Synthetic Scaffold/Dental Pulp Stem Cell (DPSC) Tissue Engineering Constructs for Bone Defect Treatment: An Animal Studies Literature Review
Abstract
:1. Introduction
2. Results
2.1. Papers Identification and Selection
2.2. General Parameters
2.3. Rat Study Model
2.4. Rabbit Study Model
2.5. Sheep Study Model
2.6. Swine Study Model
2.7. Study Risk of Bias
2.8. Meta-Analysis Evaluation
2.9. Articles Excluded from the Meta-Analysis
3. Discussion
3.1. Synthetic Scaffolds
3.2. Limitations of the Research
4. Materials and Methods
4.1. Database Search
4.2. Inclusion Criteria
4.3. Selection of the Studies
4.4. Data Extraction
4.5. Risk of Bias
4.6. Review and Meta-Analysis Criteria
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Graziano, A.; d’Aquino, R.; Laino, G.; Papaccio, G. Dental pulp stem cells: A promising tool for bone regeneration. Stem Cell Rev. 2008, 4, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaccio, G.; Graziano, A.; d’Aquino, R.; Graziano, M.F.; Pirozzi, G.; Menditti, D.; De Rosa, A.; Carinci, F.; Laino, G. Long-Term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: A cell source for tissue repair. J.Cell. Physiol. 2006, 208, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Ballini, A.; Cantore, S.; Farronato, D.; Cirulli, N.; Inchingolo, F.; Papa, F.; Malcangi, G.; Inchingolo, A.D.; Dipalma, G.; Sardaro, N.; et al. Periodontal disease and bone pathogenesis: The crosstalk between cytokines and porphyromonas gingivalis. J. Biol. Regul. Homeost. Agents 2015, 29, 273–281. [Google Scholar] [PubMed]
- Ballini, A.; Cantore, S.; Altini, C.; Dipalma, G.; Ferrari, C.; Niccoli Asabella, A.; Rubini, G.; Inchingolo, F. 99mTc-diphosphonates bone scintigraphy for vitality evaluation in cleft palate. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8497–8501. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo Isacco, C.; Ballini, A.; Paduanelli, G.; Inchingolo, A.D.; Nguyen, K.C.D.; Inchingolo, A.M.; Pham, V.H.; Aityan, S.K.; Schiffman, M.; et al.; DENTAL SUPPLEMENT Bone decay and beyond: How can we approach it better. J. Biol. Regul. Homeost. Agents 2019, 33, 143–154. [Google Scholar]
- Ballini, A.; Cantore, S.; Scacco, S.; Perillo, L.; Scarano, A.; Aityan, S.K.; Contaldo, M.; Cd Nguyen, K.; Santacroce, L.; Syed, J.; et al. A comparative study on different stemness gene expression between dental pulp stem cells vs. dental bud stem cells. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1626–1633. [Google Scholar] [CrossRef]
- Boccellino, M.; Di Stasio, D.; Dipalma, G.; Cantore, S.; Ambrosio, P.; Coppola, M.; Quagliuolo, L.; Scarano, A.; Malcangi, G.; Borsani, E.; et al. Steroids and growth factors in oral squamous cell carcinoma: Useful source of dental-derived stem cells to develop a steroidogenic model in new clinical strategies. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8730–8740. [Google Scholar] [CrossRef]
- Cantore, S.; Ballini, A.; De Vito, D.; Martelli, F.S.; Georgakopoulos, I.; Almasri, M.; Dibello, V.; Altini, V.; Farronato, G.; Dipalma, G.; et al. Characterization of human apical papilla-derived stem cells. J. Biol. Regul. Homeost. Agents 2017, 31, 901–910. [Google Scholar]
- Davies, J.E. Understanding peri-implant endosseous healing. J. Dent. Educ. 2003, 67, 932–949. [Google Scholar] [CrossRef]
- Park, J.-W.; Kurashima, K.; Tustusmi, Y.; An, C.-H.; Suh, J.-Y.; Doi, H.; Nomura, N.; Noda, K.; Hanawa, T. Bone healing of commercial oral implants with RGD immobilization through electrodeposited poly(ethylene glycol) in rabbit cancellous bone. Acta Biomater. 2011, 7, 3222–3229. [Google Scholar] [CrossRef]
- Marx, R.E. Bone and bone graft healing. Oral Maxillofac. Surg. Clin. North Am. 2007, 19, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Grassi, F.R.; Ciccolella, F.; D’Apolito, G.; Papa, F.; Iuso, A.; Salzo, A.E.; Trentadue, R.; Nardi, G.M.; Scivetti, M.; De Matteo, M.; et al. Effect of low-level laser irradiation on osteoblast proliferation and bone formation. J. Biol. Regul. Homeost. Agents 2011, 25, 603–614. [Google Scholar] [PubMed]
- Tumedei, M.; Piattelli, A.; Degidi, M.; Mangano, C.; Iezzi, G. A narrative review of the histological and histomorphometrical evaluation of the peri-implant bone in loaded and unloaded dental implants. A 30-year experience (1988–2018). Int. J. Environ. Res. Public Health 2020, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehrke, S.A.; Mazón, P.; Del Fabbro, M.; Tumedei, M.; Aramburú Júnior, J.; Pérez-Díaz, L.; De Aza, P.N. Histological and histomorphometric analyses of two bovine bone blocks implanted in rabbit calvaria. Symmetry 2019, 11, 641. [Google Scholar] [CrossRef] [Green Version]
- Comuzzi, L.; Tumedei, M.; Piattelli, A.; Iezzi, G. Short vs. standard length cone morse connection implants: An in vitro pilot study in low density polyurethane foam. Symmetry 2019, 11, 1349. [Google Scholar] [CrossRef] [Green Version]
- Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Bone regeneration: Current concepts and future directions. BMC Med. 2011, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarano, A.; Inchingolo, F.; Murmura, G.; Traini, T.; Piattelli, A.; Lorusso, F. Three-Dimensional architecture and mechanical properties of bovine bone mixed with autologous platelet liquid, blood, or physiological water: An in vitro study. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [Green Version]
- Scarano, A.; de Oliveira, P.S.; Traini, T.; Lorusso, F. Sinus membrane elevation with heterologous cortical lamina: A randomized study of a new surgical technique for maxillary sinus floor augmentation without bone graft. Materials 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Scarano, A.; Murmura, G.; Mastrangelo, F.; Lorusso, F.; Greco Lucchina, A.; Carinci, F. A novel technique to prevent sinus membrane collapse during maxillary sinus floor augmentation without bone graft: Technical note. J. Biol. Regul. Homeost. Agents 2018, 32, 1589–1592. [Google Scholar]
- Scarano, A.; Lorusso, F.; Arcangelo, M.; D’Arcangelo, C.; Celletti, R.; de Oliveira, P.S. Lateral sinus floor elevation performed with trapezoidal and modified triangular flap designs: A randomized pilot study of post-operative pain using thermal infrared imaging. Int. J. Environ. Res. Public Health 2018, 15. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-W.; Kim, Y.-J.; Jang, J.-H.; Song, H. Positive modulation of osteogenesis- and osteoclastogenesis-related gene expression with strontium-containing microstructured Ti implants in rabbit cancellous bone. J. Biomed. Mater. Res. 2013, 101, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Van de Vijfeijken, S.E.C.M.; Münker, T.J.A.G.; Spijker, R.; Karssemakers, L.H.E.; Vandertop, W.P.; Becking, A.G.; Ubbink, D.T. CranioSafe group autologous bone is inferior to alloplastic cranioplasties: Safety of autograft and allograft materials for cranioplasties, a systematic review. World Neurosurg. 2018, 117, 443–452.e8. [Google Scholar] [CrossRef] [PubMed]
- Nkenke, E.; Neukam, F.W. Autogenous bone harvesting and grafting in advanced jaw resorption: Morbidity, resorption and implant survival. Eur. J. Oral Implantol. 2014, 7 Suppl. S2, S203–S217. [Google Scholar] [PubMed]
- Buck, D.W.; Dumanian, G.A. Bone biology and physiology: Part I. The fundamentals. Plast. Reconstr. Surg. 2012, 129, 1314–1320. [Google Scholar] [CrossRef]
- Tumedei, M.; Savadori, P.; Del Fabbro, M. Synthetic blocks for bone regeneration: A systematic review and meta-analysis. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, S.; Kato, S.; Bengazi, F.; Urbizo Velez, J.; Tumedei, M.; Kotsu, M.; Botticelli, D. Healing at implants installed in osteotomies prepared either with a piezoelectric device or drills: An experimental study in dogs. Oral Maxillofac. Surg. 2020. [Google Scholar] [CrossRef]
- Kotsu, M.; Urbizo Velez, J.; Bengazi, F.; Tumedei, M.; Fujiwara, S.; Kato, S.; Botticelli, D. Healing at implants installed from ~ 70- to <10-Ncm insertion torques: An experimental study in dogs. Oral Maxillofac. Surg. 2020. [Google Scholar] [CrossRef]
- Nuti, N.; Corallo, C.; Chan, B.M.F.; Ferrari, M.; Gerami-Naini, B. Multipotent differentiation of human dental pulp stem cells: A literature review. Stem Cell Rev. Rep. 2016, 12, 511–523. [Google Scholar] [CrossRef]
- Casagrande, L.; Cordeiro, M.M.; Nör, S.A.; Nör, J.E. Dental pulp stem cells in regenerative dentistry. Odontology 2011, 99, 1–7. [Google Scholar] [CrossRef]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef] [Green Version]
- Didilescu, A.C.; Rusu, M.C.; Nini, G. Dental pulp as a stem cell reservoir. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2013, 54, 473–478. [Google Scholar]
- Iaculli, F.; Di Filippo, E.S.; Piattelli, A.; Mancinelli, R.; Fulle, S. Dental pulp stem cells grown on dental implant titanium surfaces: An in vitro evaluation of differentiation and microRNAs expression. J. Biomed. Mater. Res. Appl. Biomater. 2017, 105, 953–965. [Google Scholar] [CrossRef] [PubMed]
- Ferro, F.; Spelat, R.; Baheney, C.S. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. Methods Mol. Biol. 2014, 1210, 91–115. [Google Scholar] [CrossRef] [PubMed]
- Dohan Ehrenfest, D.M.; Del Corso, M.; Inchingolo, F.; Charrier, J.-B. Selecting a relevant in vitro cell model for testing and comparing the effects of a Choukroun’s platelet-rich fibrin (PRF) membrane and a platelet-rich plasma (PRP) gel: Tricks and traps. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 110, 409–411, author reply 411–413. [Google Scholar] [CrossRef]
- Dohan Ehrenfest, D.M.; Del Corso, M.; Inchingolo, F.; Sammartino, G.; Charrier, J.-B. Platelet-Rich plasma (PRP) and platelet-rich fibrin (PRF) in human cell cultures: Growth factor release and contradictory results. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 110, 418–421, author reply 421–422. [Google Scholar] [CrossRef]
