Integrative Transcriptome and Proteome Analysis of the Tube Foot and Adhesive Secretions of the Sea Urchin Paracentrotus lividus
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Specimen and Samples Collection
4.2. RNA Extraction
4.3. Transcriptome and Differential Gene Expression
4.4. Proteome Re-Mapping
4.5. In situ Hybridisation
4.6. ISH Semi-Thin Sections
4.7. Data Deposition
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ISH | In situ hybridization |
BLAST | Basic Local Alignment Search Tool |
NCBI | National Center for Biotechnology Information |
Appendix A
References
- Waite, J.H. Mussel adhesion—Essential footwork. J. Exp. Biol. 2017, 220, 517–530. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.S.; Stewart, R.J. Multipart copolyelectrolyte adhesive of the sandcastle worm, Phragmatopoma californica (Fewkes): Catechol oxidase catalyzed curing through peptidyl-dopa. Biomacromolecules 2013, 14, 1607–1617. [Google Scholar] [CrossRef]
- Stewart, R.J.; Weaver, J.C.; Morse, D.E.; Waite, J.H. The tube cement of Phragmatopoma californica: A solid foam. J. Exp. Biol. 2004, 207, 4727–4734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waite, J.H.; Andersen, N.H.; Jewhurst, S.; Sun, C.J. Mussel adhesion: Finding the tricks worth mimicking. J. Adhes. 2005, 81, 297–317. [Google Scholar] [CrossRef]
- Barlow, D.E.; Dickinson, G.H.; Orihuela, B.; Kulp, J.L.; Rittschof, D.; Wahl, K.J. Characterization of the adhesive plaque of the barnacle Balanus amphitrite: Amyloid-like nanofibrils are a major component. Langmuir 2010, 26, 6549–6556. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Kamino, K. Amyloid-like conformation and interaction for the self-assembly in barnacle underwater cement. Biochemistry 2015, 54, 826–835. [Google Scholar] [CrossRef]
- Kamino, K. Barnacle underwater attachment. In Biological Adhesives; Smith, A.M., Callow, J.A.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 145–166. [Google Scholar]
- Yule, A.B.; Walker, G. The temporary adhesion of barnacle cyprids—Effects of some differing surface characteristics. J. Mar. Biol. Assoc. UK 1984, 64, 429–439. [Google Scholar] [CrossRef]
- Yule, A.B.; Crisp, D.J. Adhesion of cypris larvae of the barnacle, Balanus balanoides, to clean and arthropodin treated surfaces. J. Mar. Biol. Assoc. UK 1983, 63, 261–271. [Google Scholar] [CrossRef]
- Maki, J.S.; Yule, A.B.; Rittschof, D.; Mitchell, R. The effect of bacterial films on the temporary adhesion and permanent fixation of cypris larvae, Balanus amphitrite Darwin. Biofouling 1994, 8, 121–131. [Google Scholar] [CrossRef]
- Nott, J.A. Settlement of barnacle larvae: Surface structure of the antennular attachment disc by scanning electron microscopy. Mar. Biol. 1969, 2, 248–251. [Google Scholar] [CrossRef]
- Nott, J.A.; Foster, B.; Crisp, D.J. On the structure of the antennular attachment organ of the cypris larva of Balanus balanoides (L.). Philos. Trans. R. Soc. Lond. B Biol. Sci. 1969, 256, 115–134. [Google Scholar] [CrossRef]
- Yap, F.C.; Wong, W.L.; Maule, A.G.; Brennan, G.P.; Chong, V.C.; Lim, L.H.S. First evidence for temporary and permanent adhesive systems in the stalked barnacle cyprid, Octolasmis angulata. Sci. Rep. 2017, 7, 44980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.F.; Zhu, X.Y.; Janczewski, D.; Lee, S.S.C.; He, T.; Teo, S.L.M.; Vancso, G.J. Measuring protein isoelectric points by afm-based force spectroscopy using trace amounts of sample. Nat. Nanotechnol. 2016, 11, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Petrone, L.; Aldred, N.; Emami, K.; Enander, K.; Ederth, T.; Clare, A.S. Chemistry-specific surface adsorption of the barnacle settlement-inducing protein complex. Interface Focus 2015, 5, 20140047. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, K.; Nagano, M.; Fusetani, N. Purification of a larval settlement-inducing protein complex (sipc) of the barnacle, Balanus amphitrite. J. Exp. Biol. 1998, 281, 12–20. [Google Scholar] [CrossRef]
