Role of Gangliosides in Peripheral Pain Mechanisms
Abstract
:1. Introduction
2. Distribution of Gangliosides in Sensory Ganglia and Spinal Cord
3. Human Diseases Affecting Glycosphingolipid Metabolism and Pain
4. Effect of Peripheral Nerve Lesions on the Distribution of Ganglioside GM1 in Sensory Ganglia and Spinal Cord
5. Ganglioside Species Involved in Pain Mechanisms
6. Interaction of TRP Receptors with Membrane Lipid Rafts
7. Conclusion and Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CGRP | Calcitonin gene-related peptide |
CHO | Chinese hamster ovary |
CRP | Ceramide-rich platform |
CTB | Choleratoxin B subunit |
D-PDMP | D-threo-1-phenyl-2-decanoylamino-3- morpholino-1-propanol |
HRP | Horse radish peroxidase |
IGF-1 | Insulin-like growth factor |
NGF | Nerve growth factor |
SP | Substance P |
TRP | Transient receptor potential |
TRPA1 | Transient receptor potential ankyrin-1 |
TRPV1 | Transient receptor potential vanilloid type 1 |
References
- Sezgin, E.; Levental, I.; Mayor, S.; Eggeling, C. The mystery of membrane organization: Composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 2017, 18, 361–374. [Google Scholar] [CrossRef] [Green Version]
- Tsui-Pierchala, B.A.; Encinas, M.; Milbrandt, J.; Johnson, M., Jr. Lipid rafts in neuronal signaling and function. Trends Neurosci. 2002, 25, 412–417. [Google Scholar] [CrossRef]
- Taberner, F.J.; Fernández-Ballester, G.; Fernández-Carvajal, A.; Ferrer-Montiel, A. TRP channels interaction with lipids and its implications in disease. Biochim. Biophys. Acta Biomembr. 2015, 1848, 1818–1827. [Google Scholar] [CrossRef] [Green Version]
- Startek, J.B.; Boonen, B.; López-Requena, A.; Talavera, A.; Alpizar, Y.A.; Ghosh, D.; van Ranst, N.; Nilius, B.; Voets, T.; Talavera, K. Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. Elife 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Paratcha, G.; Ibánez, C.F. Lipid rafts and the control of neurotrophic factor signaling in the nervous system: Variations on a theme. Curr. Opin. Neurobiol. 2002, 12, 542–549. [Google Scholar] [CrossRef]
- Kappagantula, S.; Andrews, M.R.; Cheah, M.; Abad-Rodriguez, J.; Dotti, C.G.; Fawcett, J.W. Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons. J. Neurosci. 2014, 34, 2477–2492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, P.H.H.; Báez, B.B. Gangliosides in Axon Stability and Regeneration. In Progress in Molecular Biology and Translational Science; Elsevier B.V.: Amsterdam, The Netherlands, 2018; ISBN 9780128123416. [Google Scholar]
- Sandhoff, R.; Schulze, H.; Sandhoff, K. Ganglioside Metabolism in Health and Disease. In Progress in Molecular Biology and Translational Science; Elsevier, B.V.: Amsterdam, The Netherlands, 2018; ISBN 9780128123416. [Google Scholar]
- Yu, R.K.; Tsai, Y.T.; Ariga, T.; Yanagisawa, M. Structures, biosynthesis, and functions of gangliosides-an overview. J. Oleo Sci. 2011, 60, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Schnaar, R.L.; Gerardy-Schahn, R.; Hildebrandt, H. Sialic acids in the brain: Gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol. Rev. 2014, 94, 461–518. [Google Scholar] [CrossRef] [Green Version]
- Svennerholm, L. The gangliosides. J. Lipid Res. 1964, 5, 145–155. [Google Scholar]
- Yamashita, T.; Wada, R.; Sasaki, T.; Deng, C.; Bierfreund, U.; Sandhoff, K.; Proia, R.L. A vital role for glycosphingolipid synthesis during development and differentiation. Proc. Natl. Acad. Sci. USA 1999, 96, 9142–9147. [Google Scholar] [CrossRef] [Green Version]
- Jennemann, R.; Sandhoff, R.; Wang, S.; Kiss, E.; Gretz, N.; Zuliani, C.; Martin-Villalba, A.; Jäger, R.; Schorle, H.; Kenzelmann, M.; et al. Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proc. Natl. Acad. Sci. USA 2005, 102, 12459–12464. [Google Scholar] [CrossRef] [Green Version]
- Cuatrecasas, P. Gangliosides and membrane receptors for cholera toxin. Biochemistry 1973, 12, 3558–3566. [Google Scholar] [CrossRef]
- Holmgren, J.; Lonnroth, I.; Svennerholm, L. Fixation and inactivation of cholera toxin by GM1 ganglioside. Scand. J. Infect. Dis. 1973, 5, 77–78. [Google Scholar] [CrossRef]
- King, C.A.; Heyningen, W.E.V. Deactivation of cholera toxin by a sialidase-resistant monosialosylganglioside. J. Infect. Dis. 1973, 127, 639–647. [Google Scholar] [CrossRef]