- Cantore, S.; Mirgaldi, R.; Ballini, A.; Coscia, M.F.; Scacco, S.; Papa, F.; Inchingolo, F.; Dipalma, G.; De Vito, D. Cytokine gene polymorphisms associate with microbiogical agents in periodontal disease: Our experience. Int. J. Med Sci. 2014, 11, 674–679. [Google Scholar] [CrossRef] [Green Version]
- La Noce, M.; Paino, F.; Spina, A.; Naddeo, P.; Montella, R.; Desiderio, V.; De Rosa, A.; Papaccio, G.; Tirino, V.; Laino, L. Dental pulp stem cells: State of the art and suggestions for a true translation of research into therapy. J. Dent. 2014, 42, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Fawzy El-Sayed, K.M.; Elsalawy, R.; Ibrahim, N.; Gadalla, M.; Albargasy, H.; Zahra, N.; Mokhtar, S.; El Nahhas, N.; El Kaliouby, Y.; Dörfer, C.E. The dental pulp stem/progenitor cells-mediated inflammatory-regenerative axis. Tissue Eng. Rev. 2019, 25, 445–460. [Google Scholar] [CrossRef]
- Hu, L.; Liu, Y.; Wang, S. Stem cell-based tooth and periodontal regeneration. Oral Dis. 2018, 24, 696–705. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-C.; Narayanan, R.; Alapati, S.; Ravindran, S. Exosomes as biomimetic tools for stem cell differentiation: Applications in dental pulp tissue regeneration. Biomaterials 2016, 111, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Goto, N.; Fujimoto, K.; Fujii, S.; Ida-Yonemochi, H.; Ohshima, H.; Kawamoto, T.; Noshiro, M.; Shukunami, C.; Kozai, K.; Kato, Y. Role of MSX1 in osteogenic differentiation of human dental pulp stem cells. Stem Cells Int. 2016, 2016, 8035759. [Google Scholar] [CrossRef] [PubMed]
- d’Aquino, R.; De Rosa, A.; Lanza, V.; Tirino, V.; Laino, L.; Graziano, A.; Desiderio, V.; Laino, G.; Papaccio, G. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur. Cells Mater. 2009, 18, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-A.; Chen, Y.-L.; Huang, J.-S.; Huang, G.T.-J.; Chuang, S.-F. Effects of restorative materials on dental pulp stem cell properties. J. Endod. 2019, 45, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Kuo, P.-J.; Chin, Y.-T.; Weng, I.-T.; Lee, H.-W.; Huang, H.-M.; Lin, H.-Y.; Hsiung, C.-N.; Chan, Y.-H.; Lee, S.-Y. Dental pulp stem cell transplantation with 2,3,5,4’-Tetrahydroxystilbene-2-O-β-D-glucoside accelerates alveolar bone regeneration in rats. J. Endod. 2019, 45, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Yuan, K.; Lin, W.; Niu, C.; Ma, R.; Huang, Z. Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Collignon, A.-M.; Castillo-Dali, G.; Gomez, E.; Guilbert, T.; Lesieur, J.; Nicoletti, A.; Acuna-Mendoza, S.; Letourneur, D.; Chaussain, C.; Rochefort, G.Y.; et al. Mouse Wnt1-CRE-RosaTomato dental pulp stem cells directly contribute to the calvarial bone regeneration process. Stem Cells 2019, 37, 701–711. [Google Scholar] [CrossRef]
- Novais, A.; Lesieur, J.; Sadoine, J.; Slimani, L.; Baroukh, B.; Saubaméa, B.; Schmitt, A.; Vital, S.; Poliard, A.; Hélary, C.; et al. Priming dental pulp stem cells from human exfoliated deciduous teeth with fibroblast growth factor-2 enhances mineralization within tissue-engineered constructs implanted in craniofacial bone defects. Stem Cells Transl. Med. 2019, 8, 844–857. [Google Scholar] [CrossRef] [Green Version]
- Yasui, T.; Mabuchi, Y.; Toriumi, H.; Ebine, T.; Niibe, K.; Houlihan, D.D.; Morikawa, S.; Onizawa, K.; Kawana, H.; Akazawa, C.; et al. Purified human dental pulp stem cells promote osteogenic regeneration. J. Dent. Res. 2016, 95, 206–214. [Google Scholar] [CrossRef]
- Hiraki, T.; Kunimatsu, R.; Nakajima, K.; Abe, T.; Yamada, S.; Rikitake, K.; Tanimoto, K. Stem cell-derived conditioned media from human exfoliated deciduous teeth promote bone regeneration. Oral Dis. 2020, 26, 381–390. [Google Scholar] [CrossRef]
- Asutay, F.; Polat, S.; Gül, M.; Subaşı, C.; Kahraman, S.A.; Karaöz, E. The effects of dental pulp stem cells on bone regeneration in rat calvarial defect model: Micro-computed tomography and histomorphometric analysis. Arch. Oral Biol. 2015, 60, 1729–1735. [Google Scholar] [CrossRef]
- Petridis, X.; Diamanti, E.; Trigas, G.C.; Kalyvas, D.; Kitraki, E. Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold. J. Cranio Maxillo Facial Surg. Off. Publ. Eur. Assoc. Cranio Maxillo Facial Surg. 2015, 43, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Z.; Chen, S.; Macri, L.; Kohn, J.; Yelick, P.C. Mandibular jaw bone regeneration using human dental cell-seeded tyrosine-derived polycarbonate scaffolds. Tissue Eng. 2016, 22, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Xavier Acasigua, G.A.; Bernardi, L.; Braghirolli, D.I.; Filho, M.S.; Pranke, P.; Medeiros Fossati, A.C. Nanofiber scaffolds support bone regeneration associated with pulp stem cells. Curr. Stem Cell Res. Ther. 2014, 9, 330–337. [Google Scholar] [CrossRef]