- Pagett, H.E.; Abrahams, J.L.; Bones, J.; O’Donoghue, N.; Marles-Wright, J.; Lewis, R.J.; Harris, J.R.; Caldwell, G.S.; Rudd, P.M.; Clare, A.S. Structural characterisation of the n-glycan moiety of the barnacle settlement-inducing protein complex (SIPC). J. Exp. Biol. 2012, 215, 1192–1198. [Google Scholar] [CrossRef] [Green Version]
- Dreanno, C.; Matsumura, K.; Dohmae, N.; Takio, K.; Hirota, H.; Kirby, R.R.; Clare, A.S. An alpha(2)-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proc. Natl. Acad. Sci. USA 2006, 103, 14396–14401. [Google Scholar] [CrossRef] [Green Version]
- Ferrier, G.A.; Kim, S.J.; Kaddis, C.S.; Loo, J.A.; Zimmer, C.A.; Zimmer, R.K. Multifuncin: A multifunctional protein cue induces habitat selection by, and predation on, barnacles. Integr. Comp. Biol. 2016, 56, 901–913. [Google Scholar] [CrossRef]
- Rittschof, D.; Cohen, J.H. Crustacean peptide and peptide-like pheromones and kairomones. Peptides 2004, 25, 1503–1516. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, X.X.; Leung, P.M.; He, L.S.; Chan, T.Y.; Yan, G.Y.; Zhang, Y.; Sun, J.; Xu, Y.; Qian, P.Y. Secretory locations of SIPC in Amphibalanus amphitrite cyprids and a novel function of sipc in biomineralization. Sci. Rep. 2016, 6, 29376. [Google Scholar] [CrossRef] [Green Version]
- Thiyagarajan, V.; Qian, P.Y. Proteomic analysis of larvae during development, attachment, and metamorphosis in the fouling barnacle, Balanus amphitrite. Proteomics 2008, 8, 3164–3172. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.F.; Matsumura, K.; Wang, H.; Arellano, S.M.; Yan, X.C.; Alam, I.; Archer, J.A.C.; Bajic, V.B.; Qian, P.Y. Toward an understanding of the molecular mechanisms of barnacle larval settlement: A comparative transcriptomic approach. PLoS ONE 2011, 6, e22913. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.F.; Zhang, H.M.; Wang, H.; Matsumura, K.; Wong, Y.H.; Ravasi, T.; Qian, P.Y. Quantitative proteomics study of larval settlement in the barnacle Balanus amphitrite. PLoS ONE 2014, 9, e88744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandramouli, K.H.; Al-Aqeel, S.; Ryu, T.; Zhang, H.M.; Seridi, L.; Ghosheh, Y.; Qian, P.Y.; Ravasi, T. Transcriptome and proteome dynamics in larvae of the barnacle Balanus amphitrite from the red sea. BMC Genom. 2015, 16, 1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, G.Y.; Zhang, G.; Huang, J.M.; Lan, Y.; Sun, J.; Zeng, C.; Wang, Y.; Qian, P.Y.; He, L.S. Comparative transcriptomic analysis reveals candidate genes and pathways involved in larval settlement of the barnacle Megabalanus volcano. Int. J. Mol. Sci. 2017, 18, 2253. [Google Scholar] [CrossRef] [Green Version]
- Tyler, S. Comparative ultrastructure of adhesive systems in Turbellaria. Zoomorphologie 1976, 84, 1–76. [Google Scholar] [CrossRef]
- Lengerer, B.; Pjeta, R.; Wunderer, J.; Rodrigues, M.; Arbore, R.; Scharer, L.; Berezikov, E.; Hess, M.W.; Pfaller, K.; Egger, B.B.; et al. Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein. Front. Zool. 2014, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Wunderer, J.; Lengerer, B.; Pjeta, R.; Bertemes, P.; Kremser, L.; Lindner, H.; Ederth, T.; Hess, M.W.; Stock, D.; Salvenmoser, W.W.; et al. A mechanism for temporary bioadhesion. Proc. Natl. Acad. Sci. USA 2019, 116, 4297–4306. [Google Scholar] [CrossRef] [Green Version]
- Pjeta, R.; Wunderer, J.; Bertemes, P.; Hofer, T.; Salvenmoser, W.; Lengerer, B.; Coassin, S.; Erhart, G.; Beisel, C.; Sobral, D.D.; et al. Temporary adhesion of the proseriate flatworm Minona ileanae. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374. [Google Scholar] [CrossRef] [Green Version]
- Whittington, I.D.; Cribb, B.W. Adhesive secretions in the Platyhelminthes. Adv. Parasitol. 2001, 48, 101–224. [Google Scholar]