- Robertson, B.; Grant, G. Immunocytochemical evidence for the localization of the GM1 ganglioside in carbonic anhydrase-containing and RT 97-immunoreactive rat primary sensory neurons. J. Neurocytol. 1989, 18, 77–86. [Google Scholar] [CrossRef]
- Todd, A.J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 2010, 11, 823–836. [Google Scholar] [CrossRef] [Green Version]
- Kotani, M.; Kawashima, I.; Ozawa, H.; Terashima, T.; Tai, T. Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies. Glycobiology 1993, 3, 137–146. [Google Scholar] [CrossRef]
- Gong, Y.; Tagawa, Y.; Lunn, M.P.; Laroy, W.; Heffer-Lauc, M.; Li, C.Y.; Griffin, J.W.; Schnaar, R.L.; Sheikh, K. Localization of major gangliosides in the PNS: Implications for immune neuropathies. Brain 2002, 125, 2491–2506. [Google Scholar] [CrossRef] [Green Version]
- Vajn, K.; Viljetić, B.; Degmečić, I.V.; Schnaar, R.L.; Heffer, M. Differential Distribution of Major Brain Gangliosides in the Adult Mouse Central Nervous System. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Jancsó, G.; Király, E. Distribution of chemosensitive primary sensory afferents in the central nervous system of the rat. J. Comp. Neurol. 1980, 190, 781–792. [Google Scholar] [CrossRef]
- Szentágothai, J. Neuronal and synaptic arrangement in the substantia gelatinosa rolandi. J. Comp. Neurol. 1964, 122, 219–239. [Google Scholar] [CrossRef]
- Harper, A.A.; Lawson, S.N. Electrical properties of rat dorsal root ganglion neurones with different peripheral nerve conduction velocities. J. Physiol. 1985, 359, 47–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, B.; Grant, G. A comparison between wheat germ agglutinin-and choleragenoid-horseradish peroxidase as anterogradely transported markers in central branches of primary sensory neurones in the rat with some observations in the cat. Neuroscience 1985, 14, 895–905. [Google Scholar] [CrossRef]
- Politei, J.M.; Bouhassira, D.; Germain, D.P.; Goizet, C.; Guerrero-Sola, A.; Hilz, M.J.; Hutton, E.J.; Karaa, A.; Liguori, R.; Üçeyler, N.; et al. Pain in Fabry Disease: Practical Recommendations for Diagnosis and Treatment. CNS Neurosci. Ther. 2016, 22, 568–576. [Google Scholar] [CrossRef]
- Üçeyler, N.; Biko, L.; Hose, D.; Hofmann, L.; Sommer, C. Comprehensive and differential long-term characterization of the alpha-galactosidase A deficient mouse model of Fabry disease focusing on the sensory system and pain development. Mol. Pain 2016, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, L.; Hose, D.; Grießhammer, A.; Blum, R.; Döring, F.; Dib-Hajj, S.; Waxman, S.; Sommer, C.; Wischmeyer, E.; Üçeyler, N. Characterization of small fiber pathology in a mouse model of fabry disease. Elife 2018, 7. [Google Scholar] [CrossRef]
- Namer, B.; Ørstavik, K.; Schmidt, R.; Mair, N.; Kleggetveit, I.P.; Zeidler, M.; Martha, T.; Jorum, E.; Schmelz, M.; Kalpachidou, T.; et al. Changes in ionic conductance signature of nociceptive neurons underlying Fabry disease phenotype. Front. Neurol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Ohshima, T.; Murray, G.J.; Swaim, W.D.; Longenecker, G.; Quirk, J.M.; Cardarelli, C.O.; Sugimoto, Y.; Pastan, I.; Gottesman, M.M.; Brady, R.O.; et al. α-Galactosidase A deficient mice: A model of Fabry disease. Proc. Natl. Acad. Sci. USA 1997, 94, 2540–2544. [Google Scholar] [CrossRef] [Green Version]
- Torvin Møller, A.; Winther Bach, F.; Feldt-Rasmussen, U.; Rasmussen, Å.; Hasholt, L.; Lan, H.; Sommer, C.; Kølvraa, S.; Ballegaard, M.; Staehelin Jensen, T. Functional and structural nerve fiber findings in heterozygote patients with Fabry disease. Pain 2009, 145, 237–245. [Google Scholar] [CrossRef]
- Tavakoli, M.; Marshall, A.; Thompson, L.; Kenny, M.; Waldek, S.; Efron, N.; Malik, R.A. Corneal confocal microscopy: A novel noninvasive means to diagnose neuropathy in patients with Fabry disease. Muscle Nerve 2009, 40, 976–984. [Google Scholar] [CrossRef]
- Üçeyler, N.; Kahn, A.-K.; Kramer, D.; Zeller, D.; Casanova-Molla, J.; Wanner, C.; Weidemann, F.; Katsarava, Z.; Sommer, C. Impaired small fiber conduction in patients with Fabry disease: A neurophysiological case–control study. BMC Neurol. 2013, 13, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitirgen, G.; Turkmen, K.; Malik, R.A.; Ozkagnici, A.; Zengin, N. Corneal confocal microscopy detects corneal nerve damage and increased dendritic cells in Fabry disease. Sci. Rep. 2018, 8, 12244. [Google Scholar] [CrossRef] [PubMed]
