The Impact of Angiogenesis in the Most Common Salivary Gland Malignant Tumors
Abstract
:1. Introduction
2. Angiogenesis’ Evaluation
3. Angiogenic Factors in the Most Common SGC Histotypes
3.1. ACC
3.1.1. MVD
3.1.2. VEGF
3.1.3. Other Factors
3.2. MEC
3.2.1. MVD
3.2.2. VEGF
3.2.3. Other factors
3.3. Other Histotypes
3.3.1. CXPA
3.3.2. AdNOS
3.3.3. AcCC
3.3.4. EMEC
3.3.5. Polymorphous Adenocarcinoma (PAC, ex PLGA)
4. Anti-Angiogenic Factors Studied for SGCs Therapy
4.1. Preclinical Trials
4.2. Clinical Trials
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Other SGC Histotypes Included | |
MEC | Mucoepidermoid Carcinoma |
PLGA | Polymorphus Low Grade Adenocarcinoma |
MEpC | Myoepithelial Carcinoma |
SDC | Salivary Duct Carcinoma |
EMEC | Epithelial-myoepithelial Carcinoma |
CXPA | Carcinoma ex Pleomorphic Adenoma |
AdNOS | Adenocarcinoma Not Otherwise Specified |
AcCC | Acinic Cell Carcinoma |
SCC | Squamous Cell Carcinoma |
ACC | Adenoid Cystic Carcinoma |
EC Markers and Other Factors | |
MVD | Microvessel Density |
IMVD | Intratumoral MVD |
PMVD | Peritumoral MVD |
α-SMA | α-Smooth Muscle Actin |
Prdx-1 | peroxiredoxin-I |
VEGF | Vascular Endothelial Growth Factor |
TP | Thymidine phosphorylase |
NF-κB p65 | Nuclear Factor κB p65 subunit |
iNOS | inducible Nitric Oxide Synthase |
EMMPRIN | Extracellular Matrix Metalloproteinase Inducer |
RT-PCR | Reverse Transcription Polymerase Chain Reaction |
MMP | metalloproteinase |
NRP | Neuropilin, Sema: Semaphorin |
p-Tyr | Phosphotyrosine |
EPHA2 | Ephrin receptor A2 |
MYB-NFIB chimeric gene | v-myb avian myelobastosis viral oncogene homolog-nuclear factor I/B chimeric gene |
p-S6 | phosphorylated substrate-S6 |
EGFR | Epidermal Growth Factor Receptor |
p-Stat3 | Signal transducer and activator of transcription-3 protein |
HIF-1α | Hypoxia-Inducible Factor-1α |
PAI | Plasminogen Activator Inhibitor |
LVD | Lymphatic Vessel Density |
References
- Stryjewska-Makuch, G.; Kolebacz, B.; Janik, M.A.; Wolnik, A. Increase in the incidence of parotid gland tumors in the years 2005–2014. Otolaryngol. Pol. Pol. Otolaryngol. 2017, 71, 29–34. [Google Scholar] [CrossRef] [Green Version]
- To, V.S.; Chan, J.Y.; Tsang, R.K.; Wei, W.I. Review of salivary gland neoplasms. ISRN Otolaryngol. 2012, 2012, 872982. [Google Scholar] [CrossRef]
- Sentani, K.; Ogawa, I.; Ozasa, K.; Sadakane, A. Characteristics of 5015 Salivary Gland Neoplasms Registered in the Hiroshima Tumor Tissue Registry over a Period of 39 Years. J. Clin. Med. 2019, 8, 566. [Google Scholar] [CrossRef] [Green Version]
- Bobati, S.S.; Patil, B.V.; Dombale, V.D. Histopathological study of salivary gland tumors. JOMFP 2017, 21, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.Y.; Wang, W.H.; Liang, R.; Pan, G.Q.; Qian, Y.M. Clinicopathologic analysis of 2736 salivary gland cases over a 11-year period in Southwest China. Acta Oto-Laryngol. 2018, 138, 746–749. [Google Scholar] [CrossRef]
- El-Naggar, A.K.; Chan, J.K.C.; Rubin Grandis, J.; Takata, T.; Slootweg, P.J. (Eds.) WHO Classification of Head and Neck Tumours, 4th ed.; IARC: Lyon, France, 2017.
