The Role of Dermal Fibroblasts in Nevoid Basal Cell Carcinoma Syndrome Patients: An Overview
Abstract
:1. Introduction
1.1. Clinical and Histopathological Features of Nevoid Basal Cell Carcinoma Syndrome-Basal Cell Carcinomas (NBCCS-BCCs)
1.2. Genetic Aspects
1.3. Hedgehog Signaling
2. Hh Signaling in Tumor Microenvironment
2.1. Hh Signaling in Cancer-Associated Fibroblasts
2.2. Dermal Fibroblasts from Gorlin Syndrome Have Phenotypic Traits Reminiscent BCC Cancer Associated Fibroblasts
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NBCCS | Nevoid basal cell carcinoma syndrome |
BCC | Basal cell carcinoma |
PTCH | protein patched homolog |
Hh | Hedgehog |
CAF | Carcinoma associated fibroblast |
iPCS | induced pluripotent stem cells |
UV | ultraviolet |
UVB | ultraviolet B |
SUFU | suppressor of fused homolog |
LOH | loss of heterozygosity |
SMO | Smoothened gene |
SHH | Sonic Hedgehog |
Gli1, 2, 3 | glioma-associated oncogene 1,2,3 |
DHH | Desert hedgehog |
IHH | Indian hedgehog |
Wnt | wingless signaling pathway |
N-myc | neuroblastoma oncogene |
Bcl2 | B-cell lymphoma 2 |
Hip1 | Huntingtin interacting protein-1 |
EGF | epidermal growth factor |
EGFR | epidermal growth factor receptor |
SCC | Squamous cell carcinoma |
TGF-β | transforming growth factor beta |
hTert | human telomerase reverse transcription transcriptase |
EMT | epithelial-mesenchymal transition |
FAP | fibroblast activation protein |
FSP1 | fibroblast-specific protein 1 |
GS | Gorlyn Syndrome |
NG2 | neuroglial antigen-2 |
TNC | tenascin |
ECM | extracellular matrix |
CXCL | chemokines |
CCL | cytokines |
PDGF | platelet- derived growth factor |
VEGF | vascular endothelial growth factor |
SDF-1 | stromal derived factor-1 |
MMP | matrix metalloproteinase |
TIMP | tissue inhibitors of MMP |
HGF | hepatocyte growth factor |
FGF | fibroblasts growth factor |
TAMS | tumor-associated macrophages |
CXCL9 | chemokine ligand 9 |
CXCL10 | chemokine ligand 10 |
PTEN | phosphatase and tensin homolog |
COLL11A1 | collagen type 11 α1 |
MGP | Matrix gla protein |
TNC | tenascin |
KGF | keratinocytes growth factor |
Angptl2/4 | angiopoietin-related protein 2 and 4 |
SFRP | secreted frizzled-related protein |
DKK1 | Dickkopf1 |
WIF1 | Wnt inhibitory factor 1 |
WISP2 | Wnt1-inducible-signaling pathway protein 2 |
Wnt1 | wingless-type MMTV integration site family, member 1 |
α-Sma | α smooth muscle actin |
miRNA | small non-coding RNA molecule |
References
- Evans, D.; Howard, E.; Giblin, C.; Clancy, T.; Spencer, H.; Huson, S.; Lalloo, F.; Evans, G. Birth incidence and prevalence of tumor-prone syndromes: Estimates from a UK family genetic register service. Am. J. Med Genet. Part A 2010, 152, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.G.; Ladusans, E.J.; Rimmer, S.; Burnell, L.D.; Thakker, N.; Farndon, P.A.; Evans, G. Complications of the naevoid basal cell carcinoma syndrome: Results of a population based study. J. Med. Genet. 1993, 30, 460–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzio, L.L.; Nocini, P.F.; Savoia, A.; Consolo, U.; Procaccini, M.; Zelante, L.; Pannone, G.; Bucci, P.; Dolci, M.; Bambini, F.; et al. Nevoid basal cell carcinoma syndrome. Clinical findings in 37 Italian affected individuals. Clin. Genet. 1999, 55, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.-M.; Zhao, H.-S.; Sun, L.-S.; Li, T.-J. PTCH mutations in sporadic and Gorlin-syndrome-related odontogenic keratocysts. J. Dent. Res. 2006, 85, 859–863. [Google Scholar] [CrossRef]
- Yang, X.; Pfeiffer, R.M.; Goldstein, A.M. Influence of glutathione-Stransferase (GSTM1, GSTP1, GSTT1) and cytochrome p450 (CYP1A1, CYP2D6) polymorphims on numbers of basal cell carcinomas (BCCs) in families with the naevoid basal cell carcinoma syndrome. J. Med. Genet. 2006, 43, e16. [Google Scholar] [CrossRef] [Green Version]