- Kahn, P. Anderson Fabry disease: A histopathological study of three cases with observations on the mechanism of production of pain. J. Neurol. Neurosurg. Psychiatry 1973, 36, 1053–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyooka, K.; Said, G. Nerve biopsy findings in hemizygous and heterozygous patients with Fabry’s disease. J. Neurol. 1997, 244, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, N.; Yasha, T.; Kanjalkar, M.; Agarwal, S.; Chandrashekar Sagar, B.; Santosh, V.; Shankar, S. Fabry’s disease: An ultrastructural study of nerve biopsy. Ann. Indian Acad. Neurol. 2008, 11, 182–184. [Google Scholar] [CrossRef]
- Dütsch, M.; Marthol, H.; Stemper, B.; Brys, M.; Haendl, T.; Hilz, M.J. Small fiber dysfunction predominates in Fabry neuropathy. J. Clin. Neurophysiol. 2002, 19, 575–586. [Google Scholar] [CrossRef]
- Luciano, C.A.; Russell, J.W.; Banerjee, T.K.; Quirk, J.M.; Scott, L.J.C.; Dambrosia, J.M.; Barton, N.W.; Schiffmann, R. Physiological characterization of neuropathy in Fabry’s disease. Muscle Nerve 2002, 26, 622–629. [Google Scholar] [CrossRef]
- Moller, A.T.; Feldt-Rasmussen, U.; Rasmussen, A.K.; Sommer, C.; Hasholt, L.; Bach, F.W.; Kolvraa, S.; Jensen, T.S. Small-fibre neuropathy in female Fabry patients: Reduced allodynia and skin blood flow after topical capsaicin. J. Peripher. Nerv. Syst. 2006, 11, 119–125. [Google Scholar] [CrossRef]
- Biegstraaten, M.; Hollak, C.E.M.; Bakkers, M.; Faber, C.G.; Aerts, J.M.F.G.; van Schaik, I.N. Small fiber neuropathy in Fabry disease. Mol. Genet. Metab. 2012, 106, 135–141. [Google Scholar] [CrossRef]
- Lakomá, J.; Rimondini, R.; Montiel, A.F.; Donadio, V.; Liguori, R.; Caprini, M. Increased expression of trpv1 in peripheral terminals mediates thermal nociception in Fabry disease mouse model. Mol. Pain 2016, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Choi, L.; Vernon, J.; Kopach, O.; Minett, M.S.; Mills, K.; Clayton, P.T.; Meert, T.; Wood, J.N. The Fabry disease-associated lipid lyso-Gb3 enhances voltage-gated calcium currents in sensory neurons and causes pain. Neurosci. Lett. 2015, 594, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darin, N.; Kyllerman, M.; Hård, A.L.; Nordborg, C.; Månsson, J.E. Juvenile galactosialidosis with attacks of neuropathic pain and absence of sialyloligosacchariduria. Eur. J. Paediatr. Neurol. 2009, 13, 553–555. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.A.C.; Cornblath, D.R. Guillain-Barré syndrome. Lancet 2005, 366, 1653–1666. [Google Scholar] [CrossRef]
- Corbo, M.; Quattrini, A.; Latov, N.; Hays, A.P. Localization of GM1 and gal(β1-3)galnac antigenic determinants in peripheral nerve. Neurology 1993, 43, 809–814. [Google Scholar] [CrossRef]
- Yuki, N.; Odaka, M. Ganglioside mimicry as a cause of Guillain-Barré syndrome. Curr. Opin. Neurol. 2005, 18, 557–561. [Google Scholar] [CrossRef]
- Deisenhammer, F.; Keir, G.; Pfausler, B.; Thompson, E.J. Affinity of anti-GM1 antibodies in Guillain-Barré syndrome patients. J. Neuroimmunol. 1996, 66, 85–93. [Google Scholar] [CrossRef]
- Plomp, J.J.; Molenaar, P.C.; O’Hanlon, G.M.; Jacobs, B.C.; Veitch, J.; Daha, M.R.; Van Doorn, P.A.; Van Der Mecha, F.G.A.; Vincent, A.; Morgan, B.P.; et al. Miller Fisher anti-GQ1b antibodies: α-Latrotoxin-like effects on motor end plates. Ann. Neurol. 1999, 45, 189–199. [Google Scholar] [CrossRef]
- Jancsó, G.; Király, E.; Jancsó-Gábor, A. Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature 1977, 270, 741–743. [Google Scholar] [CrossRef]
- Jancsó, G.; Sántha, P. The foundation of sensory pharmacology: Nicholas (Miklos) Jancso and the Szeged contribution. Temperature 2015, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Caterina, M.J.; Park, U. Chapter 4 TRPV1: A Polymodal Sensor in the Nociceptor Terminal. Curr. Top. Membr. 2006, 57, 113–150. [Google Scholar] [CrossRef]