- Israel, Y.; Rachmiel, A.; Gourevich, K.; Nagler, R. Survival Probabilities Related to Histology, Grade and Stage in Patients with Salivary Gland Tumors. Anticancer Res. 2019, 39, 641–647. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Li, M.; Yan, H.; Sun, M.; Fan, T. Management of salivary gland carcinomas—A review. Oncotarget 2017, 8, 3946–3956. [Google Scholar] [CrossRef] [Green Version]
- Chintakuntlawar, A.V.; Okuno, S.H.; Price, K.A. Systemic therapy for recurrent or metastatic salivary gland malignancies. Cancers Head Neck 2016, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, S.; Granata, R.; Bergamini, C.; Resteghini, C.; Bossi, P.; Licitra, L.F.; Locati, L.D. Systemic therapy in metastatic salivary gland carcinomas: A pathology-driven paradigm? Oral Oncol. 2017, 66, 58–63. [Google Scholar] [CrossRef]
- Sowa, P.; Goroszkiewicz, K. A Review of Selected Factors of Salivary Gland Tumour Formation and Malignant Transformation. BioMed Res. Int. 2018, 2018, 2897827. [Google Scholar] [CrossRef] [Green Version]
- Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat. Med. 2011, 17, 1359–1370. [Google Scholar] [CrossRef]
- Yoo, S.Y.; Kwon, S.M. Angiogenesis and its therapeutic opportunities. Mediat. Inflamm. 2013, 2013, 127170. [Google Scholar] [CrossRef] [Green Version]
- Fouad, Y.A.; Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res. 2017, 7, 1016–1036. [Google Scholar]
- Tasoulas, J.; Tsourouflis, G.; Theocharis, S. Neovascularization: An attractive but tricky target in thyroid cancer. Expert Opin. Ther. Targets 2018, 22, 799–810. [Google Scholar] [CrossRef]
- Dimova, I.; Popivanov, G.; Djonov, V. Angiogenesis in cancer - general pathways and their therapeutic implications. JBUON 2014, 19, 15–21. [Google Scholar]
- Fonsatti, E.; Del Vecchio, L.; Altomonte, M.; Sigalotti, L.; Nicotra, M.R.; Coral, S.; Natali, P.G.; Maio, M. Endoglin: An accessory component of the TGF-beta-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. J. Cell. Physiol. 2001, 188, 1–7. [Google Scholar] [CrossRef]
- Theocharis, S.; Gribilas, G.; Giaginis, C.; Patsouris, E.; Klijanienko, J. Angiogenesis in salivary gland tumors: From clinical significance to treatment. Expert Opin. Ther. Targets 2015, 19, 807–819. [Google Scholar] [CrossRef]
- Blochowiak, K.J.; Sokalski, J.; Bodnar, M.B.; Trzybulska, D.; Marszalek, A.K.; Witmanowski, H. Expression of VEGF(1)(6)(5)b, VEGFR1, VEGFR2 and CD34 in benign and malignant tumors of parotid glands. Adv. Clin. Exp. Med. 2018, 27, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, S.V.; Souza, K.C.N.; Faria, P.R.; Eisenberg, A.L.A.; Dias, F.L.; Loyola, A.M. Assessment of angiogenesis by CD105 antigen in epithelial salivary gland neoplasms with diverse metastatic behavior. BMC Cancer 2009, 9, 391. [Google Scholar] [CrossRef] [Green Version]
- Tadbir, A.A.; Pardis, S.; Ashkavandi, Z.J.; Najvani, A.D.; Ashraf, M.J.; Taheri, A.; Zadeh, M.A.; Sardari, Y. Expression of Ki67 and CD105 as proliferation and angiogenesis markers in salivary gland tumors. APJCP 2012, 13, 5155–5159. [Google Scholar] [CrossRef] [Green Version]
- Dhanuthai, K.; Sappayatosok, K.; Yodsanga, S.; Rojanawatsirivej, S.; Pausch, N.C.; Pitak-Arnnop, P. An analysis of microvessel density in salivary gland tumours: A single centre study. Surgeon 2013, 11, 147–152. [Google Scholar] [CrossRef]