- Veenstra-Knol, H.E.; Scheewe, J.H.; van der Vlist, G.J.; van Doorn, M.E.; Ausems, M.G. Early recognition of basal cell naevus syndrome. Eur. J. Pediatr. 2005, 164, 126–130. [Google Scholar] [CrossRef]
- Marsh, A.; Wicking, C.; Wainwright, B.; Chenevix-Trench, G. DHPLC analysis of patients with Nevoid Basal Cell Carcinoma Syndrome reveals novel PTCH missense mutations in the sterol-sensing domain. Hum. Mutat. 2005, 26, 283. [Google Scholar] [CrossRef]
- Pastorino, L.; Cusano, R.; Nasti, S.; Faravelli, F.; Forzano, F.; Baldó, C.; Barile, M.; Gliori, S.; Muggianu, M.; Ghigliotti, G.; et al. Molecular characterization of Italian nevoid basal cell carcinoma syndrome patients. Hum. Mutat. 2005, 25, 322–323. [Google Scholar] [CrossRef]
- Gorlin, R.J. Nevoid basal cell carcinoma (Gorlin) syndrome: Unanswered issues. J. Lab. Clin. Med. 1999, 134, 551–552. [Google Scholar] [CrossRef]
- Kimonis, V.E.; Goldstein, A.M.; Pastakia, B.; Yang, M.L.; Kase, R.; DiGiovanna, J.J.; Bale, A.E.; Bale, S.J. Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am. J. Med. Genet. 1997, 69, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Muzio, L.L.; Staibano, S.; Pannone, G.; Bucci, P.; Nocini, P.; Bucci, E.; De Rosa, G. Expression of cell cycle and apoptosis-related proteins in sporadic odontogenic keratocysts and odontogenic keratocysts associated with the nevoid basal cell carcinoma syndrome. J. Dent. Res. 1999, 78, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Gorlin, R.J. Nevoid Basal Cell Carcinoma Syndrome. Dermatol. Clin. 1995, 13, 113–125. [Google Scholar] [CrossRef]
- Hasegawa, D.; Ochiai-Shino, H.; Onodera, S.; Nakamura, T.; Saito, A.; Onda, T.; Watanabe, K.; Nishimura, K.; Ohtaka, M.; Nakanishi, M.; et al. Gorlin syndrome-derived induced pluripotent stem cells are hypersensitive to hedgehog-mediated osteogenic induction. PLoS ONE 2017, 12, e0186879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, L.C.; Bernhard, B.; Maas, S.M.; Ajayi-Obe, E. Patched mutations and hairy skin patches: A new sign in Gorlin syndrome. Am. J. Med. Genet. Part A 2006, 140, 2625–2630. [Google Scholar] [CrossRef] [PubMed]
- Muzio, L.L. Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J. Rare Dis. 2008, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- Marcil, I.; Stern, R.S. Risk of developing a subsequent non melanoma skin cancer in patients with a history of skin cancer: A critical review of the literature and meta-analysis. Arch. Dermatol. 2000, 136, 1525–1530. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Conejo-Mir, J.; Camacho, F. Nevoid Basal Cell Carcinoma Syndrome: Combined Etretinate and Surgical Treatment. J. Dermatol. Surg. Oncol. 1989, 15, 868–871. [Google Scholar] [CrossRef]
- So, P.-L.; Fujimoto, M.A.; Epstein, E.H. Pharmacologic retinoid signaling and physiologic retinoic acid receptor signaling inhibit basal cell carcinoma tumorigenesis. Mol. Cancer Ther. 2008, 7, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Tang, T.; Tang, J.Y.; Li, N.; Reich, M.; Callahan, C.A.; Fu, L.; Yauch, R.L.; Wong, F.; Kotkow, K.; Chang, K.S.; et al. Targeting Superficial or Nodular Basal Cell Carcinoma with Topically Formulated Small Molecule Inhibitor of Smoothened. Clin. Cancer Res. 2011, 17, 3378–3387. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.Y.; Mackay-Wiggan, J.M.; Aszterbaum, M.; Yauch, R.L.; Lindgren, J.; Chang, K.; Coppola, C.; Chanana, A.M.; Marji, J.; Bickers, D.R.; et al. Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. New Engl. J. Med. 2012, 366, 2180–2188. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.L.S.; Arron, S.T.; Migden, M.R.; Solomon, J.A.; Yoo, S.; Day, B.