- Caterina, M.J.; Julius, D. The vanilloid receptor: A molecular gateway to the pain pathway. Annu. Rev. Neurosci. 2001, 24, 487–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilius, B.; Szallasi, A. Transient receptor potential channels as drug targets: From the science of basic research to the art of medicine. Pharmacol. Rev. 2014, 66, 676–814. [Google Scholar] [CrossRef] [PubMed]
- Nagy, I.; Sántha, P.; Jancsó, G.; Urbán, L. The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur. J. Pharmacol. 2004, 500, 351–369. [Google Scholar] [CrossRef]
- Davis, J.B.; Gray, J.; Gunthorpe, M.J.; Hatcher, J.P.; Davey, P.T.; Overend, P.; Harries, M.H.; Latcham, J.; Clapham, C.; Atkinson, K.; et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 2000, 405, 183–187. [Google Scholar] [CrossRef]
- Lynn, B. Effect of neonatal treatment with capsaicin on the numbers and properties of cutaneous afferent units from the hairy skin of the rat. Brain Res. 1984, 322, 255–260. [Google Scholar] [CrossRef]
- Szolcsányi, J.; Anton, F.; Reeh, P.W.; Handwerker, H.O. Selective excitation by capsaicin of mechano-heat sensitive nociceptors in rat skin. Brain Res. 1988, 446, 262–268. [Google Scholar] [CrossRef]
- Price, T.J.; Flores, C.M. Critical Evaluation of the Colocalization Between Calcitonin Gene-Related Peptide, Substance P, Transient Receptor Potential Vanilloid Subfamily Type 1 Immunoreactivities, and Isolectin B4 Binding in Primary Afferent Neurons of the Rat and Mouse. J. Pain 2007, 8, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Snider, W.D.; McMahon, S.B. Tackling pain at the source: New ideas about nociceptors. Neuron 1998, 20, 629–632. [Google Scholar] [CrossRef] [Green Version]
- Silverman, J.D.; Kruger, L. Lectin and neuropeptide labeling of separate populations of dorsal root ganglion neurons and associated “nociceptor” thin axons in rat testis and cornea whole-mount preparations. Somatosens. Res. 1988, 5, 259–267. [Google Scholar] [CrossRef]
- Holzer, P. Implications of tachykinins and calcitonin gene-related peptide in inflammatory bowel disease. Digestion 1998, 59, 269–283. [Google Scholar] [CrossRef]
- Jancsó, G. Sensory nerves as modulators of inflammatory reactions. In Antidromic Vasodilatation and Neurogenic Inflammation; Chahl, J., Szolcsányi, J., Lembeck, F., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1984; pp. 207–222. [Google Scholar]
- Maggi, C.A.; Meli, A. The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen. Pharmacol. 1988, 19, 1–43. [Google Scholar] [CrossRef]
- Jancsó, G.; Király, E.; Such, G.; Joó, F.; Nagy, A. Neurotoxic effect of capsaicin in mammals. Acta Physiol. Hung. 1987, 69, 295–313. [Google Scholar] [PubMed]
- Jancsó, G.; Oszlács, O.; Sántha, P. The Capsaicin Paradox: Pain Relief by an Algesic Agent. Antiinflamm. Antiallergy. Agents Med. Chem. 2012, 10, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Hökfelt, T.; Zhang, X.; Wiesenfeld-Hallin, Z. Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci. 1994, 17, 22–30. [Google Scholar] [CrossRef]
- Nahin, R.L.; Ren, K.; De León, M.; Ruda, M. Primary sensory neurons exhibit altered gene expression in a rat model of neuropathic pain. Pain 1994, 58, 95–108. [Google Scholar] [CrossRef]
- Costigan, M.; Befort, K.; Karchewski, L.; Griffin, R.S.; D’Urso, D.; Allchorne, A.; Sitarski, J.; Mannion, J.W.; Pratt, R.E.; Woolf, C.J. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci. 2002, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Sunderland, S. A classification of peripheral nerve injuries producing loss of function. Brain 1951, 74, 491–516. [Google Scholar] [CrossRef]
- Gamse, R.; Holzer, P.; Lembeck, F. Decrease of substance P in primary afferent neurones and impairment of neurogenic plasma extravasation by capsaicin. Br. J. Pharmacol. 1980, 68, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Jancsó, G.; Lawson, S.N. Transganglionic Degeneration of Capsaicin-Sensitive C-Fiber Primary Afferent Terminals. Neuroscience 1990, 39, 501–511. [Google Scholar] [CrossRef]
- Gibson, S.J.; McGregor, G.; Bloom, S.R.; Polak, J.M.; Wall, P.D. Local application of capsaicin to one sciatic nerve of the adult rat induces a marked depletion in the peptide content of the lumbar dorsal horn. Neuroscience 1982, 7, 3153–3162. [Google Scholar] [CrossRef]