- Moghadam, S.A.; Abadi, A.M.; Mokhtari, S. Immunohistochemical analysis of CD34 expression in salivary gland tumors. JOMFP 2015, 19, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Aminishakib, P.; Kashefi, M.; Moradi Ghahdarijani, B.; Yazdani, F.; Nafarzadeh, S.; Gholami, A.; Bijani, A.; Mehrabi, S. Neoangiogenesis in Benign and Malignant Salivary Gland Tumors. Gums Dent 2018, 7, 37–42. [Google Scholar] [CrossRef]
- Costa, A.F.; Demasi, A.P.; Bonfitto, V.L.; Bonfitto, J.F.; Furuse, C.; Araujo, V.C.; Metze, K.; Altemani, A. Angiogenesis in salivary carcinomas with and without myoepithelial differentiation. Virchows Arch. 2008, 453, 359–367. [Google Scholar] [CrossRef]
- Luukkaa, H.; Laitakari, J.; Vahlberg, T.; Klemi, P.; Stenback, F.; Grenman, R. Morphometric analysis of CD34-positive vessels in salivary gland adenoid cystic and mucoepidermoid carcinomas. J. Oral Pathol. Med. 2009, 38, 695–700. [Google Scholar] [CrossRef]
- Faur, A.C.; Lazar, E.; Cornianu, M. Vascular endothelial growth factor (VEGF) expression and microvascular density in salivary gland tumours. APMIS 2014, 122, 418–426. [Google Scholar] [CrossRef]
- de Faria, P.R.; Lima, R.A.; Dias, F.L.; de Faria, P.A.; Eisenberg, A.L.; do Nascimento Souza, K.C.; Cardoso, S.V.; Loyola, A.M. Vascular endothelial growth factor and thymidine phosphorylase expression in salivary gland tumors with distinct metastatic behavior. J. Oral Pathol. Med. 2011, 40, 456–459. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, B.; Chen, X. Expressions of nuclear factor kappaB, inducible nitric oxide synthase, and vascular endothelial growth factor in adenoid cystic carcinoma of salivary glands: Correlations with the angiogenesis and clinical outcome. Clin. Cancer Res. 2005, 11, 7334–7343. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.Q.; Chen, W.L.; Li, H.G.; Li, J.S.; Xu, Z.Y.; Lin, Z.Y. Extracellular matrix metalloproteinase inducer expression in salivary gland tumors: A correlation with microvessel density. J. Craniofacial Surg. 2010, 21, 1855–1860. [Google Scholar] [CrossRef]
- Yang, X.; Dai, J.; Li, T.; Zhang, P.; Ma, Q.; Li, Y.; Zhou, J.; Lei, D. Expression of EMMPRIN in adenoid cystic carcinoma of salivary glands: Correlation with tumor progression and patients’ prognosis. Oral Oncol. 2010, 46, 755–760. [Google Scholar] [CrossRef]
- Doi, R.; Kuratate, I.; Okamoto, E.; Ryoke, K.; Ito, H. Expression of p53 oncoprotein increases intratumoral microvessel formation in human salivary gland carcinomas. J. Oral Pathol. Med. 1999, 28, 259–263. [Google Scholar] [CrossRef]
- Lim, J.J.; Kang, S.; Lee, M.R.; Pai, H.K.; Yoon, H.J.; Lee, J.I.; Hong, S.P.; Lim, C.Y. Expression of vascular endothelial growth factor in salivary gland carcinomas and its relation to p53, Ki-67 and prognosis. J. Oral Pathol. Med. 2003, 32, 552–561. [Google Scholar] [CrossRef]
- Ni, Q.; Sun, J.; Ma, C.; Li, Y.; Ju, J.; Sun, M. The Neuropilins and Their Ligands in Hematogenous Metastasis of Salivary Adenoid Cystic Carcinoma-An Immunohistochemical Study. J. Oral Maxillofac. Surg. 2018, 76, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Wang, R.; Zhao, Y.F.; Jia, J.; Sun, Z.J.; Chen, X.M. Expression of Neuropilin-2 in salivary adenoid cystic carcinoma: Its implication in tumor progression and angiogenesis. Pathol. Res. Pract. 2010, 206, 793–799. [Google Scholar] [CrossRef]
- Shao, Z.; Zhu, F.; Song, K.; Zhang, H.; Liu, K.; Shang, Z. EphA2/ephrinA1 mRNA expression and protein production in adenoid cystic carcinoma of salivary gland. J. Oral Maxillofac. Surg. 2013, 71, 869–878. [Google Scholar] [CrossRef]