- Yuan, M.; Zhan, Y.; Hu, W.; Li, Y.; Xie, X.; Miao, N.; Jin, H.; Zhang, B. Aspirin promotes osteogenic differentiation of human dental pulp stem cells. Int. J. Mol. Med. 2018, 42, 1967–1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Del-Campo, M.; Rosales-Ibañez, R.; Alvarado, K.; Sampedro, J.G.; Garcia-Sepulveda, C.A.; Deb, S.; San Román, J.; Rojo, L. Strontium folate loaded biohybrid scaffolds seeded with dental pulp stem cells induce in vivo bone regeneration in critical sized defects. Biomater. Sci. 2016, 4, 1596–1604. [Google Scholar] [CrossRef]
- Annibali, S.; Cicconetti, A.; Cristalli, M.P.; Giordano, G.; Trisi, P.; Pilloni, A.; Ottolenghi, L. A comparative morphometric analysis of biodegradable scaffolds as carriers for dental pulp and periosteal stem cells in a model of bone regeneration. J. Craniofacial Surg. 2013, 24, 866–871. [Google Scholar] [CrossRef]
- Soares, I.M.V.; de Oliveira Fernandes, G.V.; Larissa Cordeiro, C.; de Carvalho Leite, Y.K.P.; de Oliveira Bezerra, D.; de Carvalho, M.A.M.; Carvalho, C.M.R.S. The influence of Aloe vera with mesenchymal stem cells from dental pulp on bone regeneration: Characterization and treatment of non-critical defects of the tibia in rats. J. Appl. oral Sci. Rev. FOB 2019, 27, e20180103. [Google Scholar] [CrossRef]
- Kwon, D.Y.; Kwon, J.S.; Park, S.H.; Park, J.H.; Jang, S.H.; Yin, X.Y.; Yun, J.-H.; Kim, J.H.; Min, B.H.; Lee, J.H.; et al. A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells. Sci. Rep. 2015, 5, 12721. [Google Scholar] [CrossRef]
- Annibali, S.; Bellavia, D.; Ottolenghi, L.; Cicconetti, A.; Cristalli, M.P.; Quaranta, R.; Pilloni, A. Micro-CT and PET analysis of bone regeneration induced by biodegradable scaffolds as carriers for dental pulp stem cells in a rat model of calvarial “critical size” defect: Preliminary data. J. Biomed. Mater. Res. Appl. Biomater. 2014, 102, 815–825. [Google Scholar] [CrossRef]
- Maraldi, T.; Riccio, M.; Pisciotta, A.; Zavatti, M.; Carnevale, G.; Beretti, F.; La Sala, G.B.; Motta, A.; De Pol, A. Human amniotic fluid-derived and dental pulp-derived stem cells seeded into collagen scaffold repair critical-size bone defects promoting vascularization. Stem Cell Res. Ther. 2013, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- Jahanbin, A.; Rashed, R.; Alamdari, D.H.; Koohestanian, N.; Ezzati, A.; Kazemian, M.; Saghafi, S.; Raisolsadat, M.A. Success of maxillary alveolar defect repair in rats using osteoblast-differentiated human deciduous dental pulp stem cells. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 2016, 74, 829.e1–9. [Google Scholar] [CrossRef] [PubMed]
- Pisciotta, A.; Riccio, M.; Carnevale, G.; Beretti, F.; Gibellini, L.; Maraldi, T.; Cavallini, G.M.; Ferrari, A.; Bruzzesi, G.; De Pol, A. Human serum promotes osteogenic differentiation of human dental pulp stem cells in vitro and in vivo. PLoS ONE 2012, 7, e50542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.-C.; Chan, Y.-H.; Hsieh, S.-C.; Lew, W.-Z.; Feng, S.-W. Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.-C.; E, L.-L.; Wang, D.-S.; Su, F.; Wu, X.; Shi, Z.-P.; Lv, Y.; Wang, J.-Z. Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Tissue Eng. 2011, 17, 2417–2433. [Google Scholar] [CrossRef]
- Wongsupa, N.; Nuntanaranont, T.; Kamolmattayakul, S.; Thuaksuban, N. Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(ε-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects. J. Mater. Sci. Mater. Med. 2017, 28, 77. [Google Scholar] [CrossRef]
- Campos, J.M.; Sousa, A.C.; Caseiro, A.R.; Pedrosa, S.S.; Pinto, P.O.; Branquinho, M.V.; Amorim, I.; Santos, J.D.; Pereira, T.; Mendonça, C.M.; et al. Dental pulp stem cells and Bonelike® for bone regeneration in ovine model. Regen. Biomater. 2019, 6, 49–59. [Google Scholar] [CrossRef]
- Çolpak, H.A.; Gönen, Z.B.; Özdamar, S.; Alkan, A.; Kütük, N. Vertical ridge augmentation using guided bone regeneration procedure and dental pulp derived mesenchymal stem cells with simultaneous dental implant placement: A histologic study in a sheep model. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 216–223. [Google Scholar] [CrossRef]
- Li, Y.; Nan, X.; Zhong, T.-Y.; Li, T.; Li, A. Treatment of periodontal bone defects with stem cells from inflammatory dental pulp tissues in miniature swine. Tissue Eng. Regen. Med. 2019, 16, 191–200. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Y.; Zhang, C.M.; Zhang, H.Y.; Li, W.H.; Shi, S.; Le, A.D.; Wang, S.L. Stem cells from deciduous tooth repair mandibular defect in swine. J. Dent. Res. 2009, 88, 249–254. [Google Scholar] [CrossRef]
- Hu, J.; Cao, Y.; Xie, Y.; Wang, H.; Fan, Z.; Wang, J.; Zhang, C.; Wang, J.; Wu, C.-T.; Wang, S. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Res. Ther. 2016, 7, 130. [Google Scholar] [CrossRef] [Green Version]