- Jancsó, G.; Király, E.; Jancsó-Gábor, A. Direct evidence for an axonal site of action of capsaicin. Naunyn. Schmiedebergs. Arch. Pharmacol. 1980, 313, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.J.; Chung, J.M.; Honore, M.; Seltzer, Z. Models of neuropathic pain in the rat. Curr. Protoc. Pharmacol. 2003, 22, 9.14.1–9.14.6. [Google Scholar]
- Seltzer, Z.; Dubner, R.; Shir, Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990, 43, 205–218. [Google Scholar] [CrossRef]
- Kim, S.H.; Chung, J.M. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992, 50, 355–363. [Google Scholar] [CrossRef]
- Castro-Lopes, J.M.; Coimbra, A.; Grant, G.; Arvidsson, J. Ultrastructural changes of the central scalloped (C1) primary afferent endings of synaptic glomeruli in the substantia gelatinosa Rolandi of the rat after peripheral neurotomy. J. Neurocytol. 1990, 19, 329–337. [Google Scholar] [CrossRef]
- Gamse, R.; Petsche, U.; Lembeck, F.; Jancsó, G. Capsaicin Applied to Peripheral-Nerve Inhibits Axoplasmic-Transport of Substance-P and Somatostatin. Brain Res. 1982, 239, 447–462. [Google Scholar] [CrossRef]
- Knyihár, E.; Csillik, B. Effect of peripheral anatomy on the fine structure and histochemistry of the Rolando substance: Degenerative atrophy of central processes of pseudounipolar cells. Exp. Brain Res. 1976, 26, 73–87. [Google Scholar] [CrossRef]
- Jancsó, G. Pathobiological reactions of C-fibre primary sensory neurones to peripheral nerve injury. Exp. Physiol. 1992, 77, 405–431. [Google Scholar] [CrossRef] [Green Version]
- Colmant, H.J. Aktivitätsschwankungen der sauren Phosphatase im Rückenmark und den Spinalganglien der Ratte nach Durchschneidung des Nervus ischiadicus. Arch. Psychiatr. Nervenkrankheiten 1959, 199, 60–71. [Google Scholar] [CrossRef]
- Hammond, D.L.; Ackerman, L.; Holdsworth, R.; Elzey, B. Effects of spinal nerve ligation on immunohistochemically identified neurons in the L4 and L5 dorsal root ganglia of the rat. J. Comp. Neurol. 2004, 475, 575–589. [Google Scholar] [CrossRef] [PubMed]
- Michael, G.J.; Priestley, J.V. Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. J. Neurosci. 1999, 19, 1844–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szigeti, C.; Sántha, P.; Körtvély, E.; Nyári, T.; Horváth, V.J.; Deák, E.; Dux, M.; Gulya, K.; Jancsó, G. Disparate changes in the expression of transient receptor potential vanilloid type 1 receptor mRNA and protein in dorsal root ganglion neurons following local capsaicin treatment of the sciatic nerve in the rat. Neuroscience 2012, 201, 320–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Xu, Z.Q.; Shi, T.J.; Landry, M.; Holmberg, K.; Ju, G.; Tong, Y.G.; Bao, L.; Cheng, X.P.; Wiesenfeld-Hallin, Z.; et al. Regulation of expression of galanin and galanin receptors in dorsal root ganglia and spinal cord after axotomy and inflammation. In Proceedings of the Annals of the New York Academy of Sciences; New York Academy of Sciences: New York, NY, USA, 1998; Volume 863, pp. 402–413. [Google Scholar]
- Doughty, S.E.; Atkinson, M.E.; Shehab, S.A.S. A quantitative study of neuropeptide immunoreactive cell bodies of primary afferent sensory neurons following rat sciatic nerve peripheral axotomy. Regul. Pept. 1991, 35, 59–72. [Google Scholar] [CrossRef]
- Zhang, X.; Wiesenfeld-Hallin, Z.; Hökfelt, T. Effect of Peripheral Axotomy on Expression of Neuropeptide Y Receptor mRNA in Rat Lumbar Dorsal Root Ganglia. Eur. J. Neurosci. 1994, 6, 43–57. [Google Scholar] [CrossRef]
- Aldskogius, H.; Arvidsson, J.; Grant, G. The reaction of primary sensory neurons to peripheral nerve injury with particular emphasis on transganglionic changes. Brain Res. 1985, 357, 27–46. [Google Scholar] [CrossRef]
- Jancsó, G.; Ambrus, A. Capsaicin sensitivity of primary sensory neurones and its regulation. In Peripheral neurons in nociception: Physio-pharmacological aspects; Besson, J.M., Guilbaud, G., Ollat, H., Eds.; John Libbey Eurotext: Paris, France, 1994; Volume 1, pp. 71–87. [Google Scholar]
- Grant, G.; Arvidsson, J. Transganglionic degeneration in trigeminal primary sensory neurons. Brain Res. 1975, 95, 265–279. [Google Scholar] [CrossRef]
- Knyihár-Csillik, E.; Rakic, P.; Csillik, B. Transganglionic degenerative atrophy in the substantia gelatinosa of the spinal cord after peripheral nerve transection in rhesus monkeys. Cell Tissue Res. 1987, 247, 599–604. [Google Scholar] [CrossRef]