- Ono, J.; Okada, Y. Study of MYB-NFIB chimeric gene expression, tumor angiogenesis, and proliferation in adenoid cystic carcinoma of salivary gland. Odontology 2018, 106, 238–244. [Google Scholar] [CrossRef]
- Yu, G.T.; Bu, L.L.; Zhao, Y.Y.; Liu, B.; Zhang, W.F.; Zhao, Y.F.; Zhang, L.; Sun, Z.J. Inhibition of mTOR reduce Stat3 and PAI related angiogenesis in salivary gland adenoid cystic carcinoma. Am. J. Cancer Res. 2014, 4, 764–775. [Google Scholar]
- Wang, W.-M.; Zhao, Z.-L.; Zhang, W.-F.; Zhao, Y.-F.; Zhang, L.; Sun, Z.-J. Role of hypoxia-inducible factor-1α and CD146 in epidermal growth factor receptor-mediated angiogenesis in salivary gland adenoid cystic carcinoma. Mol. Med. Rep. 2015, 12, 3432–3438. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.W.; Yang, L.Q.; Zhao, F.; Chen, C.W.; Xu, L.H.; Fu, J.; Li, S.L.; Ge, X.Y. Epiregulin Promotes Lung Metastasis of Salivary Adenoid Cystic Carcinoma. Theranostics 2017, 7, 3700–3714. [Google Scholar] [CrossRef]
- Vidal, M.T.; de Oliveira Araujo, I.B.; Gurgel, C.A.; Pereira Fde, A.; Vilas-Boas, D.S.; Ramos, E.A.; Agra, I.M.; Barros, A.C.; Freitas, V.S.; Dos Santos, J.N. Density of mast cells and microvessels in minor salivary gland tumors. Tumour Biol. 2013, 34, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.R.B.; Coutinho-Camillo, C.M.; Soares, F.A.; Freitas, V.S.; Vilas-Boas, D.S.; Xavier, F.C.A.; Rocha, C.A.G.; de Araujo, I.B.; Dos Santos, J.N. MicroRNAs expression pattern related to mast cell activation and angiogenesis in paraffin-embedded salivary gland tumors. Pathol. Res. Pract. 2017, 213, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Peng, B. In vitro angiogenesis and expression of nuclear factor kappaB and VEGF in high and low metastasis cell lines of salivary gland Adenoid Cystic Carcinoma. BMC Cancer 2007, 7, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Peng, B. NF-kappaB promotes iNOS and VEGF expression in salivary gland adenoid cystic carcinoma cells and enhances endothelial cell motility in vitro. Cell Prolif. 2009, 42, 150–161. [Google Scholar] [CrossRef]
- Coca-Pelaz, A.; Rodrigo, J.P.; Triantafyllou, A.; Hunt, J.L.; Rinaldo, A.; Strojan, P.; Haigentz, M., Jr.; Mendenhall, W.M.; Takes, R.P.; Vander Poorten, V.; et al. Salivary mucoepidermoid carcinoma revisited. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 799–819. [Google Scholar] [CrossRef]
- Gleber-Netto, F.O.; Florencio, T.N.; de Sousa, S.F.; Abreu, M.H.; Mendonca, E.F.; Aguiar, M.C. Angiogenesis and lymphangiogenesis in mucoepidermoid carcinoma of minor salivary glands. J. Oral Pathol. Med. 2012, 41, 603–609. [Google Scholar] [CrossRef]
- Shi, L.; Chen, X.M.; Wang, L.; Zhang, L.; Chen, Z. Expression of caveolin-1 in mucoepidermoid carcinoma of the salivary glands: Correlation with vascular endothelial growth factor, microvessel density, and clinical outcome. Cancer 2007, 109, 1523–1531. [Google Scholar] [CrossRef]
- Ou Yang, K.X.; Liang, J.; Huang, Z.Q. Association of clinicopathologic parameters with the expression of inducible nitric oxide synthase and vascular endothelial growth factor in mucoepidermoid carcinoma. Oral Dis. 2011, 17, 590–596. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.B.; Park, D.S.; Lisanti, M.P. Caveolin-1 expression enhances endothelial capillary tubule formation. J. Biol. Chem. 2002, 277, 10661–10668. [Google Scholar] [CrossRef] [Green Version]
