.; Hodorogea, A.; Calinescu, A.; Balaban, M.; Ion, D.A.; et al. Tumor infiltrating lymphocytes: The regulator of melanoma evolution. Oncol. Lett. 2019, 17, 4155–4161. [Google Scholar] [CrossRef]
- Gata, V.A.; Lisencu, C.I.; Vlad, C.I.; Piciu, D.; Irimie, A.; Achimas-Cadariu, P. Tumor infiltrating lymphocytes as a prognostic factor in malignant melanoma. Review of the literature. J. BUON 2017, 22, 592–598. [Google Scholar]
- Ugurel, S.; Rohmel, J.; Ascierto, P.A.; Flaherty, K.T.; Grob, J.J.; Hauschild, A.; Larkin, J.; Long, G.V.; Lorigan, P.; McArthur, G.A.; et al. Survival of patients with advanced metastatic melanoma: The impact of novel therapies-update 2017. Eur. J. Cancer. 2017, 83, 247–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da, L.J.; Teng, Y.J.; Wang, N.; Zaguirre, K.; Liu, Y.T.; Qi, Y.L.; Song, F.X. Organ-Specific Immune-Related Adverse Events Associated With Immune Checkpoint Inhibitor Monotherapy Versus Combination Therapy in Cancer: A Meta-Analysis of Randomized Controlled Trials. Front. Pharm. 2020, 10, 1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Ruiz, M.E.; Vanpouille-Box, C.; Melero, I.; Formenti, S.C.; Demaria, S. Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect. Trends Immunol. 2018, 39, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Brix, N.; Tiefenthaller, A.; Anders, H.; Belka, C.; Lauber, K. Abscopal, immunological effects of radiotherapy: Narrowing the gap between clinical and preclinical experiences. Immunol. Rev. 2017, 280, 249–279. [Google Scholar] [CrossRef] [PubMed]
- Twyman-Saint Victor, C.; Rech, A.J.; Maity, A.; Rengan, R.; Pauken, K.E.; Stelekati, E.; Benci, J.L.; Xu, B.; Dada, H.; Odorizzi, P.M.; et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015, 520, 373–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simbawa, E.; Al-Johani, N.; Al-Tuwairqi, S. Modeling the Spatiotemporal Dynamics of Oncolytic Viruses and Radiotherapy as a Treatment for Cancer. Comput. Math. Methods Med. 2020, 2020, 3642654. [Google Scholar] [CrossRef]
- Thomas, S.; Kuncheria, L.; Roulstone, V.; Kyula, J.N.; Mansfield, D.; Bommareddy, P.K.; Smith, H.; Kaufman, H.L.; Harrington, K.J.; Coffin, R.S. Development of a new fusion-enhanced oncolytic immunotherapy platform based on herpes simplex virus type 1. J. Immunother. Cancer 2019, 7, 214. [Google Scholar] [CrossRef] [Green Version]
- Werthmöller, N.; Frey, B.; Rückert, M.; Lotter, M.; Fietkau, R.; Gaipl, U.S. Combination of ionising radiation with hyperthermia increases the immunogenic potential of B16-F10 melanoma cells in vitro and in vivo. Int. J. Hyperther. 2016, 32, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, P.; Wang, X.; Shi, L.; Fan, Z.; Zhang, G.; Yang, D.; Bahavar, C.F.; Zhou, F.; Chen, W.R.; et al. Antitumor Effects of DC Vaccine With ALA-PDT-Induced Immunogenic Apoptotic Cells for Skin Squamous Cell Carcinoma in Mice. Technol. Cancer Res. Treat. 2018, 17, 1533033818785275. [Google Scholar] [CrossRef] [Green Version]
- Cammarata, F.P.; Forte, G.I.; Broggi, G.; Bravatà, V.; Minafra, L.; Pisciotta, P.; Calvaruso, M.; Tringali, R.; Tomasello, B.; Torrisi, F.; et al. Molecular Investigation on a Triple Negative Breast Cancer Xenograft Model Exposed to Proton Beams. Int. J. Mol. Sci. 2020, 21, 6337. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, Y.; Zhao, J.; Zhang, L.; Kong, L.; Lu, J.J. Comparison of the effects of photon, proton and carbon-ion radiation on the ecto-calreticulin exposure in various tumor cell lines. Ann. Transl. Med. 2019, 7, 542. [Google Scholar] [CrossRef]
