Comprehensive Profiling of Tubby-Like Protein Expression Uncovers Ripening-Related TLP Genes in Tomato (Solanum lycopersicum)
Abstract
:1. Introduction
2. Results
2.1. Genome-Wide Identification and Phylogenetic Analysis of TLPs in Tomato
2.2. Motif and Gene Structure Analysis of TLPs in Tomato
2.3. Chromosomal Distribution and Selective Pressure Analysis of TLPs in Tomato
2.4. Analysis of Promoter Sequences of SlTLPs
2.5. Expression Profiling of Tomato TLP Family Genes
2.6. Expression of TLPs in Fruit Ripening Mutants
2.7. Expression of TLPs Under Exogenous Ethylene Treatment
3. Discussion
4. Materials and Methods
4.1. Data Collection and Identification
4.2. Analysis of Gene Structure, Chromosome Localization, Conserved Motif, and 3D Model
4.3. Analysis of Collinearity and Selection Pressure
4.4. Multiple Sequence Alignment and Phylogenetic Tree Construction
4.5. Analysis of the Promoter Cis-Regulating Elements
4.6. Analysis of Gene Expression
4.7. Analysis of Gene Expression in Fruit Ripening Mutants and Ethylene Treatment Fruits
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TLPs | Tubby-like proteins |
WT | Wild-type Ailsa Craig |
rin | Ripening inhibitor mutant |
nor | Non-ripening mutant |
SlTLPs | Tubby-like proteins in Solanum lycopersicum (Tomato) |
AtTLPs | Tubby-like proteins in Arabidopsis thaliana (Arabidopsis) |
OsTLPs | Tubby-like proteins in Oryza sativa (Rice) |
MdTLPs | Tubby-like proteins in Malus domestica (Apple) |
CaTLPs | Tubby-like proteins in Cicer arietinum (Chickpeas) |
20DPA | Tomato fruit 20 days after anthesis |
IMG | Immature green fruit |
MG | Mature green fruit |
Br | Breaker stage fruit |
Br+3 | 3 d post-breaker |
Br+5 | 5 d post-breaker |
Br+7 | 7 d post-breaker |
Br+10 | 10 d post-breaker |
Br+15 | 15 d post-breaker |
References
- Kleyn, P.W.; Fan, W.; Kovats, S.G.; Lee, J.J.; Pulido, J.C.; Wu, Y.; Berkemeier, L.R.; Misumi, D.J.; Holmgren, L.; Charlat, O.; et al. Identification and characterization of the mouse obesity gene tubby: A member of a novel gene family. Cell 1996, 85, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q. Identification of rice TUBBY-like genes and their evolution. FEBS J. 2008, 275, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Boggon, T.J.; Shan, W.S.; Santagata, S.; Myers, S.C.; Shapiro, L. Implication of tubby proteins as transcription factors by structure-based functional analysis. Science 1999, 286, 2119–2125. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.P.; Lee, C.L.; Chen, P.H.; Wu, S.H.; Yang, C.C.; Shaw, J.F. Molecular analyses of the Arabidopsis TUBBY-like protein gene family. Plant Physiol. 2004, 134, 1586–1597. [Google Scholar] [CrossRef] [Green Version]
- Gagne, J.M.; Downes, B.P.; Shiu, S.H.; Durski, A.M.; Vierstra, R.D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci. USA 2002, 99, 11519–11524. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.N.; Xing, S.S.; Zhang, Z.R.; Chen, X.S.; Wang, X.Y. Genome-wide identification and expression analysis of the tubby-like protein family in the malus domestica genome. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yulong, C.; Wei, D.; Baoming, S.; Yang, Z.; Qing, M. Genome-wide identification and comparative analysis of the TUBBY-like protein gene family in maize. Genes Genom. 2016, 38, 25–36. [Google Scholar] [CrossRef]
- Noben-Trauth, K.; Naggert, J.K.; North, M.A.; Nishina, P.M. A candidate gene for the mouse mutation tubby. Nature 1996, 380, 534–538. [Google Scholar] [CrossRef]
- Mitsuda, N.; Ohme-Takagi, M. Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol. 2009, 50, 1232–1248. [Google Scholar] [CrossRef] [Green Version]
- Coleman, D.L.; Eicher, E.M. Fat (fat) and tubby (tub): Two autosomal recessive mutations causing obesity syndromes in the mouse. J. Hered. 1990, 81, 424–427. [Google Scholar] [CrossRef] [Green Version]