- Soares, A.B.; Juliano, P.B.; Araujo, V.C.; Metze, K.; Altemani, A. Angiogenic switch during tumor progression of carcinoma ex-pleomorphic adenoma. Virchows Arch. 2007, 451, 65–71. [Google Scholar] [CrossRef]
- Margaritescu, C.; Munteanu, M.C.; Nitulescu, N.C.; Cionca, L.; Cotoi, O.S.; Paskova, G. Acinic cell carcinoma of the salivary glands: An immunohistochemical study of angiogenesis in 12 cases. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2013, 54, 275–284. [Google Scholar]
- Wang, Z.; Dabrosin, C.; Yin, X.; Fuster, M.M.; Arreola, A.; Rathmell, W.K.; Generali, D.; Nagaraju, G.P.; El-Rayes, B.; Ribatti, D.; et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol. 2015, 35, S224–S243. [Google Scholar] [CrossRef] [PubMed]
- Ramjiawan, R.R.; Griffioen, A.W.; Duda, D.G. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis 2017, 20, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.J. Adenoid cystic carcinoma evaluation and management: Progress with optimism! Curr. Opin. Otolaryngol. Head Neck Surg. 2017, 25, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.J.; Chen, G.; Zhang, W.; Hu, X.; Huang, C.F.; Wang, Y.F.; Jia, J.; Zhao, Y.F. Mammalian target of rapamycin pathway promotes tumor-induced angiogenesis in adenoid cystic carcinoma: Its suppression by isoliquiritigenin through dual activation of c-Jun NH2-terminal kinase and inhibition of extracellular signal-regulated kinase. J. Pharmacol. Exp. Ther. 2010, 334, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Younes, M.N.; Park, Y.W.; Yazici, Y.D.; Gu, M.; Santillan, A.A.; Nong, X.; Kim, S.; Jasser, S.A.; El-Naggar, A.K.; Myers, J.N. Concomitant inhibition of epidermal growth factor and vascular endothelial growth factor receptor tyrosine kinases reduces growth and metastasis of human salivary adenoid cystic carcinoma in an orthotopic nude mouse model. Mol. Cancer Ther. 2006, 5, 2696–2705. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Sano, D.; Cheung, M.; Zhao, M.; Jasser, S.A.; Ryan, A.J.; Mao, L.; Chen, W.T.; El-Naggar, A.K.; Myers, J.N. Vandetanib inhibits growth of adenoid cystic carcinoma in an orthotopic nude mouse model. Clin. Cancer Res. 2008, 14, 5081–5089. [Google Scholar] [CrossRef] [Green Version]
- Rugo, H.S.; Herbst, R.S.; Liu, G.; Park, J.W.; Kies, M.S.; Steinfeldt, H.M.; Pithavala, Y.K.; Reich, S.D.; Freddo, J.L.; Wilding, G. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: Pharmacokinetic and clinical results. J. Clin. Oncol. 2005, 23, 5474–5483. [Google Scholar] [CrossRef]
- Ho, A.L.; Dunn, L.; Sherman, E.J.; Fury, M.G.; Baxi, S.S.; Chandramohan, R.; Dogan, S.; Morris, L.G.T.; Cullen, G.D.; Haque, S.; et al. A phase II study of axitinib (AG-013736) in patients with incurable adenoid cystic carcinoma. Ann. Oncol. 2016, 27, 1902–1908. [Google Scholar] [CrossRef]
- Locati, L.D.; Cavalieri, S. Phase II trial with axitinib in recurrent and/or metastatic salivary gland cancers of the upper aerodigestive tract. Head Neck 2019. [Google Scholar] [CrossRef]
- Chau, N.G.; Hotte, S.J.; Chen, E.X.; Chin, S.F.; Turner, S.; Wang, L.; Siu, L.L. A phase II study of sunitinib in recurrent and/or metastatic adenoid cystic carcinoma (ACC) of the salivary glands: Current progress and challenges in evaluating molecularly targeted agents in ACC. Ann. Oncol. 2012, 23, 1562–1570. [Google Scholar] [CrossRef] [PubMed]