- Rodrigues, M.; Leclère, P.; Flammang, P.; Hess, M.W.; Salvenmoser, W.; Hobmayer, B.; Ladurner, P. The cellular basis of bioadhesion of the freshwater polyp Hydra. BMC Zool. 2016, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.; Ostermann, T.; Kremeser, L.; Lindner, H.; Beisel, C.; Berezikov, E.; Hobmayer, B.; Ladurner, P. Profiling of adhesive-related genes in the freshwater cnidarian Hydra magnipapillata by transcriptomics and proteomics. Biofouling 2016, 32, 1115–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flammang, P.; Demeuldre, M.; Hennebert, E.; Santos, R. Adhesive secretions in echinoderms: A review. In Biological Adhesives; Smith, A.M.M., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 193–222. [Google Scholar]
- Flammang, P. Adhesive secretions in echinoderms: An overview. In Biological Adhesives; Smith, A.M., Callow, J.A.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 183–206. [Google Scholar]
- Santos, R.; Hennebert, E.; Coelho, A.V.; Flammang, P. The echinoderm tube foot and its role in temporary underwater adhesion. In Functional Surfaces in Biology: Adhesion Related Phenomena Volume 2; Gorb, S.N.N., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 9–41. [Google Scholar]
- Hennebert, E.; Wattiez, R.; Waite, J.H.; Flammang, P. Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star asterias rubens. Biofouling 2012, 28, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Hennebert, E.; Leroy, B.; Wattiez, R.; Ladurner, P. An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion. J. Proteom. 2015, 128, 83–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennebert, E.; Wattiez, R.; Demeuldre, M.; Ladurner, P.; Hwang, D.S.; Waite, J.H.; Flammang, P. Sea star tenacity mediated by a protein that fragments, then aggregates. Proc. Natl. Acad. Sci. USA 2014, 111, 6317–6322. [Google Scholar] [CrossRef] [Green Version]
- Hennebert, E.; Wattiez, R.; Flammang, P. Characterisation of the carbohydrate fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. Mar. Biotechnol. 2011, 13, 484–495. [Google Scholar] [CrossRef]
- Lengerer, B.; Bonneel, M.; Lefevre, M.; Hennebert, E.; Leclere, P.; Gosselin, E.; Ladurner, P.; Flammang, P. The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa. Beilstein J. Nanotechnol. 2018, 9, 2071–2086. [Google Scholar] [CrossRef] [Green Version]
- Lengerer, B.; Algrain, M.; Lefevre, M.; Delroisse, J.; Hennebert, E.; Flammang, P. Interspecies comparison of sea star adhesive proteins. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190195. [Google Scholar] [CrossRef]
- Santos, R.; da Costa, G.; Franco, C.; Gomes-Alves, P.; Flammang, P.; Coelho, A.V. First insights into the biochemistry of tube foot adhesive from the sea urchin Paracentrotus lividus (Echinoidea, Echinodermata). Mar. Biotechnol. 2009, 11, 686–698. [Google Scholar] [CrossRef]
- Santos, R.; Barreto, A.; Franco, C.; Coelho, A.V. Mapping sea urchins tube feet proteome—A unique hydraulic mechano-sensory adhesive organ. J. Proteom. 2013, 79, 100–113. [Google Scholar] [CrossRef]
- Lebesgue, N.; Da Costa, G.; Ribeiro, R.M.; Ribeiro-Silva, C.; Martins, G.G.; Matranga, V.; Scholten, A.; Cordeiro, C.; Heck, A.J.R.; Santos, R. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: A quantitative proteomics approach. J. Proteom. 2016, 138, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Toubarro, D.; Gouveia, A.; Ribeiro, R.M.; Simoes, N.; da Costa, G.; Cordeiro, C.; Santos, R. Cloning, characterization, and expression levels of the Nectin gene from the tube feet of the sea urchin Paracentrotus lividus. Mar. Biotechnol. 2016, 18, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Lengerer, B.; Wunderer, J.; Pjeta, R.; Carta, G.; Kao, D.; Aboobaker, A.; Beisel, C.; Berezikov, E.; Salvenmoser, W.; Ladurner, P. Organ specific gene expression in the regenerating tail of Macrostomum lignano. Dev. Biol. 2018, 433, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Hennebert, E.; Maldonado, B.; Ladurner, P.; Flammang, P.; Santos, R. Experimental strategies for the identification and characterization of adhesive proteins in animals: A review. Interface Focus 2015, 5, 20140064. [Google Scholar] [CrossRef] [Green Version]