- Kuo, T.; Lee, S.-Y.; Wu, H.-D.; Poma, M.; Wu, Y.-W.; Yang, J.-C. An in vivo swine study for xeno-grafts of calcium sulfate-based bone grafts with human dental pulp stem cells (hDPSCs). Mater. Sci. Eng. Mater. Biol. Appl. 2015, 50, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Khorsand, A.; Eslaminejad, M.B.; Arabsolghar, M.; Paknejad, M.; Ghaedi, B.; Rokn, A.R.; Moslemi, N.; Nazarian, H.; Jahangir, S. Autologous dental pulp stem cells in regeneration of defect created in canine periodontal tissue. J. Oral Implantol. 2013, 39, 433–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigham-Sadegh, A.; Oryan, A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect. Tissue Res. 2015, 56, 175–194. [Google Scholar] [CrossRef] [PubMed]
- Kalemaj, Z.; Scarano, A.; Valbonetti, L.; Rapone, B.; Grassi, F.R. Bone response to four dental implants with different surface topographies: A histologic and histometric study in minipigs. Int. J. Periodontics Restor. Dent. 2016, 36, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Mori, G.; Ballini, A.; Carbone, C.; Oranger, A.; Brunetti, G.; Di Benedetto, A.; Rapone, B.; Cantore, S.; Di Comite, M.; Colucci, S.; et al. Osteogenic differentiation of dental follicle stem cells. Int. J. Med. Sci. 2012, 9, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Scarano, A.; Crocetta, E.; Quaranta, A.; Lorusso, F. Influence of the thermal treatment to address a better osseointegration of Ti6Al4V dental implants: Histological and histomorphometrical study in a rabbit model. BioMed Res. Int. 2018, 2018, 2349698. [Google Scholar] [CrossRef] [Green Version]
- Scarano, A.; Piattelli, A.; Quaranta, A.; Lorusso, F. Bone response to two dental implants with different sandblasted/acid-etched implant surfaces: A histological and histomorphometrical study in rabbits. BioMed Res. Int. 2017, 2017, 8724951. [Google Scholar] [CrossRef] [Green Version]
- Scarano, A.; Carinci, F.; Orsini, T.; Valbonetti, L.; Qorri, E.; Bignozzi, C.A.; Lorusso, F. Titanium implants coated with a bifunctional molecule with antimicrobic activity: A rabbit study. Materials 2020, 13. [Google Scholar] [CrossRef]
- Cooper, G.M.; Mooney, M.P.; Gosain, A.K.; Campbell, P.G.; Losee, J.E.; Huard, J. Testing the “critical-size” in calvarial bone defects: Revisiting the concept of a critical-sized defect (CSD). Plast. Reconstr. Surg. 2010, 125, 1685–1692. [Google Scholar] [CrossRef] [Green Version]
- Maglione, M.; Bevilacqua, L.; Dotto, F.; Costantinides, F.; Lorusso, F.; Scarano, A. Observational study on the preparation of the implant site with piezosurgery vs. drill: Comparison between the two methods in terms of postoperative pain, surgical times, and operational advantages. BioMed Res. Int. 2019, 2019, 8483658. [Google Scholar] [CrossRef] [Green Version]
- Scarano, A.; Carinci, F.; Lorusso, F.; Festa, F.; Bevilacqua, L.; Santos de Oliveira, P.; Maglione, M. Ultrasonic vs drill implant site preparation: Post-Operative pain measurement through VAS, swelling and crestal bone remodeling: A randomized clinical study. Materials 2018, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarano, A.; Noumbissi, S.; Gupta, S.; Inchingolo, F.; Stilla, P.; Lorusso, F. Scanning electron microscopy analysis and energy dispersion X-ray microanalysis to evaluate the effects of decontamination chemicals and heat sterilization on implant surgical drills: Zirconia vs. steel. Appl. Sci. 2019, 9, 2837. [Google Scholar] [CrossRef] [Green Version]
- Mozzati, M.; Gallesio, G.; Goker, F.; Tumedei, M.; Paoleschi, C.; Tedesco, A.; Del Fabbro, M. Immediate oral rehabilitation with quad zygomatic implants: Ultrasonic technique vs conventional drilling. J. Oral Implantol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Crincoli, V.; Di Benedetto, A.; Cozzolino, V.; Lorusso, F.; Podaliri Vulpiani, M.; Grano, M.; Kalemaj, Z.; Mori, G.; Grassi, F.R. Bone regeneration induced by bone porcine block with bone marrow stromal stem cells in a minipig model of mandibular “critical size” defect. Stem Cells Int. 2017, 2017, 9082869. [Google Scholar] [CrossRef] [PubMed]
- Valbonetti, L.; Berardinelli, P.; Scarano, A.; Piattelli, A.; Mattioli, M.; Barboni, B.; Vulpiani, M.P.; Muttini, A. Translational value of sheep as animal model to study sinus augmentation. J. Craniofacial Surg. 2015, 26, 737–740. [Google Scholar] [CrossRef]
- Scarano, A.; Lorusso, F.; Orsini, T.; Morra, M.; Iviglia, G.; Valbonetti, L. Biomimetic Surfaces Coated with Covalently Immobilized Collagen Type I: An X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Micro-CT and Histomorphometrical Study in Rabbits. Int J Mol Sci. 2019, 20, 724–740. [Google Scholar] [CrossRef] [Green Version]
- Scarano, A.; Lorusso, F.; Staiti, G.; Sinjari, B.; Tampieri, A.; Mortellaro, C. Sinus augmentation with biomimetic nanostructured matrix: Tomographic, radiological, histological and histomorphometrical results after 6 months in humans. Front. Physiol. 2017, 8, 565. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Flynn, N. Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type I and type II collagen hydrogels. Spine J. Off. J. North. Am. Spine Soc. 2018, 18, 1070–1080. [Google Scholar] [CrossRef]
