Identification and Characterization of a Novel Protein Disulfide Isomerase Gene (MgPDI2) from Meloidogyne graminicola
Abstract
:1. Introduction
2. Results
2.1. Identification and Sequence Analysis of the MgPDI2 Gene from M. graminicola
2.2. MgPDI2 Is Expressed in the Subventral Esophageal Glands and Was Up-Regulated during the Early Parasitic Stage of M. graminicola
2.3. Recombinant Expression and Purification of MgPDI2
2.4. Enzymatic Activities of MgPDI2 Protein
2.5. MgPDI2 Is Involved in Parasitism
2.6. MgPDI2 Expression Is Induced by H2O2 and Increases H2O2 Tolerance
2.7. MgPDI2 Induces Strong Necrotic Responses in N. benthamiana
2.8. Functional Domains of MgPDI2 Are Required for Cell Death Induction
3. Discussion
4. Materials and Methods
4.1. Plant Growth Conditions
4.2. M. graminicola Culture Conditions
Cloning and Sequence Analyses
4.3. In Situ Hybridization
4.4. Developmental Expression Analysis
4.5. Expression, Purification, and Validation of Recombinant MgPDI2
4.6. MgPDI2 Reductive Assay
4.7. Protective Effect of MgPDI2 against Oxidative Damage by the MFO System
4.8. RNAi and Infection Assay
4.9. MgPDI2 Expression during H2O2 Stress
Effect of MgPDI2 Depletion on Nematode Survival Following H2O2 Stress
4.10. Agrobacterium-Mediated Transient Expression
4.11. Western Blot Analysis
4.12. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MgPDI2 | Protein Disulfide Isomerase 2 |
CGHC | Cys-Gly-His-Cys |
dpi | days post-infection |
pre-J2 | pre-parasitic second-stage juvenile |
References
- Sevier, C.S.; Kaiser, C.A. Formation and transfer of disulphide bonds in living cells. Nat. Rev. Mol. Cell Biol. 2002, 3, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.X.; Soong, L. Identification and enzymatic activities of four protein disulfide isomerase (PDI) isoforms of Leishmania amazonensis. Parasitol. Res. 2008, 102, 437–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, B.; Noiva, R.; Yadava, A.; Zheng, H.; Majam, V.K.; Mohan, V.K.; Moch, J.K.; Haynes, J.D.; Nakhasi, H.; Kumar, S. Protein disulfide isomerase assisted protein folding in Malaria Parasites. Int. J. Parasit. 2006, 36, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Primm, T.P.; Walker, K.W.; Gilbert, H.F. Facilitated protein aggregation. Effects of calcium on the chaperone and anti-chaperone activity of protein disulfide-isomerase. J. Biol. Chem. 1996, 271, 33664–33669. [Google Scholar] [CrossRef] [Green Version]
- Freedman, R.B.; Hirst, T.R.; Tuite, M.F. Protein disulfide-isomerase-building bridges in protein-folding. Trends Biochem. Sci. 1994, 19, 331–336. [Google Scholar] [CrossRef]
- Knodler, L.A.; Noiva, R.; Mehta, K.; McCaffery, J.M.; Aley, S.B.; Svard, S.G.; Nystul, T.G.; Reiner, D.S.; Silberman, J.D.; Gillin, F.D. Novel protein-disulfide isomerases from the early-diverging protist Giardia lamblia. J. Biol. Chem. 1999, 274, 29805–29811. [Google Scholar] [CrossRef] [Green Version]
- Apperizeller-Herzog, C.; Ellgaard, L. The human PDI family: Versatility packed into a single fold. Biochim. Biophys. Acta-Mol. Cell Res. 2008, 1783, 535–548. [Google Scholar] [CrossRef] [Green Version]
- Galligan, J.J.; Petersen, D.R. The human protein disulfide isomerase gene family. Hum. Genom. 2012, 6. [Google Scholar] [CrossRef] [Green Version]
- Stolf, B.S.; Smyrnias, I.; Lopes, L.R.; Vendramin, A.; Goto, H.; Laurindo, F.R.; Shah, A.M.; Santos, C.X. Protein disulfide isomerase and host-pathogen interaction. Sci. World J. 2011, 11, 1749. [Google Scholar] [CrossRef] [Green Version]