- Gantayet, A.; Rees, D.J.; Sone, E.D. Novel proteins identified in the insoluble byssal matrix of the freshwater zebra mussel. Mar. Biotechnol. 2014, 16, 144–155. [Google Scholar] [CrossRef]
- Guerette, P.A.; Hoon, S.; Seow, Y.; Raida, M.; Masic, A.; Wong, F.T.; Ho, V.H.B.; Kong, K.W.; Demirel, M.C.; Pena-Francesch, A.; et al. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science. Nat. Biotechnol. 2013, 31, 908. [Google Scholar] [CrossRef]
- Li, S.; Xia, Z.; Chen, Y.; Gao, Y.; Zhan, A. Byssus structure and protein composition in the highly invasive fouling mussel Limnoperna fortunei. Front. Physiol. 2018, 9, 418. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.L.; Pan, Q.D.; Qi, Q.; Fan, M.H.; Sun, J.J.; Li, N.N.; Liao, Z. In-depth proteomic analysis of the byssus from marine mussel Mytilus coruscus. J. Proteom. 2016, 144, 87–98. [Google Scholar] [CrossRef]
- Kumar, D.; Bansal, G.; Narang, A.; Basak, T.; Abbas, T.; Dash, D. Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics 2016, 16, 2533–2544. [Google Scholar] [CrossRef]
- Wang, Z.; Leary, D.H.; Liu, J.N.; Settlage, R.E.; Fears, K.P.; North, S.H.; Mostaghim, A.; Essock-Burns, T.; Haynes, S.E.; Wahl, K.J.; et al. Molt-dependent transcriptomic analysis of cement proteins in the barnacle Amphibalanus amphitrite. BMC Genom. 2015, 16, 859. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.J.; Kon, T.; Knight, P.J.; Sutoh, K.; Burgess, S.A. Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 2013, 14, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Urry, L.A.; Hamilton, P.C.; Killian, C.E.; Wilt, F.H. Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis. Developmental Biology 2000, 225, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, T.; Urakami, H. Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton. Dev. Growth Differ. 2000, 42, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.; Flammang, P. Morphology and tenacity of the tube foot disc of three common european sea urchin species: A comparative study. Biofouling 2006, 22, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Anstrom, J.A.; Chin, J.E.; Leaf, D.S.; Parks, A.L.; Raff, R.A. Localization and expression of msp130, a primary mesenchyme lineage-specific cell surface protein in the sea urchin embryo. Development 1987, 101, 255–265. [Google Scholar] [PubMed]
- Smith, A.M.; Papaleo, C.; Reid, C.W.; Bliss, J.M. RNA-Seq reveals a central role for lectin, C1q and von Willebrand factor A domains in the defensive glue of a terrestrial slug. Biofouling 2017, 33, 741–754. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.M.; Niu, B.F.; Zhu, Z.W.; Wu, S.T.; Li, W.Z. Cd-hit: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Nolte, H.; MacVicar, T.D.; Tellkamp, F.; Kruger, M. Instant clue: A software suite for interactive data visualization and analysis. Sci. Rep. 2018, 8, 12648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfister, D.; De Mulder, K.; Philipp, I.; Kuales, G.; Hrouda, M.; Eichberger, P.; Borgonie, G.; Hartenstein, V.; Ladurner, P. The exceptional stem cell system of Macrostomum lignano: Screening for gene expression and studying cell proliferation by hydroxyurea treatment and irradiation. Front. Zool. 2007, 4, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, R.S.; Newmark, P.A. In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. BMC Dev. Biol. 2013, 13, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morse, A. Formic acid-sodium citrate decalcification and butyl alcohol dehydration of teeth and bones for sectioning in paraffin. J. Dent. Res. 1945, 24, 143–153. [Google Scholar] [CrossRef]