- Heckenlively, J.R.; Chang, B.; Erway, L.C.; Peng, C.; Hawes, N.L.; Hageman, G.S.; Roderick, T.H. Mouse model for Usher syndrome: Linkage mapping suggests homology to Usher type I reported at human chromosome 11p15. Proc. Natl. Acad. Sci. USA 1995, 92, 11100–11104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Y.; Song, W.M.; Jin, Y.L.; Jiang, C.M.; Yang, Y.; Li, B.; Huang, W.J.; Liu, H.; Zhang, H.X. Characterization of Arabidopsis Tubby-like proteins and redundant function of AtTLP3 and AtTLP9 in plant response to ABA and osmotic stress. Plant Mol. Biol. 2014, 86, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xing, S.; Sun, Q.; Zhan, C.; Liu, X.; Zhang, S.; Wang, X. The expression of a tubby-like protein from Malus domestica (MdTLP7) enhances abiotic stress tolerance in Arabidopsis. BMC Plant Biol. 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Wardhan, V.; Jahan, K.; Gupta, S.; Chennareddy, S.; Datta, A.; Chakraborty, S.; Chakraborty, N. Overexpression of CaTLP1, a putative transcription factor in chickpea (Cicer arietinum L.), promotes stress tolerance. Plant Mol. Biol. 2012, 79, 479–493. [Google Scholar] [CrossRef]
- Wang, M.; Xu, Z.; Kong, Y. The tubby-like proteins kingdom in animals and plants. Gene 2018, 642, 16–25. [Google Scholar] [CrossRef]
- Gapper, N.E.; McQuinn, R.P.; Giovannoni, J.J. Molecular and genetic regulation of fruit ripening. Plant Mol. Biol. 2013, 82, 575–591. [Google Scholar] [CrossRef]
- Giovannoni, J.J. Genetic Regulation of Fruit Development and Ripening. Plant Cell 2004, 16, S170. [Google Scholar] [CrossRef] [Green Version]
- Vrebalov, J.; Ruezinsky, D.; Padmanabhan, V.; White, R.; Medrano, D.; Drake, R.; Schuch, W.; Giovannoni, J. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 2002, 296, 343. [Google Scholar] [CrossRef]
- Fernandez-Pozo, N.; Menda, N.; Edwards, J.D.; Saha, S.; Tecle, I.Y.; Strickler, S.R.; Bombarely, A.; Fisher-York, T.; Pujar, A.; Foerster, H.; et al. The Sol Genomics Network (SGN)-from genotype to phenotype to breeding. Nucleic Acids Res. 2015, 43, D1036–D1041. [Google Scholar] [CrossRef]
- Eddy, S.R. Profile hidden Markov models. Bioinformatics 1998, 14, 755–763. [Google Scholar] [CrossRef]
- Wheeler, T.J.; Eddy, S.R. Nhmmer: DNA homology search with profile HMMs. Bioinformatics 2013, 29, 2487–2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Ramsby, M.; Makowski, G. Differential Detergent Fractionation of Eukaryotic Cells. In The Proteomics Protocols Handbook; Humana Press: Clifton, NJ, USA, 2005; pp. 37–48. [Google Scholar]
- Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Xia, R.; Chen, H.; He, Y. TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv 2018. [Google Scholar] [CrossRef]
- Connors, J.; Krzywinski, M.; Schein, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef]
- Bienert, S.; Waterhouse, A.; De Beer, T.A.P.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef] [Green Version]
- Guex, N.; Peitsch, M.C.; Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 2009, 30, 162–173. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; De Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 27, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lescot, M. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Zouine, M.; Maza, E.; Djari, A.; Lauvernier, M.; Frasse, P.; Smouni, A.; Pirrello, J.; Bouzayen, M. TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks. Plant J. 2017, 92, 727–735. [Google Scholar] [CrossRef] [Green Version]
- Pirrello, J.; Jaimes-Miranda, F.; Sanchez-Ballesta, M.T.; Tournier, B.; Khalil-Ahmad, Q.; Regad, F.; Latche, A.; Pech, J.C.; Bouzayen, M. Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol. 2006, 47, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- Marshall, O.J. PerlPrimer: Cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 2004, 20, 2471–2472. [Google Scholar] [CrossRef] [Green Version]