- Ben, K.N.; De, M.G.; Ratnam, J.; Kean-Hooi, A.K.; Arkin, M.; Mckerrow, J.; Chenik, M. A high-throughput turbidometric assay for screening inhibitors of Leishmania major protein disulfide isomerase. J. Biomol. Screen. 2012, 16, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Zhang, Q.; Zhang, M.; Gu, B.; Huang, G.; Wang, Q.; Shan, W. The protein disulfide isomerase 1 of Phytophthora parasitica (PpPDI1) is associated with the haustoria-like structures and contributes to plant infection. Front. Plant Sci. 2015, 6, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habash, S.S.; Sobczak, M.; Siddique, S.; Voigt, B.; Elashry, A.; Grundler, F.M. Identification and characterization of a putative protein disulfide isomerase (HsPDI) as an alleged effector of Heterodera schachtii. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Pokharel, R.R.; Abawi, G.S.; Duxbury, J.M.; Smat, C.D.; Wang, X.; Brito, J.A. Variability and the recognition of two races in Meloidogyne graminicola. Austral. Plant Pathol. 2010, 39, 326–333. [Google Scholar] [CrossRef]
- Kyndt, T.; Nahar, K.; Haegeman, A.; De Vleesschauwer, D.; Hofte, M.; Gheysen, G. Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biol. 2012, 14, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Mantelin, S.; Bellafiore, S.; Kyndt, T. Meloidogyne graminicola: A major threat to rice agriculture. Mol. Plant Pathol. 2017, 18, 3–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, H.; Kyndt, T.; He, W.; Vanholme, B.; Gheysen, G. Beta-aminobutyric acid-induced resistance against root-knot nematodes in rice is based on increased basal defense. Mol. Plant Microbe Interact. 2015, 28, 519–533. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Lin, B.; Huang, Q.; Hu, L.; Zhuo, K. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism. PLoS Pathog. 2017, 13, e1006301. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Hu, L.; Sun, L.; Lin, B.; Huang, K.; Zhuo, K.; Liao, J. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism. Mol. Plant Pathol. 2018, 19, 1942–1955. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.L.; Wang, Z.H.; Maria, M.; Qu, N.; Zheng, J.W. Meloidogyne graminicola protein disulfide isomerase may be a nematode effector and is involved in protection against oxidative damage. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef]
- Kozlov, G.; Määttänen, P.; Thomas, D.Y.; Gehring, K. A structural overview of the PDI family of proteins. FEBS J. 2010, 277, 3924–3936. [Google Scholar] [CrossRef]
- Mitchum, M.G.; Hussey, R.S.; Baum, T.J.; Wang, X.; Elling, A.A.; Wubben, M.; Davis, E.L. Nematode effector proteins: An emerging paradigm of parasitism. New Phytol. 2013, 199, 879–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, G.; Kober, F.-X.; Lewandrowski, U.; Sickmann, A.; Lennarz, W.J.; Schindelin, H. The Catalytic activity of protein-disulfide isomerase requires a conformationally flexible molecule. J. Biol. Chem. 2008, 283, 33630–33640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Boer, J.M.; Yan, Y.; Smant, G.; Davis, E.L.; Baum, T.J. In-situ hybridization to messenger RNA in Heterodera glycines. J. Nematol. 1998, 30, 309–312. [Google Scholar] [PubMed]
- Dubreuil, G.; Deleury, E.; Magliano, M.; Jaouannet, M.; Abad, P.; Rosso, M.N. Peroxiredoxins from the plant parasitic root-knot nematode, Meloidogyne incognita, are required for successful development within the host. Int. J. Parasitol. 2011, 41, 385–396. [Google Scholar] [CrossRef]
- Sacco, M.A.; Koropacka, K.; Grenier, E.; Jaubert, M.J.; Blanchard, A.; Goverse, A.; Smant, G.; Moffett, P. The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2-and RanGAP2-dependent plant cell death. PLoS Pathog. 2009, 5, e1000564. [Google Scholar] [CrossRef] [Green Version]