-M.; McKenna, E.F.; Sekulic, A. Safety and efficacy of vismodegib in patients with basal cell carcinoma nevus syndrome: Pooled analysis of two trials. Orphanet J. Rare Dis. 2016, 11, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.Y.; Ally, M.S.; Chanana, A.M.; Mackay-Wiggan, J.M.; Aszterbaum, M.; Lindgren, J.A.; Ulerio, G.; Rezaee, M.R.; Gildengorin, G.; Marji, J.; et al. Inhibition of the hedgehog pathway in patients with basal-cell nevus syndrome: Final results from the multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016, 17, 1720–1731. [Google Scholar] [CrossRef]
- Clendenning, W.E.; Block, J.B.; Radde, I.G. Basal cell nevus syndrome. Arch. Dermatol. 1964, 90, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Chiang, A.; Jaju, P.D.; Batra, P.; Rezaee, M.; Epstein, E.H.; Tang, J.Y.; Sarin, K.Y. Genomic Stability in Syndromic Basal Cell Carcinoma. J. Investig. Dermatol. 2018, 138, 1044–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basset-Séguin, N.; Sharpe, H.J.; De Sauvage, F.J. Efficacy of Hedgehog Pathway Inhibitors in Basal Cell Carcinoma. Mol. Cancer Ther. 2015, 14, 633–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, J.B.; Macdonald, B.; Golitz, L.E.; LoRusso, P.; Sekulic, A. Cutaneous adverse effects of targeted therapies: Part II: Inhibitors of intracellular molecular signaling pathways. J. Am. Acad. Dermatol. 2015, 72, 221–236. [Google Scholar] [CrossRef]
- Sekulic, A.; for the Erivance BCC Investigators; Migden, M.R.; Basset-Seguin, N.; Garbe, C.; Gesierich, A.; Lao, C.D.; Miller, C.; Mortier, L.; Murrell, D.F.; et al. Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: Final update of the pivotal Erivance BCC study. BMC Cancer 2017, 17, 332. [Google Scholar] [CrossRef]
- Goldstein, A.M.; Bale, S.J.; Peck, G.L.; DiGiovanna, J.J. Sun exposure and basal cell carcinomas in the nevoid basal cell carcinoma syndrome. J. Am. Acad. Dermatol. 1993, 29, 34–41. [Google Scholar] [CrossRef]
- Aszterbaum, M.; Beech, J.; Epstein, E.H. Ultraviolet radiation mutagenesis of hedgehog pathway genes in basal cell carcinomas. J. Investig. Dermatol. Symp. Proc. 1999, 4, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, A.M.; Pastakia, B.; DiGiovanna, J.J.; Poliak, S.; Santucci, S.; Kase, R.; Bale, A.E.; Bale, S.J. Clinical findings in two African-American families with the nevoid basal cell carcinoma syndrome (NBCC). Am. J. Med Genet. 1994, 50, 272–281. [Google Scholar] [CrossRef]
- Mancuso, M.; Pazzaglia, S.; Tanori, M.; Hahn, H.; Merola, P.; Rebessi, S.; Atkinson, M.J.; Di Majo, V.; Covelli, V.; Saran, A. Basal cell carcinoma and its development: Insights from radiation-induced tumors in Ptch1-deficient mice. Cancer Res. 2004, 64, 934–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Applegate, L.A.; Goldberg, L.H.; Ley, R.D.; Ananthaswamy, H.N. Hypersensitivity of skin fibroblasts from basal cell nevus syndrome patients to killing by ultraviolet B but not by ultraviolet C radiation. Cancer Res. 1990, 50, 637–641. [Google Scholar] [PubMed]
- Nishigori, C.; Arima, Y.; Matsumura, Y.; Matsui, M.; Miyachi, Y. Impaired removal of 8-hydroxydeoxyguanosine induced by UVB radiation in naevoid basal cell carcinoma syndrome cells. Br. J. Dermatol. 2005, 153, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Brellier, F.; Valin, A.; Gorry, P.; Avril, M.-F.; Magnaldo, T.; Chevallier-Lagente, O. Ultraviolet responses of Gorlin syndrome primary skin cells. Br. J. Dermatol. 2008, 159, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Hahn, H.; Wicking, C.; Zaphiropoulos, P.G.; Gailani, M.R.; Shanley, S.; Chidambaram, A.; Vořechovský, I.; Holmberg, E.; Undèn, A.B.; Gillies, S.; et al. Mutations of the Human Homolog of Drosophila patched in the Nevoid Basal Cell Carcinoma Syndrome. Cell 1996, 85, 841–851. [Google Scholar] [CrossRef] [Green Version]