- Scarano, A.; Lorusso, F.; Ravera, L.; Mortellaro, C.; Piattelli, A. Bone regeneration in iliac crestal defects: An experimental study on sheep. BioMed Res. Int. 2016, 2016, 4086870. [Google Scholar] [CrossRef] [Green Version]
- Scarano, A.; Ceccarelli, M.; Marchetti, M.; Piattelli, A.; Mortellaro, C. Soft tissue augmentation with autologous platelet gel and β-TCP: A histologic and histometric study in mice. BioMed Res. Int. 2016, 2016, 2078104. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.; Thompson, I.; Robinson, P.; Wilson, J.; Hench, L. Evaluation of Bioglass/dextran composite as a bone graft substitute. Int. J. Oral Maxillofac. Surg. 2002, 31, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Thrivikraman, G.; Athirasala, A.; Twohig, C.; Boda, S.K.; Bertassoni, L.E. Biomaterials for craniofacial bone regeneration. Dent. Clin. North Am. 2017, 61, 835–856. [Google Scholar] [CrossRef] [PubMed]
- Baldini, N.; De Sanctis, M.; Ferrari, M. Deproteinized bovine bone in periodontal and implant surgery. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2011, 27, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Ren, H.; Zheng, C.; Zhuang, C.; Wu, T.; Qin, J.; Wang, Z.; Chen, Y.; Qi, N. Improved osteogenic differentiation of human dental pulp stem cells in a layer-by-layer-modified gelatin scaffold. J. Biomater. Appl. 2018, 33, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Gabbai-Armelin, P.R.; Wilian Kido, H.; Fernandes, K.R.; Fortulan, C.A.; Muniz Renno, A.C. Effects of bio-inspired bioglass/collagen/magnesium composites on bone repair. J. Biomater. Appl. 2019, 34, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Abdulghani, S.; Mitchell, G.R. Biomaterials for in situ tissue regeneration: A review. Biomolecules 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-L.; Boyapati, L. “PASS” principles for predictable bone regeneration. Implant. Dent. 2006, 15, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Moon, J.-H.; Jeong, C.-M.; Bae, E.-B.; Park, C.-E.; Jeon, G.-R.; Lee, J.-J.; Jeon, Y.-C.; Huh, J.-B. The mechanical properties and biometrical effect of 3D preformed titanium membrane for guided bone regeneration on alveolar bone defect. BioMed Res. Int. 2017, 2017, 7102123. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Groth, T. Host responses to biomaterials and anti-inflammatory design-a brief review. Macromol. Biosci. 2018, 18, e1800112. [Google Scholar] [CrossRef]
Authors | Journal | Year | Defect | Samples | Test | Control | DPSCS Expansion | Analysis Methods | Follow Up | NBF Test | NBF CTR |
---|---|---|---|---|---|---|---|---|---|---|---|
Hiraki et al. [49] | Oral Dis | 2020 | Calvaria/critical-sized defect | 18 animals/18 sites | (1) SHED (2) SHED-CM | serum-free α- Minimum Essential Medium Eagle (25 μL/atelocollagen sponge). | 6 Passage | HIST, HISTOM, MCT, IMM, | 8 weeks | (1) 18 ± 3.7%; (1) 30 ± 4.1% | 10 ± 2.5% |
Lin et al. [44] | J Endod. | 2019 | dental alveolar defects/maxillary | 10 animals | DPSC/Matrigel | Matrigel | 6 Passage | HIST, MCT | 2 weeks | - | - |
Jin et al. [45] | Artif Cells Nanomed Biotechnol | 2019 | dental alveolar defects/mandibular | 15 animals/15 sites | (1) DPSC/0.2% Puramatrix; (2) ADSC/0.2% Puramatrix | (1) 0.2% Puramatrix | 2–5 Passage | HIST, HISTOM, MCT, IMM, | 6 weeks | - | - |
Collignon et al. [46] | Stem Cells. | 2019 | Calvaria/critical-sized defect | 38 animals/176 sites | (1) dense collagen scaffold seeded with fluorescent T-mDPSCs; (2) noncellularized dense collagen scaffold | Empty defect | 3 Passage | HIST, HISTOM, MCT, IMM, | 2, 4, 8, and 12 weeks | 30 days: (1) 42%± 8.2%; (2) 23% ± 3.1. 60 days: (1) 63%; ± 5.1; (2) 32% ± 2.9 90 days: (1) 73.5% ± 4.6; (2) 39.7% ± 2.3 | 30 days: Control: 22% ± 2.1 60 days: Control: 29% ± 2.5 90 days: Control: 35% ± 2.3 |
Novais et al. [47] | Stem Cells Transl Med | 2019 | Calvaria/critical-sized defect | 30 animals/60 sites | (1) DPSC/Plastically compressed collagen gels (Hypoxia priming); (2) DPSC/Plastically compressed collagen gels (FGF-2 priming) | Plastically compressed collagen gels (no priming) | 3–4 Passage | HIST, HISTOM, MCT, IMM, SEM | 14 days, 2 months, | 14 days: (1) 3 ± 1.8 (2) 6 ± 3.5% 2 months: (1) 28 ± 3.9 (2) 30 ± 3.7% | 14 days: 2 ± 2.4%, 2 months: 20 ± 3.2 |
Soares et al. [57] | J Appl Oral Sci | 2019 | Tibial bone defects | 75 animals/75 defects | (1) Hemospon (2) Hemospon 8% Aloe vera; (3) Hemospon hDPSCs (4) (3) Hemospon 8% Aloe vera/hDPSCs | Empty defect | 5 Passage | HIST, HISTOM, MCT, IMM, | 1, 2 3 weeks | 1 week, (1) 2.1 ± 0.1; (2) 2.1 ± 0.2; (3) 1.5± 0.3. (4) 2.6 ± 0.4, 2 week, (1) 1.6 ± 0.2; (2) 1.9 ± 0.2; (3) 2.4± 0.4. (4) 2.6 ± 0.5, 3 week, (1) 2.4 ± 0.2; (2) 2.4 ± 0.3; (3) 2.4± 0.5. (4) 2.5 ± 0.3, | 1 week, (1) 1.6± 0.4; 2 week, (1) 2.3 ± 0.2; 3 week, (1) 1.8± 0.5; |