- Takahashi, J.; Misawa, M.; Murakami, M.; Mori, T.; Nomura, K.; Iwahashi, H. 5-Aminolevulinic acid enhances cancer radiotherapy in a mouse tumor model. Springerplus 2013, 2, 602. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, J.; Ogura, S.; Shimajiri, S.; Nakano, Y.; Akiba, D.; Kitagawa, T.; Ueta, K.; Tanaka, T.; Nishizawa, S. 5-aminolevulinic acid-induced protoporphyrin IX with multi-dose ionizing irradiation enhances host antitumor response and strongly inhibits tumor growth in experimental glioma in vivo. Mol. Med. Rep. 2015, 11, 1813–1819. [Google Scholar] [CrossRef]
- Takahashi, J.; Murakami, M.; Mori, T.; Iwahashi, H. Verification of radiodynamic therapy by medical linear accelerator using a mouse melanoma tumor model. Sci. Rep. 2018, 8, 2728. [Google Scholar] [CrossRef]
- Marconi, R.; Strolin, S.; Bossi, G.; Strigari, L. A meta-analysis of the abscopal effect in preclinical models: Is the biologically effective dose a relevant physical trigger? PLoS ONE 2017, 12, e0171559. [Google Scholar] [CrossRef] [Green Version]
Histopathology | Age | Gender | RT | Time for Abscopal | Markers | Reference |
---|---|---|---|---|---|---|
Adenocarcinoma of unknown origin | 35 | F | 30 Gy, 20 fr | 2 weeks | Ehlers et al.,1973 [63] | |
Lymphoma | 44 | M | 40 Gy, 20 fr | NR | numbers and percentages of total leukocyte, band neutrophils, segmented neutrophils, lymphocytes, monocytes, eosinophils,.basophils, | Antoniades et al., 1977 [64] |
Lymphocytic lymphoma | 40 | M | 40 Gy, 20 fr | NR | ||
Mixed-cellularity Hodgkin lymphoma | NR | NR | 35 Gy, 28 days | NR | Rees et al., 1981 [65] | |
Hepatocellular carcinoma | 76 | M | 36 Gy, NR | 10 Months | serum level of IL-1β, IL-2, IL-4, IL-6, HGF and TNF-α | Ohba et al., 1998 [66] |
Renal cell carcinoma | 83 | F | 32 Gy, 4 fr | 2 years | Wersäll et al., 2006 [67] | |
Renal cell carcinoma | 64 | F | NR | NR | ||
Renal cell carcinoma | 69 | M | NR | NR | ||
Renal cell carcinoma | 55 | F | 32 Gy, 4 fr | 5 months | ||
Uterine cervix | 69 | F | 1.8 Gy, 16 fr 2.0 Gy 21 fr 6 Gy,4 fr (total 74.8 Gy) | NR | serum levels of squamous cell carcinoma (SCC) antigen | Takaya et al., 2007 [68] |
Chronic lymphocytic leukemia | 65 | F | 24 Gy, 12 fr | during treatment | Lakshmanagowda et al., 2009 [69] | |
Hepatocellular carcinoma | 63 | M | 60.25 Gy, 27 fr | NR | Okuma et al., 2011 [70] | |
Merkel cell carcinoma | 70 | M | 12 Gy, 2 fr | 1 month | Cotter et al., 2011 [71] | |
Medullary thyriod carcinoma | 72 | M | 30 Gy, 3 fr | 1 month | Tubin et al., 2012 [72] | |
Renal cell carcinoma | 61 | M | 40 Gy, 5 fr | 1 month | Ishiyama et al., 2012 [73] | |
Melanoma | 33 | F | 28.5 Gy, 3 fr | 4 months | levels of CD4+ ICOShigh cells, HLA-DR expression on monocytes, MDSCs (CD14+ HLA-DRlow) of peripheral-blood mononuclear cells | Postow et al., 2012 [74] |
Adenocarcinoma of lung | 78 | F | 26 Gy, 1 fr | 12 months | Siva et al., 2013 [75] | |
Adenocarcinoma of lung | 64 | M | 30 Gy, 5 fr | 2.5 months | the absolute lymphocyte count (ALC), the absolute eosinophil count (AEC), white blood cells (WBCs), carcinoembryonic antigen (CEA) of peripheral-blood | Golden et al., 2013 [76] |