- Boutet, N.; Bignon, Y.-J.; Drouin-Garraud, V.; Sarda, P.; Longy, M.; Lacombe, D.; Gorry, P. Spectrum of PTCH1 Mutations in French Patients with Gorlin Syndrome. J. Investig. Dermatol. 2003, 121, 478–481. [Google Scholar] [CrossRef] [Green Version]
- Wicking, C.; Shanley, S.; Smyth, I.; Gillies, S.; Negus, K.; Graham, S.; Suthers, G.; Haites, N.; Edwards, M.; Wainwright, B.; et al. Most germ-line mutations in the nevoid basal cell carcinoma syndrome lead to a premature termination of the PATCHED protein, and no genotype-phenotype correlations are evident. Am. J. Hum. Genet. 1997, 60, 21–26. [Google Scholar]
- Savino, M.; D’Apolito, M.; Formica, V.; Baorda, F.; Mari, F.; Renieri, A.; Carabba, E.; Tarantino, E.; Andreucci, E.; Belli, S.; et al. Spectrum ofPTCH mutations in Italian nevoid basal cell-carcinoma syndrome patients: Identification of thirteen novel alleles. Hum. Mutat. 2004, 24, 441. [Google Scholar] [CrossRef]
- Lindström, E.; Shimokawa, T.; Toftgard, R.; Zaphiropoulos, P.G. PTCH mutations: Distribution and analyses. Hum. Mutat. 2006, 27, 215–219. [Google Scholar] [CrossRef]
- Fujii, K.; Ohashi, H.; Suzuki, M.; Hatsuse, H.; Shiohama, T.; Uchikawa, H.; Miyashita, T. Frameshift mutation in the PTCH2 gene can cause nevoid basal cell carcinoma syndrome. Fam. Cancer 2013, 12, 611–614. [Google Scholar] [CrossRef]
- Fan, Z.; Li, J.; Du, J.; Zhang, H.; Shen, Y.; Wang, C.-Y.; Wang, S. A missense mutation in PTCH2 underlies dominantly inherited NBCCS in a Chinese family. J. Med. Genet. 2008, 45, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, L.; Ghiorzo, P.; Nasti, S.; Battistuzzi, L.; Cusano, R.; Marzocchi, C.; Garrè, M.L.; Clementi, M.; Scarrà, G.B. Identification of a SUFU germline mutation in a family with Gorlin syndrome. Am. J. Med. Genet. A 2009, 149, 1539–1543. [Google Scholar] [CrossRef] [PubMed]
- Ogden, T.; Higgins, S.; Elbaum, D.; Wysong, A. The relevance of a suppressor of fused (SUFU) mutation in the diagnosis and treatment of Gorlin syndrome. JAAD Case Rep. 2018, 4, 196–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimkets, R.; Gailani, M.R.; Siu, V.M.; Yang-Feng, T.; Pressman, C.L.; Levanat, S.; Goldstein, A.; Dean, M.; Bale, A.E. Molecular analysis of chromosome 9q deletions in two Gorlin syndrome patients. Am. J. Hum. Genet. 1996, 59, 417–422. [Google Scholar] [PubMed]
- Castori, M.; Morrone, A.; Kanitakis, J.; Grammatico, P. Genetic skin diseases predisposing to basal cell carcinoma. Eur. J. Dermatol. EJD 2012, 22, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Onodera, S.; Saito, A.; Hasegawa, D.; Morita, N.; Watanabe, K.; Nomura, T.; Shibahara, T.; Ohba, S.; Yamaguchi, A.; Azuma, T. Multi-layered mutation in hedgehog-related genes in Gorlin syndrome may affect the phenotype. PLoS ONE 2017, 12, e0184702. [Google Scholar] [CrossRef] [PubMed]
- Ragge, N.K.; Salt, A.; Collin, J.R.O.; Michalski, A.; Farndon, P.A. Gorlin syndrome: The PTCH gene links ocular developmental defects and tumour formation. Br. J. Ophthalmol. 2005, 89, 988–991. [Google Scholar] [CrossRef]
- Reifenberger, J.; Wolter, M.; Knobbe, C.B.; Köhler, B.; Schönicke, A.; Scharwächter, C.; Kumar, K.; Blaschke, B.; Ruzicka, T.; Reifenberger, G. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br. J. Dermatol. 2005, 152, 43–51. [Google Scholar] [CrossRef]
- Unden, A.B.; Holmberg, E.; Lundh-Rozell, B.; Stähle-Bäckdahl, M.; Zaphiropoulos, P.G.; Toftgård, R.; Vorechovsky, I. Mutations in the human homologue of Drosophila patched (PTCH) in basal cell carcinomas and the Gorlin syndrome: Different in vivo mechanisms of PTCH inactivation. Cancer Res. 1996, 56, 4562–4565. [Google Scholar]