Yuan et al. [54] | Int J Mol Med | 2018 | Calvaria/critical-sized defect | 40 animals | (1) BO group, (Bio‑Oss); (2) DPSC/BO group, (2)DPSCs+ Bio‑Oss; (3) DPSC/BO/Aspirin group. | Empty defect | 3 Passage | HIST, HISTOM, MCT, IMM, SEM | 8, 12 weeks | 8 weeks (1) 16.3 ± 3.5; (2) 21.3 ± 2.3 (3) 27.9 ± 1.5; 12 weeks (1) 21 ± 2.6; (2) 36.8 ± 3.3 (3) 59.7 ± 4.3 | 8 weeks 5.6 ± 3.1; 12 weeks 15.4 ± 2.8 |
Yasui et al. [48] | J DentRes | 2016 | Calvaria/critical-sized defect | 6 animals/12 sites | (1) DPSC LNGFR+ THY+ cells; (2) DPSC LNGFR (low+) THY+ cells | (1) Memb+; (2) No Memb | 1–5 Passage | HIST, HISTOM, MCT, IMM, CONF MICRO | 2, 4 weeks | 2 weeks (1) 30.6 ± 4.7%; (2) 52.8 ± 5.9%; 4 weeks (1) 10.5 ± 4.2%; (2) 19.7 ± 3.1%; | 2 weeks (1) 1.2 ± 0.7%; (2)1.8 ± 0.7%; 4 weeks (1) 0.5 ± 0.3%; (2) 0.7 ± 0.4%; |
Zhang et al. [52] | Tissue Eng Part A | 2016 | Mandible defect | 5 animals/24 sites | (1) DPSC-high, CH scaffolds; (2) DPSC-low, CL scaffolds; (3) acellular scaffolds (SA); (4) acellular scaffolds supplemented with 4 μg | - | - | HIST, HISTOM, IMM, | 3, 6 weeks | (1) 3 weeks: 0.5 ± 0.3%, 6 weeks: 0.8 ± 0.4% (2) 3 weeks: 0.3 ± 0.1%, 6 weeks: 0.2 ± 0.2% (3) 3 weeks: 0.4 ± 0.2%, 6 weeks: 0.6 ± 0.3% (4) 3 weeks: 22 ± 3%, 6 weeks: 21 ± 0.5%, | - |
Martin-del-Campo et al. [55] | Biomater. Sci | 2016 | Calvaria/critical-sized defect | 18 animals/36 sites | DPSC/Strontium folate (SrFO) TCP | DPSC/TCP composite | 3 Passage | HIST, HISTOM, MCT, IMM, SEM | 4, 12, 20 weeks | 4 weeks (1) 51.2 ± 3.3; 12 weeks (1) 82.3 ± 2.7; 20 weeks (1) 86.9 ± 2.5; | 4 weeks (2) 40.2 ±2.1; 12 weeks (2) 55.5 ± 2.2; 20 weeks (1) 56.8 ± 5.2; |
Jahanbin et al. [61] | J OralMaxillofac Surg | 2016 | dental alveolar defects/maxillary | 60 animals | Group 1: collagen+ iliac bone graft 1 monthGroup 2: collagen + iliac graft 2 monthsGroup 3: scaffold/DPSC 1 monthsGroup 4: scaffold/DPSC 2 monthsGroup 5: scaffold 1 monthGroup 6: scaffold after 2 months | - | - | HIST, IMM, | 4, 8 weeks | Group 1: 50.0% ± 1.3Group 2: 62.5% ± 2.1Group 3: 16.7% ± 2.4Group 4:40.0% ±2.1Group 5: 0% Group 6: 0% | - |
Asutay et al. [50] | Arch Oral Biol | 2015 | Calvaria/critical-sized defect | 15 animals/30 sites | (1) HA/TCP paste; (2) HA/TCP paste/DPSC | Empty defect | - | HIST, HISTOM, MCT, IMM, | 8 weeks | - | - |
Petridis et al. [51] | J Craniomaxillofac Surg | 2015 | Calvaria/critical-sized defect | 30 animals/42 sites | (1) DPSC/Hydrogel scaffold; (2) Hydrogel scaffold | Empty defect | 2 Passage | HIST, HISTOM, IMM, | 8 weeks | (1) 21.3 ± 2.4 (2) 34.2 ± 3.1% | 20 ± 2.2% |
Kwon et al. [58] | Sci Rep | 2015 | Calvaria/critical-sized defect | 30 animals/30 defects | DPSCs/biodegradable polyesters (PLGC) | biodegradable polyesters (PLGC) | >5 Passage | HIST, HISTOM, MCT, IMM, | 4, 8, and 12 weeks | 4 weeks: 18% ± 2.7 8 weeks: 33% ± 2.9, 12 weeks: 58% ± 2.6 | 4 weeks: 2% ± 1.3 8 weeks: 4% ± 1.7, 12 weeks: 8% ± 1.5 |
Acasigua et al. [53] | Curr Stem Cell Res Ther | 2014 | Calvaria/critical-sized defect | 20 animals/20 sites | I–sham; II–without cells; III PGA nanofibers/DPSC; IV–PGA nanofibers/DPSC 13 d medium | - | 5 Passage | HIST, HISTOM, SEM, IMM, | 6 days | 8.13 ± 3.12%, 9.39 ± 2.55%, 10.7 ±3.22% and 17 ± 4.31% in groups I, II, III and IV, respectively | - |
Annibali et al. [59] | J Biomed Mater Res B ApplBiomater | 2014 | Calvaria/critical-sized defect | 16 animals/32 sites | b-TCP (b); b-TCP/DPSC (b/C); GDPB (G) andGDPB/DPSC | - | - | HIST, MCT | 4, 8, and 12 weeks | - | - |
Annibali et al. [56] | J Craniofac Surg. | 2013 | Calvaria/critical-sized defect | 75 animals/150 defects | (1) DPSC/Granular deproteinized bovine bone, (2) PeriostealStem Cells PESC/Granular deproteinized bovine bone | Granular deproteinized bovine bone | - | HIST, HISTOM, MCT, IMM, SEM | 1, 2, 4 8 weeks | 1 week, (1) 6.7 ± 2.9; (2) 8.3 ± 3.1; 2 weeks: (1) 6.1 ± 1.7; (2) 12.1 ± 2.4; 4 weeks (1) 6.1 ± 1.7; (2) 12.3 ± 2.6, 8 weeks (1) 8.9 ± 3.8; (2) 15.4 ± 2.8 | 1 week, 5.3 ± 2.3; 2 weeks: 10.8 ± 2.4; 4 weeks 15.2 ± 4.8, 8 weeks 22.3 ±4.5% |
Maraldi et al. [60] | Stem Cell Res Ther | 2013 | Calvaria/critical-sized defect | 30 animals/60 sites | (1) DPSC/collagen scaffolds; (2) AFSC/collagen scaffolds | collagen scaffolds | 3 Passage | HIST, HISTOM, CONF MICRO, RX, IMM, | 4, 8 weeks | 4 weeks: (1) 48.3 ± 3.1% (2) 52.3 ± 1.9; 8 weeks (1) 58 ± 2.8; (2) 71.1 ± 3.3% | 4 weeks, 30 ± 4.5%; 8 weeks (1) 42 ± 3.1% |
Pisciotta et al. [62] | PLoS One | 2012 | Calvaria/critical-sized defect | 10 animals/10 sites | DPSCs/collagen scaffold (1) FCS serum (2) HS serum | Empty defect | 5 Passage | HIST, HISTOM, IMM, | 40 days | FCS: 51.3% ± 3.3; HS: 68.2 ± 4.3 | Control: 42 ±3.5% |
Authors | Journal | Year | Defect | Samples | Test | Control | DPSCS Expansion | Analysis Methods | Follow Up | NBF Test | NBF CTR |
---|---|---|---|---|---|---|---|---|---|---|---|
