Noncovalent Sericin-Chitosan Scaffold: Physical Properties and Low Cytotoxicity Effect
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Properties of Sericin and Chitosan
2.2. The Effect of Solvent Treatment on the Scaffold Morphology
2.3. Effect of Molecular Weight of Chitosan on the Characteristics of the Scaffold
2.3.1. Characteristic of Sericin-Chitosan Scaffold
2.3.2. Cytotoxic Effect of Sericin-Chitosan Scaffolds
3. Materials and Methods
3.1. Scaffold Preparation
3.2. Scaffold Characterization
3.3. Cytotoxicity Test of Scaffold
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Smitthipong, W.; Neumann, T.; Gajria, S.; Li, Y.; Chworos, A.; Jaeger, L.; Tirrell, M. Noncovalent self-assembling nucleic acid-lipid based materials. Biomacromolecules 2009, 10, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Smitthipong, W.; Zeng, H. Mussel-inspired hydrogels for biomedical and environmental applications. Polym. Chem. 2015, 6, 353–358. [Google Scholar] [CrossRef]
- Chollakup, R.; Suwanruji, P.; Tantatherdtam, R.; Smitthipong, W. New approach on structure-property relationships of stabilized natural rubbers. J. Polym. Res. 2019, 26, 37. [Google Scholar] [CrossRef]
- Suksup, R.; Sun, Y.; Sukatta, U.; Smitthipong, W. Foam rubber from centrifuged and creamed latex. J. Polym. Eng. 2019, 39, 336–342. [Google Scholar] [CrossRef]
- Aramwit, P.; Siritientong, T.; Kanokpanont, S.; Srichanac, T. Formulation and characterization of silk sericin–PVA scaffold crosslinked with genipin. Int. J. Biol. Macromol. 2010, 47, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.B.; Ghosh, B.; Kundu, S.B. Non-mulberry silk sericin/poly (vinyl alcohol) hydrogel matrices for potential biotechnological applications. Int. J. Biol. Macromol. 2011, 49, 125–133. [Google Scholar] [CrossRef]
- Siritienthong, T.; Ratanavaraporn, J.; Aramwit, P. Development of ethyl alcohol-precipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of full-thickness wounds. Int. J. Pharma. 2012, 439, 175–186. [Google Scholar] [CrossRef]
- Kundu, B.; Kundu, S. Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials 2012, 33, 7456–7467. [Google Scholar] [CrossRef]
- Kwon, H.; Sun, L.; Cairns, D.M.; Rainbow, R.S.; Prada, R.C.; Kaplan, D.; Zeng, L. The influence of scaffold material on chondrocytes under inflammatory conditions. Acta Biomater. 2013, 9, 6563–6575. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Q. Applications of natural silk protein sericin in biomaterials. Biotechnol. Adv. 2002, 20, 91–100. [Google Scholar] [CrossRef]
- Fabiani, C.; Pizzichini, M.; Spadoni, M.; Zeddita, G. Treatment of waste water from silk degumming processes for protein recovery and water reuse. Desalination 1996, 105, 1–9. [Google Scholar] [CrossRef]
- Wu, J.H.; Wang, Z.; Xu, S.Y. Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chem. 2007, 103, 1255–1262. [Google Scholar] [CrossRef]
- Vaithamsat, P.; Kitpreechavanich, V. Sericin separation from silk degumming wastewater. Sep. Purif. Technol. 2008, 59, 129–133. [Google Scholar] [CrossRef]
- Kumar, N.N.V.R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Dutta, P.K.; Dutta, J.; Tripathi, V.S. Chitin and chitosan: Chemistry properties and applications. J. Sci. Ind. Res. 2004, 63, 20–31. [Google Scholar]
- Dai, T.; Tanaka, M.; Huang, Y.Y.; Hamblin, M.R. Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Rev. Anti-Infect. Ther. 2001, 9, 857–879. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.; Mattioli-Belmonte, M.; Pugnaloni, A.; Biagini, G. Biochemistry, Histology and Clinical Uses of Chitins and Chitosans. In Wound Healing in Chitin and Chitinases; Jolles, P., Muzzarelli, R.A.A., Eds.; Birkhauser: Basel, Switzerland, 1999; pp. 251–264. [Google Scholar]
- Santos-Carballal, B.; Fernández, E.F.; Goycoolea, F.M. Chitosan in non-viral gene delivery: Role of structure, characterization methods, and insights in cancer and rare diseases therapies. Polymers 2018, 10, 444. [Google Scholar] [CrossRef] [Green Version]
- Rujiravanit, R.; Kruaykitanon, S.; Jamieson, A.M.; Tokura, S. Preparation of crosslinked chitosan/silk fibroin blend films for drug delivery system. Macromol. Biosci. 2003, 3, 604–611. [Google Scholar] [CrossRef]
- Gobin, A.S.; Froude, V.E.; Mathur, A.B. Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. J. Biomed. Mater. Res. 2005, 74, 465–473. [Google Scholar] [CrossRef]
- Park, I.K.; Kim, T.H.; Kim, S.I.; Park, Y.H.; Kim, W.J.; Akaike, T.; Cho, C.S. Visualization of transfection of hepatocytes by galactosylated chitosan-graft-poly(ethylene glycol)/DNA complexes by confocal laser scanning microscopy. Int. J. Pharm. 2003, 257, 103–110. [Google Scholar] [CrossRef]