- Quinn, A.G.; Campbell, C.; Healy, E.; Rees, J.L. Chromosome 9 Allele Loss Occurs in both Basal and Squamous Cell Carcinomas of the Skin. J. Investig. Dermatol. 1994, 102, 300–303. [Google Scholar] [CrossRef] [Green Version]
- Gailani, M.R.; Ståhle-Bäckdahl, M.; Leffell, D.J.; Glyn, M.; Zaphiropoulos, P.G.; Undèn, A.B.; Dean, M.; Brash, D.E.; Bale, A.E.; Toftgard, R.; et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat. Genet. 1996, 14, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Crowson, A.N. Basal cell carcinoma: Biology, morphology and clinical implications. Mod. Pathol. 2006, 19, S127–S147. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Murone, M.; Luoh, S.-M.; Ryan, A.; Gu, Q.; Zhang, C.; Bonifas, J.M.; Lam, C.-W.; Hynes, M.; Goddard, A.; et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 1998, 391, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Sidransky, D. Is human patched the gatekeeper of common skin cancers? Nat. Genet. 1996, 14, 7–8. [Google Scholar] [CrossRef]
- Hooper, J.E.; Scott, M.P. Communicating with Hedgehogs. Nat. Rev. Mol. Cell Boil. 2005, 6, 306–317. [Google Scholar] [CrossRef]
- Currie, K.W.; Molinaro, A.M.; Pearson, B.J. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain. Elife 2016, 5, e19735. [Google Scholar] [CrossRef] [Green Version]
- Kan, C.; Chen, L.; Hu, Y.; Ding, N.; Li, Y.; McGuire, T.L.; Lu, H.; Kessler, J.A.; Kan, L. Gli1-labeled adult mesenchymal stem/progenitor cells and hedgehog signaling contribute to endochondral heterotopic ossification. Bone 2018, 109, 71–79. [Google Scholar] [CrossRef]
- Petrova, R.; Joyner, A.L. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 2014, 141, 3445–3457. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Peng, Y.; Li, H. The Injury-Related Activation of Hedgehog Signaling Pathway Modulates the Repair-Associated Inflammation in Liver Fibrosis. Front. Immunol. 2017, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, L.V.; Scott, M.P.; Johnson, R.L.; Milenković, L.; McMahon, J.A. Conservation of the hedgehog/patched signaling pathway from flies to mice: Induction of a mouse patched gene by Hedgehog. Genes Dev. 1996, 10, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Marigo, V.; Scott, M.P.; Johnson, R.L.; Goodrich, L.V.; Tabin, C.J. Conservation in hedgehog signaling: Induction of a chicken patched homolog by Sonic hedgehog in the developing limb. Development 1996, 122, 1225–1233. [Google Scholar] [PubMed]
- Cohen, M.M. The hedgehog signaling network. Am. J. Med. Genet. 2003, 123, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Heuvel, M.V.D.; Ingham, P.W. smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 1996, 382, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Matise, M.P.; Joyner, A.L. Gli genes in development and cancer. Oncogene 1999, 18, 7852–7859. [Google Scholar] [CrossRef] [Green Version]
- Méthot, N.; Basler, K. An absolute requirement for Cubitus interruptus in Hedgehog signaling. Development 2001, 128, 733–742. [Google Scholar]
- Kasper, M.; Regl, G.; Frischauf, A.-M.; Aberger, F. GLI transcription factors: Mediators of oncogenic Hedgehog signalling. Eur. J. Cancer 2006, 42, 437–445. [Google Scholar] [CrossRef]
- Regl, G.; Kasper, M.; Schnidar, H.; Eichberger, T.; Neill, G.W.; Philpott, M.P.; Esterbauer, H.; Hauser-Kronberger, C.; Frischauf, A.-M.; Aberger, F. Activation of the BCL2 Promoter in Response to Hedgehog/GLI Signal Transduction Is Predominantly Mediated by GLI2. Cancer Res. 2004, 64, 7724–7731. [Google Scholar] [CrossRef] [Green Version]
- Bigelow, R.L.; Chari, N.S.; Unden, A.B.; Spurgers, K.B.; Lee, S.; Roop, D.R.; Toftgard, R.; McDonnell, T.J. Transcriptional regulation of bcl-2 mediated by the Sonic hedgehog signaling pathway through Gli-1. J. Biol. Chem. 2004, 279, 1197–1205. [Google Scholar] [CrossRef] [Green Version]