Campos et al. [66] | Regen Biomater | 2019 | Femur Diaphysis | 12 animals/60 sites | (1) Bonelike/Tisseel LyoV; (2) DPSC/Bonelike/Tisseel LyoV | Empty defect | 5–7 Passage | HIST, HISTOM, SEM, IMM, | 30, 60 and 120 days | 30 days: (1) 13.1 ± 2.9% (2) 15.2 ± 2.5%; 60 days: (1) 48.5 ± 3.7% (2)59.4 ± 3.5%;120 days: (1) 67.9 ± 3.9%, (2) (77.5 ± 3.2%) | 30 days: 8.6% ± 2.3; 60 days: 45.3%± 2.5120 days: 62.6± 3.4%, |
Çolpak et al. [67] | J Stomatol Oral Maxillofac Surg | 2019 | Iliac crest peri implant defect | 5 animals/60 sites | (1) Implant without graft; (2) Implant+ DPSCs/deproteinized bovine bonegraft (DBBG) | Empty defect | 4–6 Passage | HIST, HISTOM, IMM | 3, 6 weeks | 3 weeks (1)11.3 ± 2.3 mm, (2) 14.6 ± 3.2 mm; 6 weeks (1)18.7 ± 3.1 mm, (2) 29.3 ± 3.4 mm; | 3 weeks: 2.8 ± 2.4 6 weeks: 4.1 ± 2.5% |
Wongsupa et al. [65] | J Mater Sci Mater Med | 2017 | Calvaria/critical-sized defect | 18 animals/36 sites | (1) hDPSCs seededin (PCL)–biphasic calcium phosphate (BCP)with the modified melt stretching and multilayer deposition(mMSMD) scaffolds; (2) mMSMD PCL-BCPscaffolds alone, autogenous bone | Empty defect | 3–5 Passage | HIST, HISTOM, MCT, IMM, SEM | 4 weeks | - | - |
Authors | Journal | Year | Defect | Samples | Test | Control | DPSCS Expansion | Analysis Methods | Follow Up | NBF Test | NBF CTR |
---|---|---|---|---|---|---|---|---|---|---|---|
Lee et al. [63] | Int J Mol Sci | 2019 | Calvaria/critical-sized defect | 12 animals/48 sites | (1) Bio-Oss; (2) BMSCs/Bio-Oss; (3) DPSCs/Bio-Oss | Empty defect | 2–4 Passage | HIST, HISTOM, MCT, IMM | 3 weeks | (1) Bio-Oss: 17.2 ± 1.9%; (2) BMSCs/Bio-Oss: 22.6± 3.2; (3) DPSCs/Bio-Oss 23.4 ±5.7% | Control: 9.9 ± 2.6%) |
Liu et al. [64] | TissueEng Part A | 2011 | Alveolar bone defect | 36 animals/36 sites | (1) nHAC/PLA, (2) nHAC/PLA+ rhBMP-(2, 3) nHAC/PLA +DPSCs (4) nHAC/PLA+ DPSCs + rhBMP-2 | Autologous | 1 Passage | HIST, HISTOM, SEM, RX, IMM, | 12 weeks | 12 weeks: 21 ± 2.1%; (2) 24.4 ± 3.1%; (3) 34.1± 2.8% (4) 60.1± 3.2; (5) 54± 4.2% | 12 weeks: 0% |
Authors | Journal | Year | Defect | Samples | Test | Control | DPSCS Expansion | Analysis Methods | Follow Up | NBF Test | NBF CTR |
---|---|---|---|---|---|---|---|---|---|---|---|
Li et al. [32] | TissueEng Regen Med | 2019 | Alveolar bone defect | 6 animals/48 sites | (1) DPSCs/beta tricalcic Phosphate b-TCP. (2) b-TCP | Empty defect | 3 Passage | HIST, HISTOM, MCT, IMM, SEM | 12 weeks | - | - |
Hu et al. [39] | Stem Cell Res Ther | 2016 | Periodontal molar bone defects | 12 animals/48 defects | (1) hDPSC injection group, (2) hDPSC sheets | Empty defect | 3–4 Passage | HIST, HISTOM, MCT, IMM, SEM, TEM | 12 weeks | 12 weeks (1) 10.5 ± 5.2; (2) 16.3 ± 4.4 | 12 weeks (1) 5.3.5 ± 2.1; |
Kuo et al. [71] | Mater Sci Eng C Mater Biol Appl | 2015 | Dental alveolar defects/mandibular | 12 animals/24 sites | CSD, α-CSH/ACP, and CSD/β-TCP (with/without DPSCs); (CSD), (α-CSH/ACP), and CSD/(β-TCP) | Empty defect (with/without DPSCs) | - | HIST, HISTOM, MCT, IMM, SEM | 8 weeks | (1) CaSO4 33.9 ± 9.9; CaSO4/DPSC 69.7± 4.9; (2) α-CaSO4·0.5H2O/ACP 61.7± 2.3; DPSC/α-CaSO4·0.5H2O/ACP 70.5 ± 6.6; (3) CaSO4·2H2O/β-TCP 44.5± 2.9; DPSC/CaSO4·2H2O/β-TCP 57.1 ± 4.1 | Empty defect: 27.0 ± 9.5; Empty defect/DPSC: 24.3 ± 5.6 |
Zheng et al. [69] | J Dent Res. | 2009 | Dental alveolar defects/mandibular | 16 animals/22 sites | (1) Beta-TCP/DPSC; (2) Beta-TCP | Empty defect | 3–4 Passage | HIST, HISTOM, IMM, | 2,4, 24 weeks | 24 weeks: (1) 83.1 ± 5.75%; (2) 52.2 ± 4.54% | 24 weeks: 28.4 ± 2.79% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorusso, F.; Inchingolo, F.; Dipalma, G.; Postiglione, F.; Fulle, S.; Scarano, A. Synthetic Scaffold/Dental Pulp Stem Cell (DPSC) Tissue Engineering Constructs for Bone Defect Treatment: An Animal Studies Literature Review. Int. J. Mol. Sci. 2020, 21, 9765. https://doi.org/10.3390/ijms21249765
Lorusso F, Inchingolo F, Dipalma G, Postiglione F, Fulle S, Scarano A. Synthetic Scaffold/Dental Pulp Stem Cell (DPSC) Tissue Engineering Constructs for Bone Defect Treatment: An Animal Studies Literature Review. International Journal of Molecular Sciences. 2020; 21(24):9765. https://doi.org/10.3390/ijms21249765
Chicago/Turabian StyleLorusso, Felice, Francesco Inchingolo, Gianna Dipalma, Francesca Postiglione, Stefania Fulle, and Antonio Scarano. 2020. "Synthetic Scaffold/Dental Pulp Stem Cell (DPSC) Tissue Engineering Constructs for Bone Defect Treatment: An Animal Studies Literature Review" International Journal of Molecular Sciences 21, no. 24: 9765. https://doi.org/10.3390/ijms21249765
APA StyleLorusso, F., Inchingolo, F., Dipalma, G., Postiglione, F., Fulle, S., & Scarano, A. (2020). Synthetic Scaffold/Dental Pulp Stem Cell (DPSC) Tissue Engineering Constructs for Bone Defect Treatment: An Animal Studies Literature Review. International Journal of Molecular Sciences, 21(24), 9765. https://doi.org/10.3390/ijms21249765