Organism | Adhesive Organ | Protein Components | Glycan Components | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
Candidate Proteins | Characterised Adhesive Proteins | ||||||||
Adhesion | Polymerization | Release | Name (Accession) Function | MWs | Conserved Dom. Repeated Regions | ||||
Amphibalanus amphitrite | Larvae-Antenullar discs | Basic and acidic prot. 20-kDa cement prot. | SIPC (AY423545) Adhesion, Settlement Biomineralization | 171.7 kDa 3 subunits: 98, 88 and 76 kDa | A2M | Conjugated with a-linked mannose | [14,15,16,17,18] | ||
Balanus glandula | Larvae-Antenullar discs | MULTIFUNCin (KC152471) Adhesion, Settlement, Biomineralization | 199.6 kDa 3 subunits: 98, 88 and 76 kDa | A2M | Conjugated with a-linked mannose | [19] | |||
Macrostomum lignano | Tail plate | Small negatively charged protein | Mlig-ap1 (MH586844.1) Cohesion | CTL, VWD, TIL, C8, EGF. GRK rich-reg. 11% C content | [29] | ||||
Mlig-ap2 (MH586845.1) Adhesion | TIL, C8, vWD, TSP1 | Conjugated with Gal-β(1–3)-GalNAc | |||||||
Minona ileanae | Tail plate | Mile-ap1 (MK854810.1) | Probably O-glycosylated | [30] | |||||
Mile-ap2a/b (MK854811.1 MK854812.1) | TSP1, TIL, T rich-reg. | ||||||||
Mile-ap3a/b (MK854813.1, MK854814.1) | GRK rich regions | ||||||||
Mile-ap4 (MK854815.1) | P rich region | ||||||||
Mile-ap5 (MK854816.1) | none | ||||||||
Hydra magnipapillata | Basal disc | Transcript with chitin-binding domain | Peroxidase-like enzymes | Glycosyl hydrolase | vWD, C8, Gal, TIL, EGF | [33] | |||
Asterias rubens | Oral tube foot disc | Proteins with hyalin, EGF, and discoidin domains | Peroxidase-like enzymes | Peptide hydrolase | Sfp1 (X2KZ73) Cohesion | 426 kDa 4 subunits: 57, 231, 72, 66 kDa | DS, vWD, CTL, C8, EGF, 5% C content | Free sialylated proteoglycans Conjugated Gal, GalNAc, fucose, sialic acid residues | [37,38,39,40] |
Asterina gibbosa | Oral tube foot disc | α-linked mannose residues | [41] | ||||||
Paracentrotus lividus | Oral tube foot disc | Peroxidase-like enzymes | Peptide and glycosyl hydrolases | Nectin-variant 2 (A0A182BBB6) Adhesion | 108.3 kDa | DS; 1.1% C content | [43,44,45,46] |
Total number of transcripts | 270,361 |
Number of transcripts after CD-HIT 95% clustering | 182,027 |
Total length (bp) | 225,573,582 |
Longest transcript (bp) | 11,173 |
Shortest transcript (bp) | 224 |
Average transcript length (bp) | 834.34 |
N50 length (bp) | 1499 |
Percentage GC | 37.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pjeta, R.; Lindner, H.; Kremser, L.; Salvenmoser, W.; Sobral, D.; Ladurner, P.; Santos, R. Integrative Transcriptome and Proteome Analysis of the Tube Foot and Adhesive Secretions of the Sea Urchin Paracentrotus lividus. Int. J. Mol. Sci. 2020, 21, 946. https://doi.org/10.3390/ijms21030946
Pjeta R, Lindner H, Kremser L, Salvenmoser W, Sobral D, Ladurner P, Santos R. Integrative Transcriptome and Proteome Analysis of the Tube Foot and Adhesive Secretions of the Sea Urchin Paracentrotus lividus. International Journal of Molecular Sciences. 2020; 21(3):946. https://doi.org/10.3390/ijms21030946
Chicago/Turabian StylePjeta, Robert, Herbert Lindner, Leopold Kremser, Willi Salvenmoser, Daniel Sobral, Peter Ladurner, and Romana Santos. 2020. "Integrative Transcriptome and Proteome Analysis of the Tube Foot and Adhesive Secretions of the Sea Urchin Paracentrotus lividus" International Journal of Molecular Sciences 21, no. 3: 946. https://doi.org/10.3390/ijms21030946
APA StylePjeta, R., Lindner, H., Kremser, L., Salvenmoser, W., Sobral, D., Ladurner, P., & Santos, R. (2020). Integrative Transcriptome and Proteome Analysis of the Tube Foot and Adhesive Secretions of the Sea Urchin Paracentrotus lividus. International Journal of Molecular Sciences, 21(3), 946. https://doi.org/10.3390/ijms21030946