- Gross, R.; Zhang, S.; Wei, L.; Caplan, A.; Kuhl, J.; Dandurand, L.-M.; Wang, X.; Xiao, F. The Globodera pallida effector GpPGI1 is a functional thioredoxin and triggers defense-related cell death independent of its enzymatic activity. Phytopathology 2020, 110, 1838–1844. [Google Scholar] [CrossRef]
- Naalden, D.; Haegeman, A.; de Almeida-Engler, J.; Eshetu, F.B.; Bauters, L.; Gheysen, G. The Meloidogyne graminicola effector Mg16820 is secreted in the apoplast and cytoplasm to suppress plant host defense responses. Mol. Plant Pathol. 2018, 19, 2416–2430. [Google Scholar] [CrossRef] [Green Version]
- Haegeman, A.; Bauters, L.; Kyndt, T.; Rahman, M.M.; Gheysen, G. Identification of candidate effector genes in the transcriptome of the rice root knot nematode Meloidogyne graminicola. Mol. Plant Pathol. 2013, 14, 379–390. [Google Scholar] [CrossRef]
- Derbyshire, M.K.; Lanczycki, C.J.; Bryant, S.H.; Marchler-Bauer, A. Annotation of functional sites with the Conserved Domain Database. Database 2012, 2012, bar058. [Google Scholar] [CrossRef] [Green Version]
- Petitot, A.S.; Dereeper, A.; Agbessi, M.; Da, S.C.; Guy, J.; Ardisson, M.; Fernandez, D. Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants. Mol. Plant Pathol. 2016, 17, 860–874. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Z.; Zhan, L.Q.; Chen, X.X. Two types of lysozymes from the whitefly Bemisia tabaci: Molecular characterization and functional diversification. Dev. Comp. Immunol. 2018, 81, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, A. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J. Biol. Chem. 1979, 254, 9627–9632. [Google Scholar] [PubMed]
- Liu, Q.; Yang, X.; Zhang, M.; Wang, L.; Liu, J.; Chen, J.; He, A.; Li, Z.; Wu, Z.; Zhan, X. Molecular characterization and immunolocalization of a protein disulfide isomerase from Angiostrongylus cantonensis. Parasitol. Res. 2012, 110, 2501–2507. [Google Scholar] [CrossRef] [PubMed]
- Sotirchos, I.M.; Hudson, A.L.; Ellis, J.; Davey, M.W. A unique thioredoxin of the parasitic nematode Haemonchus contortus with glutaredoxin activity. Free Radic. Biol. Med. 2009, 46, 579–585. [Google Scholar] [CrossRef]
- Umasuthan, N.; Revathy, K.S.; Lee, Y.; Whang, I.; Lee, J. Mitochondrial thioredoxin-2 from Manila clam (Ruditapes philippinarum) is a potent antioxidant enzyme involved in antibacterial response. Fish Shellfish Immunol. 2012, 32, 513–523. [Google Scholar] [CrossRef]
- Huang, G.; Allen, R.; Davis, E.L.; Baum, T.J.; Hussey, R.S. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc. Natl. Acad. Sci. USA 2006, 103, 14302–14306. [Google Scholar] [CrossRef] [Green Version]
- Rosso, M.N.; Dubrana, M.P.; Cimbolini, N.; Jaubert, S.; Abad, P. Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Mol. Plant Microbe Interact. 2005, 18, 615–620. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Lower, S.; Williamson, V.M. Application of Pluronic gel to the study of root-knot nematode behaviour. Nematology 2009, 11, 453–464. [Google Scholar] [CrossRef]
- Dutta, T.K.; Powers, S.J.; Kerry, B.R.; Gaur, H.S.; Curtis, R.H.C. Comparison of host recognition, invasion, development and reproduction of Meloidogyne graminicola and M. incognita on rice and tomato. Nematology 2011, 13, 509–520. [Google Scholar] [CrossRef]
- Tian, Z.L.; Barsalote, E.M.; Li, X.L.; Cai, R.H.; Zheng, J.W. First report of root-knot nematode, Meloidogyne graminicola, on Rice in Zhejiang, Eastern China. Plant Dis. 2017, 101, 2152–2153. [Google Scholar] [CrossRef]
- Bybd, D.W.; Kirkpatrick, T.; Barker, K.R. An improved technique for clearing and staining plant-tissues for detection of nematodes. J. Nematol. 1983, 15, 142–143. [Google Scholar] [PubMed]