Melanoma | 67 | M | 24 Gy, 3 fr | 8 months | melanoma antigen A3 (MEGA3), PAS domain containing 1 (PASD1) level of serum | Stamell et al., 2013 [77] |
Melanoma | 44 | M | 30 Gy, 10 fr | 2 months | Thallinger et al., 2014 [78] | |
Squamous carcinoma of the anal canal | 57 | F | 54 Gy, 30 fr | 1 month | PD-1, PD-L1, CD163, CD3, CD8 expression of tumor infiltrating lymphocytes (TILs) | Joe et al., 2017 [79] |
Melanoma | 36 | F | 20 or 24 Gy, 1 fr | 9 months | Sperduto et al., 2017 [80] | |
Renal cell carcinoma | 66 | F | 36 Gy, 12 fr | 1 month | van Gysen et al., 2018 [81] | |
Esophageal adenocarcinoma | 74 | M | 30 Gy, 10 fr | 2 months | Bruton et al., 2018 [82] | |
Malignant melanoma of unknown primary | 51 | F | 20 Gy, NR | Chantharasamee et al., 2018 [83] | ||
Merkel cell carcinoma | 69 | M | 8 Gy, 1 fr | 12 months | Xu et al., 2018 [84] | |
Merkel cell carcinoma | 72 | F | 8 Gy, 1 fr | 2 months | ||
Mucosal melanom | 65 | F | 24 Gy, 3 fr | 1 month | Tsui et al., 2018 [85] | |
Gastric adenocarcinoma | 78 | F | 30 Gy, 10 fr | 3 months | Bonilla et al., 2019 [86] | |
Retroperitoneal sarcomas | 67 | F | 50 Cobalt Gray Equivalents, 25 fr | 5 months | PD-L1, CD4, CD8 expression of tumor TILs | Brenneman et al., 2019 [87] |
Head and neck squamous cell carcinoma | 75 | M | 3.7 Gy twice a day, 2 fr (total 14.8 Gy) | 2 weeks | Shinde et al., 2019 [88] | |
Urinary bladder cancer | 65 | M | 30 Gy, 12 fr | 4 months | Abbas et al., 2019 [89] | |
Malignant pleural mesothelioma | 67 | M | 30 Gy, 10 fr | Barsky et al., 2019 [90] | ||
Cholangiocarcinoma | 70 | M | 48 Gy, 4 fr | 3 months | Kim et al., 2019 [91] | |
Pulmonary pleomorphic carcinoma | 63 | M | 30 Gy, NR | PD-L1 expression of tumor | Yaguchi et al., 2019 [92] | |
Melanoma | 42 | F | 30 Gy, 15 fr | 3 weeks | ERCC1, MLH1, MSH2, MSH6, PMS2, TUBB3, PDL-1, TrK A/B/C, MGMT expression of tumor | D’Andrea et al., 2019 [93] |
Renal cell carcinoma | 62 | M | 36 Gy, 12 fr | 1.5 months | Matushita et al., 2019 [94] | |
Renal cell carcinoma | 71 | M | 66 Gy, 33 fr | 1.5 months | ||
Melanoma | 71 | M | 50 Gy, 5 fr | 1 month | Moran et al., 2019 [95] | |
Mucosal melanoma | 66 | M | 25 Gy, 5 fr | 4 months | Sohal et al., 2020 [96] | |
Salivary gland carcinoma | 84 | F | 50 Gy, 20 fr | 2 weeks | Ellerin et al., 2020 [97] | |
Renal cell carcinoma | 40 | F | 30 or 40 Gy, 10 fr | 6 months | HLA class1, CD8, PD-L1 expression of tumor | Hori et al., 2020 [98] |
Mouse Strain | Age | Cancer Cell Line | Cell Type | Condition of Inoculation | RT Treatment (Total Dose, Fraction) | Endpoint | Note | Reference |
---|---|---|---|---|---|---|---|---|
C57BL/6 | 8 weeks | MC38 | mouse colon adenocarcinoma | right flank (MC38-CEA+), left frank (MC38-CEA-) | 8 Gy, 1 fr | tumor growth | Hodge et al., 2012 [104] | |
C57BL/6 transgenic for human CEA | LL/2 | mouse lung adenocarcinoma, | right frank (LL2-CEA+), intravenously (LL2-CEA+) | 125I -brachytherapy 72 h exposure | pulmonary metastasis | lung metastasis model | ||
C57BL/6, p53 null B6.129S2- Trp53 tm1Tyj | 4–6 weeks | LLC-LM, T241 | Lewis lung carcinoma, fibrosarcoma | midline dorsum | 24 Gy, 12 fr | tumor growth | irradiate non tumor site, leg | Camphausen et al., 2003 [105] |