- Ingham, P.W.; Taylor, A.M.; Nakano, Y. Role of the Drosophila patched gene in positional signalling. Nature 1991, 353, 184–187. [Google Scholar] [CrossRef]
- Ingham, P.W.; Hidalgo, A. Regulation of wingless transcription in the Drosophila embryo. Development 1993, 117, 283–291. [Google Scholar]
- Huang, T.X.; Guan, X.Y.; Fu, L. Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer. Am. J. Cancer Res. 2019, 9, 1889–1904. [Google Scholar] [PubMed]
- Noubissi, F.K.; Yedjou, C.G.; Spiegelman, V.S.; Tchounwou, P.B. Cross-Talk between Wnt and Hh Signaling Pathways in the Pathology of Basal Cell Carcinoma. Int. J. Environ. Res. Public Heal. 2018, 15, 1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnidar, H.; Eberl, M.; Klingler, S.; Mangelberger, R.; Kasper, M.; Hauser-Kronberger, C.; Regl, G.; Kroismayr, R.; Moriggl, R.; Sibilia, M.; et al. Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res. 2009, 69, 1284–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazumdar, T.; Sandhu, R.; Qadan, M.; DeVecchio, J.; Magloire, V.; Agyeman, A.; Li, B.; Houghton, J.A. Hedgehog Signaling Regulates Telomerase Reverse Transcriptase in Human Cancer Cells. PLoS ONE 2013, 8, e75253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alphonso, A.; Alahari, S.K. Stromal Cells and Integrins: Conforming to the Needs of the Tumor Microenvironment. Neoplasia 2009, 11, 1264–1271. [Google Scholar] [CrossRef] [Green Version]
- Nissinen, L.; Farshchian, M.; Riihilä, P.; Kähäri, V.-M. New perspectives on role of tumor microenvironment in progression of cutaneous squamous cell carcinoma. Cell Tissue Res. 2016, 365, 691–702. [Google Scholar] [CrossRef]
- Lewis, D.A.; Travers, J.B.; Spandau, D.F. A New Paradigm for the Role of Aging in the Development of Skin Cancer. J. Invest. Dermatol. 2009, 129, 787–791. [Google Scholar] [CrossRef] [Green Version]
- Omland, S.H.; Wettergren, E.E.; Mollerup, S.; Asplund, M.; Mourier, T.; Hansen, A.J.; Gniadecki, R.; Robert, R. Cancer associated fibroblasts (CAFs) are activated in cutaneous basal cell carcinoma and in the peritumoural skin. BMC Cancer 2017, 17, 675. [Google Scholar] [CrossRef]
- Micke, P.; Kappert, K.; Ohshima, M.; Sundquist, C.; Scheidl, S.; Lindahl, P.; Heldin, C.-H.; Botling, J.; Pontén, F.; Östman, A.; et al. In Situ Identification of Genes Regulated Specifically in Fibroblasts of Human Basal Cell Carcinoma. J. Investig. Dermatol. 2007, 127, 1516–1523. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Keller, E.T.; Garfield, D.H.; Shen, K.; Wang, J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 2013, 32, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Cirri, P.; Chiarugi, P. Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012, 31, 195–208. [Google Scholar] [CrossRef] [PubMed]
- LeBleu, V.S.; Kalluri, R. A peek into cancer-associated fibroblasts: Origins, functions and translational impact. Dis. Model. Mech. 2018, 11, dmm029447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moinfar, F.; Man, Y.G.; Arnould, L.; Bratthauer, G.L.; Ratschek, M.; Tavassoli, F.A. Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: Implications for tumorigenesis. Cancer Res. 2000, 60, 2562–2566. [Google Scholar] [PubMed]
- Ohlund, D.; Elyada, E.; Tuveson, D. Fibroblast heterogeneity in the cancer wound. J. Exp. Med. 2014, 211, 1503–1523. [Google Scholar] [CrossRef]
- Yauch, R.L.; Gould, S.E.; Scales, S.J.; Tang, T.; Tian, H.; Ahn, C.P.; Marshall, D.; Fu, L.; Januario, T.; Kallop, D.; et al. A paracrine requirement for hedgehog signalling in cancer. Nature 2008, 455, 406–410. [Google Scholar] [CrossRef]