Lane | a | b | c | d | e | f | g | h |
---|---|---|---|---|---|---|---|---|
Recombinant MgPDI2 (μg/mL) | 0 | 0 | 0 | 0 | 0.1 | 1 | 10 | 100 |
Nicked form (%) | 44.39 | 61.06 | 51.91 | 89.98 | 85.74 | 82.62 | 59.37 | 41.72 |
Linear form (%) | 26.49 | 17.54 | 22.92 | 10.02 | 4.72 | 5.23 | 17.18 | 25.91 |
Supercoiled form (%) | 29.12 | 21.41 | 25.17 | 0.00 | 9.53 | 12.15 | 23.45 | 32.37 |
Primer Name | Primer Sequences (5′-3′) | Use |
---|---|---|
MgPDI2-F | GTCATGATCTCCTTTTCTGTTC | open reading frame (ORF) verification |
MgPDI2-R | CAATGAAAAGAACAACAGGGAGG | ORF verification |
MgPDI2-BamhI | CGCGGATCCAGTGAAAAGGTTTCTCCTAC | Vector construction |
MgPDI2-XholI | CCGCTCGAGAGCTCAGTATGGCCCTCCTC | Vector construction |
MgPDI2-RT-F | TGATGAGGGACGTGCTGACT | qRT-PCR |
MgPDI2-RT-R | CTCCACCAAAAATGACGGC | qRT-PCR |
Mg-ACT-Q-F | AAGATCCTCACTGAGCGTGGTTAC | qRT-PCR |
Mg-ACT-Q-R | CTTGACCGTCAGGCAATTCATAGC | qRT-PCR |
MgPDI2-P | TTATGATTCTGCCGTTGC | In situ hybridization |
MgPDI2-AP | CAAAGAAATGAGACGAACAGC | In situ hybridization |
MgPDI2-T7-P | TAATACGACTCACTATAGGGTTATGATTCTGCCGTTGC | In situ hybridization |
MgPDI2-T7-AP | TAATACGACTCACTATAGGGCAAAGAAATGAGACGAACAGC | In situ hybridization |
MgPDI2-dsRNA-P | CCAAGGAGTCCCCTGATTTT | dsRNA |
MgPDI2-dsRNA-AP-T7 | TAATACGACTCACTATAGGGTCTCAGCATCAGAAAGACCAG | dsRNA |
MgPDI2-dsRNA-P-T7 | TAATACGACTCACTATAGGGCCAAGGAGTCCCCTGATTTT | dsRNA |
MgPDI2-dsRNA-AP | TCTCAGCATCAGAAAGACCAG | dsRNA |
MgPDI2-GFP-P | TCTACAAATCTATCTCTGGATCCATGATCTCCTTTTCTGTTCT | Vector construction |
MgPDI2-GFP-AP | TCGCCCTTGCTCACCATGGATCCAAGCTCAGTATGGCCCTCCT | Vector construction |
MgPDI2-NSP-P | TCTACAAATCTATCTCTGGATCCATGAGTGAAAAGGTTTCTCCTAC | MgPDI2 mutants |
MgPDI2-NSP-AP | TCGCCCTTGCTCACCATGGATCCAAGCTCAGTATGGCCCTCCT | MgPDI2 mutants |
MgPDI2-a-AP | AACATTCTCTTCCTCTTCAA | MgPDI2 mutants |
MgPDI2-a-P | AAGAGGAAGAGAATGTTAAGAAGAAGACTGGACCTCC | MgPDI2 mutants |
MgPDI2-b-AP | TGGAGGTCCAGTCTTCTTCT | MgPDI2 mutants |
MgPDI2-b-P | AGAAGACTGGACCTCCAAGAATTCCTCTTGTTTCAGA | MgPDI2 mutants |
MgPDI2-b′-AP | TTGGCTAAATTCTGAAACAA | MgPDI2 mutants |
MgPDI2-b′-P | TTTCAGAATTTAGCCAAGATGGAAAGTTGAAGCCACA | MgPDI2 mutants |
MgPDI2-a′-AP | TGTTTGTCCCAATCCTCGGG | MgPDI2 mutants |
MgPDI2-a′-P | GAGGATTGGGACAAACATGACTCTGGTGGTAAAGAAG | MgPDI2 mutants |
MgPDI2-Del-AP | CCACGGAGCATAGAACTCTA | MgPDI2 mutants |
MgPDI2-Del-P | AGTTCTATGCTCCGTGGAAGGCATTAGCTCCAGAATA | MgPDI2 mutants |
MgPDI2-AAAA-AP | GCCTTGGCGGCGGCGGCCCACGGAGCATAGAACTCTA | MgPDI2 mutants |
MgPDI2-AAAA-P | GCCGCCGCCGCCAAGGCATTAGCTCCAGAATAT | MgPDI2 mutants |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Z.; Wang, Z.; Munawar, M.; Zheng, J. Identification and Characterization of a Novel Protein Disulfide Isomerase Gene (MgPDI2) from Meloidogyne graminicola. Int. J. Mol. Sci. 2020, 21, 9586. https://doi.org/10.3390/ijms21249586
Tian Z, Wang Z, Munawar M, Zheng J. Identification and Characterization of a Novel Protein Disulfide Isomerase Gene (MgPDI2) from Meloidogyne graminicola. International Journal of Molecular Sciences. 2020; 21(24):9586. https://doi.org/10.3390/ijms21249586
Chicago/Turabian StyleTian, Zhongling, Zehua Wang, Maria Munawar, and Jingwu Zheng. 2020. "Identification and Characterization of a Novel Protein Disulfide Isomerase Gene (MgPDI2) from Meloidogyne graminicola" International Journal of Molecular Sciences 21, no. 24: 9586. https://doi.org/10.3390/ijms21249586
APA StyleTian, Z., Wang, Z., Munawar, M., & Zheng, J. (2020). Identification and Characterization of a Novel Protein Disulfide Isomerase Gene (MgPDI2) from Meloidogyne graminicola. International Journal of Molecular Sciences, 21(24), 9586. https://doi.org/10.3390/ijms21249586