- Thomson, D.J.; Silva, P.; Denton, K.; Bonington, S.; Mak, S.K.; Swindell, R.; Homer, J.; Sykes, A.J.; Lee, L.W.; Yap, B.K.; et al. Phase II trial of sorafenib in advanced salivary adenoid cystic carcinoma of the head and neck. Head Neck 2015, 37, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Locati, L.D.; Perrone, F.; Cortelazzi, B.; Bergamini, C.; Bossi, P.; Civelli, E.; Morosi, C.; Lo Vullo, S.; Imbimbo, M.; Quattrone, P.; et al. A phase II study of sorafenib in recurrent and/or metastatic salivary gland carcinomas: Translational analyses and clinical impact. Eur. J. Cancer 2016, 69, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Guigay, J.; Bidault, F.; Fayette, J.; Even, C.; Cupissol, D.; Rolland, F.; Peyrade, F.; Laguerre, B.; Le Tourneau, C.; Zanetta, S.; et al. Pazopanib in patients with progressive recurrent or metastatic (R/M) salivary gland carcinoma (SGC): Further evaluation of efficacy including tumor growth rates (GR) analysis. H&N Unicancer Group PACSA trial with the REFCOR. Ann. Oncol. 2016, 27. [Google Scholar] [CrossRef] [Green Version]
- Tchekmedyian, V.; Sherman, E.J.; Dunn, L.; Tran, C.; Baxi, S.; Katabi, N.; Antonescu, C.R.; Ostrovnaya, I.; Haque, S.S.; Pfister, D.G.; et al. Phase II Study of Lenvatinib in Patients With Progressive, Recurrent or Metastatic Adenoid Cystic Carcinoma. J. Clin. Cancer Res. 2019, 37, 1529–1537. [Google Scholar] [CrossRef]
- Wong, S.J.; Karrison, T.; Hayes, D.N.; Kies, M.S.; Cullen, K.J.; Tanvetyanon, T.; Argiris, A.; Takebe, N.; Lim, D.; Saba, N.F.; et al. Phase II trial of dasatinib for recurrent or metastatic c-KIT expressing adenoid cystic carcinoma and for nonadenoid cystic malignant salivary tumors. Ann. Oncol. 2016, 27, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Ho, A.L.; Sherman, E.J.; Baxi, S.S.; Haque, S.; Ni, A.; Antonescu, C.R.; Katabi, N.; Morris, L.G.; Chan, T.A.; Pfister, D.G. Phase II study of regorafenib in progressive, recurrent/metastatic adenoid cystic carcinoma. J. Clin. Oncol. 2016, 34, 6096. [Google Scholar] [CrossRef]
- Dillon, P.M.; Petroni, G.R.; Horton, B.J.; Moskaluk, C.A.; Fracasso, P.M.; Douvas, M.G.; Varhegyi, N.; Zaja-Milatovic, S.; Thomas, C.Y. A Phase II Study of Dovitinib in Patients with Recurrent or Metastatic Adenoid Cystic Carcinoma. J. Clin. Cancer Res. 2017, 23, 4138–4145. [Google Scholar] [CrossRef] [Green Version]
- Keam, B.; Kim, S.B.; Shin, S.H.; Cho, B.C.; Lee, K.W.; Kim, M.K.; Yun, H.J.; Lee, S.H.; Yoon, D.H.; Bang, Y.J. Phase 2 study of dovitinib in patients with metastatic or unresectable adenoid cystic carcinoma. Cancer 2015, 121, 2612–2617. [Google Scholar] [CrossRef] [Green Version]
N° of ACC Cases | Other SGC Histotypes Included * (No of Cases) | EC Markers and Other Factors ** (ICH Detected, If Not Otherwise Specified) | Vs NSG (N° of Cases) | Vs Benign SGTs (N° of Cases) | Significant Correlations with Clinicopathological Parameters | Ref. |
---|---|---|---|---|---|---|
51 | MEC (40), PLGA (19) | CD105, IMVD | Yes (83, near SGTs) | PA (29) | CD105 (+) vessels restricted to metastasizing cases | [21] |
19 | MEC (20) | CD105, IMVD, Ki67 | Yes (10) | PA (20) | - | [22] |
9 | MEC (8), MEpC (1) | CD31, CD105, MVD | - | PA (21), WT (2), BCA (2) | Only CD105-MVD differed between benign and malignant SGTs | [23] |
5 | MEC (6), SDC (4) | CD34, MVD | - | PA (15) | - | [24] |
20 | MEC (20) | CD105, MVD | Yes (10) | PA (20) | - | [25] |