- Nurmik, M.; Ullmann, P.; Rodriguez, F.; Haan, S.; Letellier, E. In search of definitions: Cancer-associated fibroblasts and their markers. Int. J. Cancer 2019, 146, 895–905. [Google Scholar] [CrossRef] [Green Version]
- Gieniec, K.A.; Butler, L.M.; Worthley, D.L.; Woods, S.L. Cancer-associated fibroblasts-heroes or villains? Br. J. Cancer 2019, 121, 293–302. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, L.; Li, D.; Andl, T.; Zhang, Y. Cancer-Associated Fibroblasts Build and Secure the Tumor Microenvironment. Front. Cell Dev. Boil. 2019, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- O’Toole, S.A.; Machalek, D.A.; Shearer, R.F.; Millar, E.K.; Nair, R.; Schofield, P.; McLeod, D.; Cooper, C.L.; McNeil, C.M.; McFarland, A.; et al. Hedgehog Overexpression Is Associated with Stromal Interactions and Predicts for Poor Outcome in Breast Cancer. Cancer Res. 2011, 71, 4002–4014. [Google Scholar] [CrossRef] [Green Version]
- Gascard, P.; Tlsty, T.D. Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy. Genome Res. 2016, 30, 1002–1019. [Google Scholar] [CrossRef]
- Tian, H.; Callahan, C.A.; DuPree, K.J.; Darbonne, W.C.; Ahn, C.P.; Scales, S.J.; De Sauvage, F.J. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc. Natl. Acad. Sci. USA 2009, 106, 4254–4259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Tang, T.; Eastham-Anderson, J.; Dunlap, D.; Alicke, B.; Nannini, M.; Gould, S.; Yauch, R.; Modrusan, Z.; DuPree, K.J.; et al. Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells. Proc. Natl. Acad. Sci. USA 2011, 108, 9589–9594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petty, J.P.; Li, A.; Wang, X.; Dai, R.; Heyman, B.; Hsu, D.; Huang, X.; Yang, Y. Hedgehog signaling promotes tumor-associated macrophage polarization to suppress intratumoral CD8+ T cell recruitment. J. Clin. Investig. 2019, 129, 5151–5162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merchant, J.L.; Ding, L. Hedgehog Signaling Links Chronic Inflammation to Gastric Cancer Precursor Lesions. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Wei, R.; Lv, M.; Li, F.; Cheng, T.; Zhang, Z.; Jiang, G.; Zhou, Y.; Gao, R.; Wei, X.; Lou, J.; et al. Human CAFs promote lymphangiogenesis in ovarian cancer via the Hh-VEGF-C signaling axis. Oncotarget 2017, 8, 67315–67328. [Google Scholar] [CrossRef] [Green Version]
- Choe, C.; Shin, Y.-S.; Kim, S.-H.; Jeon, M.-J.; Choi, S.-J.; Lee, J.; Kim, J. Tumor-stromal interactions with direct cell contacts enhance motility of non-small cell lung cancer cells through the hedgehog signaling pathway. Anticancer. Res. 2013, 33, 3715–3723. [Google Scholar]
- Kurose, K.; Gilley, K.; Matsumoto, S.; Watson, P.H.; Zhou, X.-P.; Eng, C. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat. Genet. 2002, 32, 355–357. [Google Scholar] [CrossRef]
- Majmudar, G.; Nelson, B.R.; Jensen, T.C.; Johnson, T.M. Increased expression of matrix metalloproteinase-3 (stromelysin-1) in cultured fibroblasts and basal cell carcinomas of nevoid basal cell carcinoma syndrome. Mol. Carcinog. 1994, 11, 29–33. [Google Scholar] [CrossRef]
- Shao, H.; Cai, L.; Grichnik, J.M.; Livingstone, A.S.; Velazquez, O.C.; Liu, Z.-J. Activation of Notch1 signaling in stromal fibroblasts inhibits melanoma growth by upregulating WISP-1. Oncogene 2011, 30, 4316–4326. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Yang, K.; Wickett, R.R.; Kadekaro, A.L.; Zhang, Y. Targeted deactivation of cancer-associated fibroblasts by β-catenin ablation suppresses melanoma growth. Tumor Boil. 2016, 37, 14235–14248. [Google Scholar] [CrossRef]