NCr nu/nu | BxPC-3 | pancreatic carcinoma cells | right and left flank | 10 Gy, 5 fr | tumor growth | Nude mouse | Blanquicett et al., 2005 [106] | |
BALB/c, C57BL/6 | 6–8 weeks | TSA, MCA38 | mouse breast carcinoma, mouse colon carcinoma | right and left flank | 20 Gy, 1 fr 24 Gy, 3 fr 30 Gy, 5 fr | tumor growth | Dewan et al., 2009 [107] | |
BALB/c | 8 weeks | colon26 | mouse colon adenocarcinoma | left frank, after 3 weeks intra-splenic injection | 20 Gy, 10 fr | tumor growth (liver weight) | liver metastasis model | Yasuda et al., 2011 [108] |
CD1 nu/nu | HCT116, A549 | human colorectal cancer, human lung adenocarcinoma | right and left flank | 10 Gy, 2 fr 20 Gy, 3 fr | tumor growth | nude mouse | Strigari et al., 2014 [109] | |
C57BL/6 | 4 weeks | none | 2 Gy, 1 fr 10 Gy, 1 fr 10 Gy, 5 fr | norml tissue response | abscopal model without cancer | Aravindan et al., 2014 [110] | ||
BALB/c | 4T1, TSA | mouse mammary carcinoma, mammaryadenocarcinoma | right and lefl flank | 30 Gy, 1fr | tumor growth | Vanpouille-Box et al., 2015 [55] | ||
BALB/c | 6 weeks | K7M2 | mouse osteosarcoma | subcutaneous, right frontal lobes | 40 Gy (2Gy × 4, five consecutive days) | immune markers from peripheral brood | brain metastasis, irradiate for subcutaneous tumor | Xia et al., 2018 [111] |
BALB/c, C57BL/6, athymic nude mice | 12 weeks | 67NR | breast cancer, Lewis lung carcinoma | right and left mammary fat pad | 10 Gy, 1 fr 15 Gy, 1 fr | tumor growth, survival | compare the response of immunocompetent mouse with nude mouse | Markovsky et al., 2019 [112] |
C57BL/6 | B16-F10, D4M | mouse melanoma | subcutaneous, right frontal lobes | 8 Gy, 4 fr | tumor growth | brain metastasis, irradiate for brain tumor | Pfannenstiel et al., 2018 [113] | |
FVB (JAX) | Myc-CaP | mouse prostate cancer | frank and leg | 20 Gy, 2 fr | tumor growth, survival | Dudzinski et al., 2019 [114] | ||
C57BL/6 | B16-F10 | mouse melanoma | right and left flank | 5 Gy, 1 fr 10 Gy, 1 fr 20 Gy, 1 fr | tumor growth, survival | Vijayakumar et al., 2019 [115] | ||
MXH10/Mo/Lpr | FM3A-Luc | mouse mamary carcinoma cells | lymph node | 8 Gy, 1 fr | tumor growth | lymph node metastasis model | Kikuchi et al., 2019 [116] | |
C57BL/6 | MC38, B16F10 | mouse colon adenocarcinoma cell, mouse melanoma | upper and lower dorsum | 6 Gy, 3 fr 24 Gy, 3 fr | tumor growth | Baba et al., 2020 [117] | ||
BALB/c | 6 weeks | CT26.WT | mouses colon carcinoma | right and left flank | 12 Gy, 3 fr | tumor growth | Zhang et al., 2020 [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, J.; Nagasawa, S. Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review. Int. J. Mol. Sci. 2020, 21, 9324. https://doi.org/10.3390/ijms21239324
Takahashi J, Nagasawa S. Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review. International Journal of Molecular Sciences. 2020; 21(23):9324. https://doi.org/10.3390/ijms21239324
Chicago/Turabian StyleTakahashi, Junko, and Shinsuke Nagasawa. 2020. "Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review" International Journal of Molecular Sciences 21, no. 23: 9324. https://doi.org/10.3390/ijms21239324
APA StyleTakahashi, J., & Nagasawa, S. (2020). Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review. International Journal of Molecular Sciences, 21(23), 9324. https://doi.org/10.3390/ijms21239324