Group | Name | Locus | Chr | Start | End | Strand | pI | Mw (kDa) | Protein (aa) | ORF (bp) | Subcellular Localization |
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | TLP1 | Solyc09g074510 | Chr09 | 66738841 | 66738900 | + | 9.33 | 44.42 | 396 | 1191 | nucl |
TLP2 | Solyc01g067680 | Chr01 | 76374360 | 76375015 | - | 9.33 | 27.74 | 249 | 750 | chlo | |
TLP3 | Solyc07g062390 | Chr07 | 65290508 | 65294312 | + | 9.16 | 43.04 | 386 | 1161 | mito | |
A2 | TLP4 | Solyc01g104670 | Chr01 | 92988825 | 92989308 | - | 9.35 | 47.80 | 427 | 1284 | nucl |
TLP5 | Solyc10g046970 | Chr10 | 38906011 | 38906513 | - | 9.62 | 47.80 | 426 | 1281 | nucl | |
TLP6 | Solyc04g071440 | Chr04 | 58509459 | 58510657 | + | 9.54 | 47.60 | 426 | 1281 | chlo | |
B | TLP7 | Solyc02g085130 | Chr02 | 48750167 | 48750836 | + | 9.63 | 46.20 | 411 | 1236 | nucl |
TLP8 | Solyc02g062670 | Chr02 | 34946438 | 34947426 | + | 9.25 | 46.25 | 411 | 1236 | nucl | |
TLP9 | Solyc03g033980 | Chr03 | 5712189 | 5713153 | + | 9.39 | 45.52 | 406 | 1221 | nucl | |
TLP10 | Solyc04g071750 | Chr04 | 58798600 | 58798766 | + | 9.46 | 44.80 | 400 | 1203 | nucl | |
C | TLP11 | Solyc03g117730 | Chr03 | 68266827 | 68267351 | - | 9.26 | 45.82 | 406 | 1221 | nucl |
Name | MeJA | Anaerobic | Light | ABA | SAL | Zein Metabolism | Defense and Stress | Cold | Meristem | Cell Cycle | Gibberellin | Auxin | Circadian Control | Total | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CGTCA | TGACG | ARE | ACE | G-Box | ABRE | TCA | O2-Site | TC-Rich Repeats | LTR | CAT-Box | MSA-Like | TATC-Box | AuxRR-Core | Circadian | ||
TLP1 | 3 | 3 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |
TLP2 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
TLP3 | 1 | 1 | 2 | 0 | 7 | 7 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 22 |
TLP4 | 1 | 1 | 6 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
TLP5 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 9 |
TLP6 | 0 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
TLP7 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 9 |
TLP8 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 7 |
TLP9 | 0 | 0 | 2 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
TLP10 | 1 | 1 | 1 | 0 | 4 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 13 |
TLP11 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 15 |
Total | 12 | 12 | 20 | 3 | 17 | 17 | 10 | 8 | 6 | 4 | 4 | 2 | 2 | 1 | 1 | 119 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; He, X.; Su, D.; Feng, Y.; Zhao, H.; Deng, H.; Liu, M. Comprehensive Profiling of Tubby-Like Protein Expression Uncovers Ripening-Related TLP Genes in Tomato (Solanum lycopersicum). Int. J. Mol. Sci. 2020, 21, 1000. https://doi.org/10.3390/ijms21031000
Zhang Y, He X, Su D, Feng Y, Zhao H, Deng H, Liu M. Comprehensive Profiling of Tubby-Like Protein Expression Uncovers Ripening-Related TLP Genes in Tomato (Solanum lycopersicum). International Journal of Molecular Sciences. 2020; 21(3):1000. https://doi.org/10.3390/ijms21031000
Chicago/Turabian StyleZhang, Yaoxin, Xiaoqing He, Dan Su, Yuan Feng, Haochen Zhao, Heng Deng, and Mingchun Liu. 2020. "Comprehensive Profiling of Tubby-Like Protein Expression Uncovers Ripening-Related TLP Genes in Tomato (Solanum lycopersicum)" International Journal of Molecular Sciences 21, no. 3: 1000. https://doi.org/10.3390/ijms21031000
APA StyleZhang, Y., He, X., Su, D., Feng, Y., Zhao, H., Deng, H., & Liu, M. (2020). Comprehensive Profiling of Tubby-Like Protein Expression Uncovers Ripening-Related TLP Genes in Tomato (Solanum lycopersicum). International Journal of Molecular Sciences, 21(3), 1000. https://doi.org/10.3390/ijms21031000