- Nitzki, F.; Zibat, A.; König, S.; Wijgerde, M.; Rosenberger, A.; Brembeck, F.H.; Carstens, P.-O.; Frommhold, A.; Uhmann, A.; Klingler, S.; et al. Tumor Stroma–Derived Wnt5a Induces Differentiation of Basal Cell Carcinoma ofPtch-Mutant Mice via CaMKII. Cancer Res. 2010, 70, 2739–2748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponti, G.; Bertazzoni, G.; Pastorino, L.; Monari, E.; Cuoghi, A.; Bergamini, S.; Bellei, E.; Benassi, L.; Azzoni, P.; Petrachi, T.; et al. Proteomic analysis of PTCH1+/- fibroblast lysate and conditioned culture media isolated from the skin of healthy subjects and nevoid basal cell carcinoma syndrome patients. Biomed. Res. Int. 2013, 2013, 794028. [Google Scholar] [CrossRef] [PubMed]
- Valin, A.; Barnay-Verdier, S.; Robert, T.; Ripoche, H.; Brellier, F.; Chevallier-Lagente, O.; Avril, M.F.; Magnaldo, T. PTCH1 +/- dermal fibroblasts isolated from healthy skin of Gorlin syndrome patients exhibit features of carcinoma associated fibroblasts. PLoS ONE 2009, 4, e4818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamarrón, A.; García, M.; Del Río, M.; Larcher, F.; Juarranz, Á. Effects of photodynamic therapy on dermal fibroblasts from xeroderma pigmentosum and Gorlin-Goltz syndrome patients. Oncotarget 2017, 8, 77385–77399. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.T.; Magnaldo, T.; Sontag, R.L.; Anderson, L.N.; Sadler, N.C.; Piehowski, P.D.; Gache, Y.; Weber, T.J. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis. Mol. Carcinog. 2015, 54, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Gache, Y.; Brellier, F.; Rouanet, S.; Al-Qaraghuli, S.; Goncalves-Maia, M.; Burty-Valin, E.; Barnay, S.; Scarzello, S.; Ruat, M.; Sevenet, N.; et al. Basal Cell Carcinoma in Gorlin’s Patients: A Matter of Fibroblasts-Led Protumoral Microenvironment? PLoS ONE 2015, 10, e0145369. [Google Scholar] [CrossRef]
- Shiohama, T.; Fujii, K.; Miyashita, T.; Takatani, T.; Ikehara, H.; Uchikawa, H.; Motojima, T.; Uchida, T.; Shimojo, N. MicroRNAs profiling in fibroblasts derived from patients with Gorlin syndrome. J. Hum. Genet. 2019, 64, 757–765. [Google Scholar] [CrossRef]
- Sripada, L.; Singh, K.; Lipatova, A.V.; Prajapati, P.; Tomar, D.; Bhatelia, K.; Roy, M.; Godbole, M.M.; Chumakov, P.M. hsa-miR-4485 regulates mitochondrial functions and inhibits the tumorigenicity of breast cancer cells. J. Mol. Med. 2017, 95, 641–651. [Google Scholar] [CrossRef]
- Chacón-Solano, E.; León, C.; Díaz, F.; García-García, F.; García, M.; Escámez, M.; Guerrero-Aspizua, S.; Conti, C.; Mencía, Á.; Martínez-Santamaría, L.; et al. Fibroblast activation and abnormal extracellular matrix remodelling as common hallmarks in three cancer-prone genodermatoses. Br. J. Dermatol. 2019, 181, 512–522. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellei, B.; Caputo, S.; Carbone, A.; Silipo, V.; Papaccio, F.; Picardo, M.; Eibenschutz, L. The Role of Dermal Fibroblasts in Nevoid Basal Cell Carcinoma Syndrome Patients: An Overview. Int. J. Mol. Sci. 2020, 21, 720. https://doi.org/10.3390/ijms21030720
Bellei B, Caputo S, Carbone A, Silipo V, Papaccio F, Picardo M, Eibenschutz L. The Role of Dermal Fibroblasts in Nevoid Basal Cell Carcinoma Syndrome Patients: An Overview. International Journal of Molecular Sciences. 2020; 21(3):720. https://doi.org/10.3390/ijms21030720
Chicago/Turabian StyleBellei, Barbara, Silvia Caputo, Anna Carbone, Vitaliano Silipo, Federica Papaccio, Mauro Picardo, and Laura Eibenschutz. 2020. "The Role of Dermal Fibroblasts in Nevoid Basal Cell Carcinoma Syndrome Patients: An Overview" International Journal of Molecular Sciences 21, no. 3: 720. https://doi.org/10.3390/ijms21030720
APA StyleBellei, B., Caputo, S., Carbone, A., Silipo, V., Papaccio, F., Picardo, M., & Eibenschutz, L. (2020). The Role of Dermal Fibroblasts in Nevoid Basal Cell Carcinoma Syndrome Patients: An Overview. International Journal of Molecular Sciences, 21(3), 720. https://doi.org/10.3390/ijms21030720