- Himes, B.T.; Tessler, A. Death of some dorsal root ganglion neurons and plasticity of others following sciatic nerve section in adult and neonatal rats. J. Comp. Neurol. 1989, 284, 215–230. [Google Scholar] [CrossRef]
- Arvidsson, J.; Ygge, J.; Grant, G. Cell loss in lumbar dorsal root ganglia and transganglionic degeneration after sciatic nerve resection in the rat. Brain Res. 1986, 373, 15–21. [Google Scholar] [CrossRef]
- Woolf, C.J.; Shortland, P.; Reynolds, M.; Ridings, J.; Doubell, T.; Coggeshall, R.E. Reorganization of central terminals of myelinated primary afferents in the rat dorsal horn following peripheral axotomy. J. Comp. Neurol. 1995, 360, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Mannion, R.J.; Doubell, T.P.; Gill, H.; Woolf, C.J. Deafferentation is insufficient to induce sprouting of A-fibre central terminals in the rat dorsal horn. J. Comp. Neurol. 1998, 393, 135–144. [Google Scholar] [CrossRef]
- Woolf, C.J.; Shortland, P.; Coggeshall, R.E. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 1992, 355, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Lekan, H.A.; Carlton, S.M.; Coggeshall, R.E. Sprouting of Aβ fibers into lamina II of the rat dorsal horn in peripheral neuropathy. Neurosci. Lett. 1996, 208, 147–150. [Google Scholar] [CrossRef]
- Nakamura, S.I.; Myers, R.R. Myelinated afferents sprout into lamina II of L3-5 dorsal horn following chronic constriction nerve injury in rats. Brain Res. 1999, 818, 285–290. [Google Scholar] [CrossRef]
- Bao, L.; Wang, H.F.; Cai, H.J.; Tong, Y.G.; Jin, S.X.; Lu, Y.J.; Grant, G.; Hökfelt, T.; Zhang, X. Peripheral axotomy induces only very limited sprouting of coarse myelinated afferents into inner lamina II of rat spinal cord. Eur. J. Neurosci. 2002, 16, 175–185. [Google Scholar] [CrossRef]
- Shehab, S.A.; Spike, R.C.; Todd, A.J. Evidence against cholera toxin B subunit as a reliable tracer for sprouting of primary afferents following peripheral nerve injury. Brain Res. 2003, 964, 218–227. [Google Scholar] [CrossRef]
- Tong, Y.G.; Wang, H.F.; Ju, G.; Grant, G.; Hökfelt, T.; Zhang, X. Increased uptake and transport of cholera toxin B-subunit in dorsal root ganglion neurons after peripheral axotomy: Possible implications for sensory sprouting. J. Comp. Neurol. 1999, 404, 143–158. [Google Scholar] [CrossRef]
- Sántha, P.; Jancsó, G. Transganglionic transport of choleragenoid by capsaicin-sensitive C-fibre afferents to the substantia gelatinosa of the spinal dorsal horn after peripheral nerve section. Neuroscience 2003, 116, 621–627. [Google Scholar] [CrossRef]
- Jancsó, G.; Sántha, P.; Gecse, K. Peripheral nerve lesion-induced uptake and transport of choleragenoid by capsaicin-sensitive C-fibre spinal ganglion neurons. Acta Biol. Hung. 2002, 53. [Google Scholar] [CrossRef]
- Hughes, D.I.; Scott, D.T.; Todd, A.J.; Riddell, J.S. Lack of evidence for sprouting of Abeta afferents into the superficial laminas of the spinal cord dorsal horn after nerve section. J. Neurosci. 2003, 23, 9491–9499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jancsó, G.; Sántha, P. Transganglionic transport of choleragenoid by injured C fibres to the substantia gelatinosa: Relevance to neuropathic pain and hyperalgesia. In Hyperalgesia: Molecular Mechanisms and Clinical Implications; Brune, K., Handwerker, H.O., Eds.; Progress in Pain Research and Management; IASP Press: Seattle, WA, USA, 2004; Volume 1, pp. 143–156. [Google Scholar]
- Oszlács, O.; Jancsó, G.; Kis, G.; Dux, M.; Sántha, P. Perineural capsaicin induces the uptake and transganglionic transport of choleratoxin b subunit by nociceptive c-fiber primary afferent neurons. Neuroscience 2015, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crain, S.M.; Shen, K.F. GM1 ganglioside-induced modulation of opioid receptor-mediated functions. Ann. N.Y. Acad. Sci. 1998, 519, 106–125. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.F.; Crain, S.M. Chronic selective activation of excitatory opioid receptor functions in sensory neurons results in opioid “dependence” without tolerance. Brain Res. 1992, 597, 74–83. [Google Scholar] [CrossRef]