- Tangsadthakun, C.; Kanokpanont, S.; Sanchavanakit, N.; Banaprasert, T.; Damrongsakkul, S. Properties of collagen/chitosan scaffolds for skin tissue engineering. J. Met. Mater. Miner. 2006, 16, 37–44. [Google Scholar]
- Pankaew, P.; Klumdoung, P.; Naemchanthara, K. A study of the preparation of silk sericin/chitosan composite film for future wound dressing applications. Appl. Mech. Mater. 2015, 804, 179–182. [Google Scholar] [CrossRef]
- Chollakup, R.; Smitthipong, W.; Nardin, M. Characterization of sericin biomaterial from silk cocoon waste. J. Mater. Sci. Appl. 2015, 1, 45–50. [Google Scholar]
- Teramoto, H.; Miyazawa, M. Molecular orientation of silk sericin film as revealed by ATR-infrared spectroscopy. Biomacromolecules 2005, 6, 2049–2057. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.S.; Choi, H.K.; Lee, K.H.; Nahm, J.H.; Cho, S. Novel muchadhesive polymer prepared by template polymerization of acrylic acid in the presence of silk sericin. J. Appl. Polym. Sci. 2001, 80, 274–280. [Google Scholar] [CrossRef]
- Cho, K.Y.; Moon, J.Y.; Lee, Y.W.; Lee, K.G.; Yeo, J.H.; Kweon, H.Y.; Kim, K.H.; Cho, C.S. Preparation of self-assembled silk sericin nanoparticles. Int. J. Biol. Macromol. 2003, 32, 36–42. [Google Scholar] [CrossRef]
- Anghileri, A.; Lantto, R.; Kruus, K.; Arosio, C.; Freddi, G. Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein-polysaccharide bioconjugates. J. Biotechnol. 2006, 27, 508–519. [Google Scholar] [CrossRef]
- Kweon, H.; Um, I.C.; Park, Y.H. Structural and thermal characteristics of Antheraea pernyi silk fibroin/chitosan blend film. Polymer 2001, 42, 6651–6656. [Google Scholar] [CrossRef]
- Ha, S.W.; Tonelli, A.; Hudson, S.M. Structural studies of Bombyx mori Silk Fibroin during Regeneration from Solutions and Wet Fiber Spinning. Biomacromolecules 2005, 6, 1722–1731. [Google Scholar] [CrossRef]
- She, Z.D.; Jin, C.; Huang, Z.; Zhang, B.; Feng, Q.; Xu, Y. Silk fibroin/chitosan scaffold: Preparation, characterization, and culture with HepG2 cell. J. Mater. Sci. Mater. Med. 2008, 19, 3545–3553. [Google Scholar] [CrossRef]
- Soo, Y.H.; So, L.E.; Il, K.S.; Gvu, Y.H.; Kiyohisa, T. Mechanical properties of cellulose/chitosan and sericin/chitosan blend films. J. Korean Soc. Dyers Finish. 2005, 17, 30–37. [Google Scholar]
- Vishwanath, V.; Pramanik, K.; Biswas, A. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. J. Biomater. Sci. Polym. Ed. 2016, 27, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.O.; Etheridge, J.M.; Thompson, J.A.; Vorwald, C.E.; Dean, D.; Fisher, J.P. Evaluation of the in vitro cytotoxicity of cross-linked biomaterials. Biomacromolecules 2013, 14, 1321–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartje, L.F.; Bui, H.T.; Andales, D.A.; James, S.P.; Huber, T.R.; Snow, C.D. Characterizing the cytocompatibility of various cross-linking chemistries for the production of biostable large-pore protein crystal materials. ACS Biomater. Sci. Eng. 2018, 4, 826–831. [Google Scholar]
- Kim, U.J.; Park, J.; Kim, H.J.; Wada, M.; Kaplan, D.L. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 2005, 26, 2775–2785. [Google Scholar] [CrossRef]
Diameter × Height (cm2) | Porosity (%) | Compressive Strength (kPa) | |
---|---|---|---|
A1 | 2.43 × 1.01 | 72.68 ± 3.01 | 45 ± 8 |
A2 | 2.13 × 0.69 | 78.83 ± 1.89 | 652 ± 121 |
A3 | 2.10 × 0.59 | 67.41 ± 8.91 | 609 ± 66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chollakup, R.; Uttayarat, P.; Chworos, A.; Smitthipong, W. Noncovalent Sericin-Chitosan Scaffold: Physical Properties and Low Cytotoxicity Effect. Int. J. Mol. Sci. 2020, 21, 775. https://doi.org/10.3390/ijms21030775
Chollakup R, Uttayarat P, Chworos A, Smitthipong W. Noncovalent Sericin-Chitosan Scaffold: Physical Properties and Low Cytotoxicity Effect. International Journal of Molecular Sciences. 2020; 21(3):775. https://doi.org/10.3390/ijms21030775
Chicago/Turabian StyleChollakup, Rungsima, Pimporn Uttayarat, Arkadiusz Chworos, and Wirasak Smitthipong. 2020. "Noncovalent Sericin-Chitosan Scaffold: Physical Properties and Low Cytotoxicity Effect" International Journal of Molecular Sciences 21, no. 3: 775. https://doi.org/10.3390/ijms21030775
APA StyleChollakup, R., Uttayarat, P., Chworos, A., & Smitthipong, W. (2020). Noncovalent Sericin-Chitosan Scaffold: Physical Properties and Low Cytotoxicity Effect. International Journal of Molecular Sciences, 21(3), 775. https://doi.org/10.3390/ijms21030775