31 | MEC (37), EMEC (14) | CD34, CD105, IMVD, PMVD, Vimentin, α-SMA, Ki67, Prdx-1 | - | - | - | [26] |
37 | MEC (18) | CD34, MVD | - | - | - | [27] |
4 | MEC (6), CXPA (6), AdNOS (4), AcCC (5) | VEGF, CD34, MVD, | Yes (near SGTs) | PA (8), WT (7), BCA (5) | - | [28] |
50 | MEC (40), PLGA (19) | VEGF, TP | - | PA (30) | - | [29] |
80 | - | CD34, MVD, VEGF, NF-κB p65, iNOS | Yes (20) | - | CD34-MVD, VEGF, NF-κB p65 and iNOS: independent prognosticators for OS | [30] |
33 | MEC (25) | CD34, MVD, EMMPRIN (ICH & RT-PCR in frozen sections) | Yes (9) | PA (28) | - | [31] |
72 | - | CD34, MVD, EMMPRIN, VEGF, Ki67, MMP −2 and −9 | Yes (20) | - | EMMPRIN (+): independent prognosticator for OS | [32] |
11 | MEC (10), AcCC (7), SCC (3) | CD34, IMVD, VEGF, p53 | - | - | - | [33] |
15 | MEC (14), AdNOS (6), PLGA (4), CXPA (5), SDC (2) | VEGF, p53, Ki67 | - | - | VEGF expression with p53 expression, tumor size, lymph node metastasis, perineural and vascular invasion, clinical stage and recurrence VEGF expression: independent prognosticator for OS | [34] |
60 # | - | NRP1 and 2, VEGF, Sema-3A, Sema-3F, CD31, D240 | Yes (30) | - | NRP1, VEGF and MVD: greater in metastatic ACC | [35] |
50 | - | NRP2, CD34, MVD | Yes (20, near SGTs) | - | NRP2 expression with TMN, clinical stage, vascular invasion and metastasis | [36] |
49 | - | CD34, MVD, S100 and p-Tyr (IHC), EPHA2 and ephrinA1 (ICH, RT-PCR and Western blotting) | Yes (10) | - | EPHA2/ephrinA1 levels and MVD with clinical TNM stage, perineural and vascular invasion | [37] |
26 | - | MYB-NFIB chimeric gene (RT-PCR and direct sequencing), CD31, VEGF and Ki67 (IHC) | - | - | - | [38] |
72 | - | CD34, MVD, Ki67, p-S6S235/236, EGFR, p-Stat3T705, HIF-1α and PAI● | Yes (18) | PA (12) | - | [39] |
74 | - | CD31, MVD, EGFR, CD146, HIF-1a | Yes (18) | PA (12) | - | [40] |
167 ## | - | Epiregulin, CD31, CD34 | Yes (52 §) | - | Epiregulin levels with tumour size and stage, local recurrence, lung metastasis, OS and MFS | [41] |
N° of MEC Cases | Other SGC Histotypes Included * (N° of Cases) | EC Markers and Other Factors ** (ICH Detected, If Not Otherwise Specified) | Vs Normal SG (N° of Cases) | Vs Benign SGTs (N° of Cases) | Significant Correlations with Clinicopathological Parameters | Ref. |
---|---|---|---|---|---|---|
40 | ACC (51), PLGA (19) | CD105, IMVD | Yes (83, near SGTs) | PA (29) | - | [21] |
20 | ACC (19) | CD105, IMVD, Ki67 | Yes (10) | PA (20) | - | [22] |
8 | ACC (9), MEpC (1) | CD31, CD105, MVD | - | PA (21), WT (2), BCA (2) | - | [23] |
6 | ACC (5), SDC (4) | CD34, MVD | - | PA (15) | - | [24] |
20 | ACC (20) | CD105, MVD | Yes (10) | PA (20) | - | [25] |
37 | ACC (31), EMEC (14) | CD34, CD105, IMVD, PMVD, Vimentin, α-SMA, Ki67, Prdx-1 | - | - | - | [26] |
18 | ACC (37) | CD34, MVD | - | - | - | [27] |
6 | ACC (4), CXPA (6), AdNOS (4), AcCC (5) | CD34, MVD, VEGF | Yes (near SGTs) | PA (8), WT (7), BCA (5) | - | [28] |
40 | ACC (50), PLGA (19) | VEGF, TP | - | PA (30) | - | [29] |
26 | - | CD105, D2-40, MVD, LVD, VEGF-A and VEGF-C | - | - | High IMVD in younger patients Low VEGF-A and MVD with recurrence and nodal metastasis | [47] |
70 | - | CD34, MVD, VEGF, iNOS | Yes (40) | - | iNOS and VEGF expression with tumor differentiation, size, metastasis and relapse | [49] |
25 | ACC (33) | CD34, MVD, EMMPRIN (ICH and RT-PCR in frozen sections) | Yes (9) | PA (28) | - | [31] |
10 | ACC (11), AcCC (7), SCC (3) | CD34, IMVD, VEGF, p53 | - | - | - | [33] |