- Shen, K.F.; Crain, S.M. Cholera toxin-B subunit blocks excitatory opioid receptor-mediated hyperalgesic effects in mice, thereby unmasking potent opioid analgesia and attenuating opioid tolerance/dependence. Brain Res. 2001, 919, 20–30. [Google Scholar] [CrossRef]
- Sorkin, L.S.; Yu, A.L.; Junger, H.; Doom, C.M. Antibody directed against GD(2) produces mechanical allodynia, but not thermal hyperalgesia when administered systemically or intrathecally despite its dependence on capsaicin sensitive afferents. Brain Res. 2002, 930, 67–74. [Google Scholar] [CrossRef]
- Xiao, W.H.; Yu, A.L.; Sorkin, L.S. Electrophysiological characteristics of primary afferent fibers after systemic administration of anti-GD2 ganglioside antibody. Pain 1997, 69, 145–151. [Google Scholar] [CrossRef]
- Handa, Y.; Ozaki, N.; Honda, T.; Furukawa, K.; Tomita, Y.; Inoue, M.; Okada, M.; Sugiura, Y. GD3 synthase gene knockout mice exhibit thermal hyperalgesia and mechanical allodynia but decreased response to formalin-induced prolonged noxious stimulation. Pain 2005, 117, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.L.; Uttenreuther-Fischer, M.M.; Huang, C.S.; Tsui, C.C.; Gillies, S.D.; Reisfeld, R.A.; Kung, F.H. Phase I trial of a human-mouse chimeric anti-disialoganglioside monoclonal antibody ch14.18 in patients with refractory neuroblastoma and osteosarcoma. J. Clin. Oncol. 1998, 16, 2169–2180. [Google Scholar] [CrossRef]
- Mao, J.; Price, D.D.; Hayes, R.L.; Lu, J.; Mayer, D.J. Intrathecal GM1 ganglioside and local nerve anesthesia reduce nociceptive behaviors in rats with experimental peripheral mononeuropathy. Brain Res. 1992, 584, 28–35. [Google Scholar] [CrossRef]
- Mao, J.; Hayes, R.L.; Price, D.D.; Coghill, R.C.; Lu, J.; Mayer, D.J. Post-injury treatment with GM1 ganglioside reduces nociceptive behaviors and spinal cord metabolic activity in rats with experimental peripheral mononeuropathy. Brain Res. 1992, 584, 18–27. [Google Scholar] [CrossRef]
- Mao, J.; Price, D.D.; Mayer, D.J.; Hayes, R.L. Pain-related increases in spinal cord membrane-bound protein kinase C following peripheral nerve injury. Brain Res. 1992, 588, 144–149. [Google Scholar] [CrossRef]
- Watanabe, S.; Tan-No, K.; Tadano, T.; Higashi, H. Intraplantar injection of gangliosides produces nociceptive behavior and hyperalgesia via a glutamate signaling mechanism. Pain 2011, 152, 327–334. [Google Scholar] [CrossRef]
- Pike, L.J. Rafts defined: A report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 2006, 47, 1597–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bieberich, E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem. Phys. Lipids 2018, 216, 114–131. [Google Scholar] [CrossRef]
- Simons, K.; Ikonen, E. Functional rafts in cell membranes. Nature 1997, 387, 569–572. [Google Scholar] [CrossRef]
- Liu, M.; Huang, W.; Wu, D.; Priestley, J. V TRPV1, but not P2X, requires cholesterol for its function and membrane expression in rat nociceptors. Eur. J. Neurosci. 2006, 24, 1–6. [Google Scholar] [CrossRef]
- Mutoh, T.; Tokuda, A.; Inokuchi, J.; Kuriyama, M. Glucosylceramide synthase inhibitor inhibits the action of nerve growth factor in PC12 cells. J. Biol. Chem. 1998, 273, 26001–26007. [Google Scholar] [CrossRef] [Green Version]
- Sántha, P.; Oszlács, O.; Dux, M.; Dobos, I.; Jancsó, G. Inhibition of glucosylceramide synthase reversibly decreases the capsaicin-induced activation and TRPV1 expression of cultured dorsal root ganglion neurons. Pain 2010, 150, 103–112. [Google Scholar] [CrossRef]
- Jancsó, G.; Dux, M.; Oszlács, O.; Sántha, P. Activation of the transient receptor potential vanilloid-1 (TRPV1) channel opens the gate for pain relief. Br. J. Pharmacol. 2008, 155, 1139–1141. [Google Scholar] [CrossRef]
- Jancsó, G.; Oszlács, O.; Dobos, I.; Sántha, P. Glucosylceramide synthase regulates the capsaicin sensitivity of cultured dorsal root ganglion neurons. 6th Forum Eur. Neurosci. Geneva Switz. 2008, 124, 16. [Google Scholar]
- Winter, J.; Forbes, C.A.; Sternberg, J.; Lindsay, R.M. Nerve growth factor (NGF) regulates adult rat cultured dorsal root ganglion neuron responses to the excitotoxin capsaicin. Neuron 1988, 1, 973–981. [Google Scholar] [CrossRef]
- Bevan, S.; Winter, J. Nerve growth factor (NGF) differentially regulates the chemosensitivity of adult rat cultured sensory neurons. J. Neurosci. 1995, 15, 4918–4926. [Google Scholar] [CrossRef] [Green Version]