14 | ACC (15), AdNOS (6), PLGA (4), CXPA (5), SDC (2) | VEGF, p53, Ki67 | - | - | VEGF expression with p53 expression and higher grade, tumor size, lymph node metastasis, perineural and vascular invasion, clinical stage and recurrence VEGF expression: independent prognosticator for OS | [34] |
75 | - | Caveolin-1, CD34, IMVD, VEGF | - | - | Decreased caveolin−1 expression rates with tumors of shorter duration, stage III and IV tumours and recurrent disease MVD higher in stage III and IV tumours and independent adverse prognosticator | [48] |
NCT Number | Title | Status | Study Results | Drugs | Phase |
---|---|---|---|---|---|
NCT02558387 | Trial of BIBF1120 (Nintedanib) in Patients With Recurrent or Metastatic Salivary Gland Cancer of the Head and Neck | Unknown status | No Results Available | BIBF1120 | II |
NCT01254617 | Lenalidomide and Cetuximab in Treating Patients With Advanced Colorectal Cancer or Head and Neck Cancer | Completed | No Results Available | Lenalidomide Cetuximab | I |
NCT00588770 | Chemotherapy With or Without Bevacizumab in Treating Patients With Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma | Active, not recruiting | Has Results | Bevacizumab Carboplatin Cisplatin Docetaxel Fluorouracil | III |
NCT00492089 | Bevacizumab in Reducing CNS Side Effects in Patients Who Have Undergone Radiation Therapy to the Brain for Primary Brain Tumor, Meningioma, or Head and Neck Cancer | Completed | Has Results | Bevacizumab | II |
NCT00101348 | Erlotinib and Cetuximab With or Without Bevacizumab in Treating Patients With Metastatic or Unresectable Kidney, Colorectal, Head and Neck, Pancreatic, or Non-Small Cell Lung Cancer | Completed | No Results Available | Erlotinib hydrochloride Cetuximab Bevacizumab | I, II |
NCT00023959 | Bevacizumab, Fluorouracil, and Hydroxyurea Plus Radiation Therapy in Treating Patients With Advanced Head and Neck Cancer | Completed | No Results Available | Bevacizumab Hydroxyurea Fluorouracil | I |
NCT00005647 | SU5416 and Paclitaxel in Treating Patients With Recurrent, Locally Advanced or Metastatic Cancer of the Head and Neck | Completed | No Results Available | Paclitaxel Semaxanib | I |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pouloudi, D.; Sotiriadis, A.; Theodorakidou, M.; Sarantis, P.; Pergaris, A.; Karamouzis, M.V.; Theocharis, S. The Impact of Angiogenesis in the Most Common Salivary Gland Malignant Tumors. Int. J. Mol. Sci. 2020, 21, 9335. https://doi.org/10.3390/ijms21249335
Pouloudi D, Sotiriadis A, Theodorakidou M, Sarantis P, Pergaris A, Karamouzis MV, Theocharis S. The Impact of Angiogenesis in the Most Common Salivary Gland Malignant Tumors. International Journal of Molecular Sciences. 2020; 21(24):9335. https://doi.org/10.3390/ijms21249335
Chicago/Turabian StylePouloudi, Despoina, Aristoteles Sotiriadis, Margarita Theodorakidou, Panagiotis Sarantis, Alexandros Pergaris, Michalis V. Karamouzis, and Stamatios Theocharis. 2020. "The Impact of Angiogenesis in the Most Common Salivary Gland Malignant Tumors" International Journal of Molecular Sciences 21, no. 24: 9335. https://doi.org/10.3390/ijms21249335
APA StylePouloudi, D., Sotiriadis, A., Theodorakidou, M., Sarantis, P., Pergaris, A., Karamouzis, M. V., & Theocharis, S. (2020). The Impact of Angiogenesis in the Most Common Salivary Gland Malignant Tumors. International Journal of Molecular Sciences, 21(24), 9335. https://doi.org/10.3390/ijms21249335