- Aguayo, L.G.; White, G. Effects of nerve growth factor on TTX- and capsaicin-sensitivity in adult rat sensory neurons. Brain Res. 1992, 570, 61–67. [Google Scholar] [CrossRef]
- Farooqui, T.; Franklin, T.; Pearl, D.K.; Yates, A.J. Ganglioside GM1 enhances induction by nerve growth factor of a putative dimer of TrkA. J. Neurochem. 1997, 68, 2348–2355. [Google Scholar] [CrossRef]
- Nishio, M.; Fukumoto, S.; Furukawa, K.; Ichimura, A.; Miyazaki, H.; Kusunoki, S.; Urano, T.; Furukawa, K. Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC12 cells. J. Biol. Chem. 2004, 279, 33368–33378. [Google Scholar] [CrossRef] [Green Version]
- Szöke, E.; Borzsei, R.; Tóth, D.M.; Lengl, O.; Helyes, Z.; Sándor, Z.; Szolcsányi, J. Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal sensory neurons and transfected cell line. Eur. J. Pharmacol. 2010, 628, 67–74. [Google Scholar] [CrossRef]
- Miyake, Y.; Kozutsumi, Y.; Nakamura, S.; Fujita, T.; Kawasaki, T. Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem. Biophys. Res. Commun. 1995, 211, 396–403. [Google Scholar] [CrossRef]
- Sághy, É.; Szöke, É.; Payrits, M.; Helyes, Z.; Börzsei, R.; Erostyák, J.; Jánosi, T.Z.; Sétáló, G.; Szolcsányi, J. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals. Pharmacol. Res. 2015, 100, 101–116. [Google Scholar] [CrossRef]
- Sántha, P.; Dobos, I.; Oszlács, O.; Jancsó, G. Chemical sensitivity of rat primary sensory neurons is regulated by glucosylceramide synthase. In Proceedings of the Pain in Europe VIII; Biennial congress of Europen Pain Federation: Florence, Italy, 2013; p. 302. [Google Scholar]
- Storti, B.; Di Rienzo, C.; Cardarelli, F.; Bizzarri, R.; Beltram, F. Unveiling TRPV1spatio-temporal organization in live cell membranes. PLoS ONE 2015, 10, e0116900. [Google Scholar] [CrossRef]
- Sathianathan, V.; Avelino, A.; Charrua, A.; Santha, P.; Matesz, K.; Cruz, F.; Nagy, I. Insulin induces cobalt uptake in a subpopulation of rat cultured primary sensory neurons. Eur. J. Neurosci. 2003, 18, 2477–2486. [Google Scholar] [CrossRef] [PubMed]
- Van Buren, J.J.; Bhat, S.; Rotello, R.; Pauza, M.E.; Premkumar, L.S. Sensitization and translocation of TRPV1 by insulin and IGF-I. Mol. Pain 2005, 1, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Huang, J.; McNaughton, P.A. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 2005, 24, 4211–4223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikonen, E.; Vainio, S. Lipid microdomains and insulin resistance: Is there a connection? Sci. STKE 2005, 2005, e3. [Google Scholar] [CrossRef]
- Biedi, C.; Panetta, D.; Segat, D.; Cordera, R.; Maggi, D. Specificity of insulin-like growth factor I and insulin on Shc phosphorylation and Grb2 recruitment in caveolae. Endocrinology 2003, 144, 5497–5503. [Google Scholar] [CrossRef] [Green Version]
- Gustavsson, J.; Parpal, S.; Karlsson, M.; Ramsing, C.; Thorn, H.; Borg, M.; Lindroth, M.; Peterson, K.H.; Magnusson, K.E.; Strålfors, P. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J. 1999, 13, 1961–1971. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.; Hu, J.; Xie, C.; Mei, K.; Pham, C.; Mo, X.; Hepp, R.; Soares, S.; Nothias, F.; Wang, Y.; et al. Recovery from tachyphylaxis of TRPV1 coincides with recycling to the surface membrane. Proc. Natl. Acad. Sci. USA 2019, 116, 5170–5175. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sántha, P.; Dobos, I.; Kis, G.; Jancsó, G. Role of Gangliosides in Peripheral Pain Mechanisms. Int. J. Mol. Sci. 2020, 21, 1005. https://doi.org/10.3390/ijms21031005
Sántha P, Dobos I, Kis G, Jancsó G. Role of Gangliosides in Peripheral Pain Mechanisms. International Journal of Molecular Sciences. 2020; 21(3):1005. https://doi.org/10.3390/ijms21031005
Chicago/Turabian StyleSántha, Péter, Ildikó Dobos, Gyöngyi Kis, and Gábor Jancsó. 2020. "Role of Gangliosides in Peripheral Pain Mechanisms" International Journal of Molecular Sciences 21, no. 3: 1005. https://doi.org/10.3390/ijms21031005
APA StyleSántha, P., Dobos, I., Kis, G., & Jancsó, G. (2020). Role of Gangliosides in Peripheral Pain Mechanisms. International Journal of Molecular Sciences, 21(3), 1005. https://doi.org/10.3390/ijms21031005