Waterpipe Tobacco Smoke Inhalation Triggers Thrombogenicity, Cardiac Inflammation and Oxidative Stress in Mice: Effects of Flavouring
Abstract
:1. Introduction
2. Results
2.1. Systolic Blood Pressure (SBP)
2.2. Thrombotic Occlusion Time in Pial Microvessels in Vivo
2.3. Platelet Aggregation in Vitro
2.4. Prothrombin Time (PT) and Activated Partial Thromboplastin Time (aPTT)
2.5. Fibrinogen and von Willebrand Factor (vWF) Concentrations in Plasma
2.6. Markers of Oxidative Stress in Heart Homogenates
2.7. Markers of Inflammation in Heart Homogenates
2.8. Troponin I Concentration, DNA Damage and Cleaved Caspase-3
2.9. Heart Histology and Immunohistochemistry
2.10. Quantification of Heme Oxygenase-1 (HO-1)
2.11. Measurement of Cotinine
3. Discussion
4. Material and Methods
4.1. Animals Experimentation
4.2. WPS Exposure
4.3. SBP Measurement
4.4. Experimental Pial Cerebral Arterioles Thrombosis Model
4.5. Platelet Aggregation in Mouse Whole Blood.
4.6. PT and aPTT Measurement in Plasma in Vitro
4.7. Measurement of Fibrinogen and vWF Concentrations in Plasma
4.8. Measurement of 8-isoprostane, GSH, SOD, TNFα and IL1β Levels in Heart Homogenates
4.9. Assessment of DNA Damage in the Heart by COMET Assay
4.10. Measurement of Cleaved Caspase 3 in Heart Homogenates
4.11. Histopathology and Immunohistochemistry
4.12. Measurement of HO-1 in Heart Homogenates
4.13. Cotinine Measurement
4.14. Statistics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jawad, M.; Charide, R.; Waziry, R.; Darzi, A.; Ballout, R.A.; Akl, E.A. The prevalence and trends of waterpipe tobacco smoking: A systematic review. PLoS ONE 2018, 13, e0192191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasza, K.A.; Ambrose, B.K.; Conway, K.P.; Borek, N.; Taylor, K.; Goniewicz, M.L.; Cummings, K.M.; Sharma, E.; Pearson, J.L.; Green, V.R.; et al. Tobacco-Product Use by Adults and Youths in the United States in 2013 and 2014. N. Engl. J. Med. 2017, 376, 342–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neergaard, J.; Singh, P.; Job, J.; Montgomery, S. Waterpipe smoking and nicotine exposure: A review of the current evidence. Nicotine Tob. Res. 2007, 9, 987–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boskabady, M.H.; Farhang, L.; Mahmodinia, M.; Boskabady, M.; Heydari, G.R. Comparison of pulmonary function and respiratory symptoms in water pipe and cigarette smokers. Respirology 2012, 17, 950–956. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Smoking & Tobacco Use-Data and Statistics-Hookahs National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. Paris 2016. Available online: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/tobacco_industry/hookahs/ (accessed on 28 December 2019).
- Bhatnagar, A.; Maziak, W.; Eissenberg, T.; Ward, K.D.; Thurston, G.; King, B.A.; Sutfin, E.L.; Cobb, C.O.; Griffiths, M.; Goldstein, L.B.; et al. Water Pipe (Hookah) Smoking and Cardiovascular Disease Risk: A Scientific Statement From the American Heart Association. Circulation 2019, 139, e917–e936. [Google Scholar] [CrossRef]
- Ward, K.D.; Hammal, F.; VanderWeg, M.W.; Eissenberg, T.; Asfar, T.; Rastam, S.; Maziak, W. Are waterpipe users interested in quitting? Nicotine Tob. Res. 2005, 7, 149–156. [Google Scholar] [CrossRef]
- Akl, E.A.; Jawad, M.; Lam, W.Y.; Co, C.N.; Obeid, R.; Irani, J. Motives, beliefs and attitudes towards waterpipe tobacco smoking: A systematic review. Harm Reduct. J. 2013, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Akl, E.A.; Gunukula, S.K.; Aleem, S.; Obeid, R.; Jaoude, P.A.; Honeine, R.; Irani, J. The prevalence of waterpipe tobacco smoking among the general and specific populations: A systematic review. BMC Public Health 2011, 11, 244. [Google Scholar] [CrossRef] [Green Version]
- Maziak, W.; Ben, T.Z.; Jawad, M.; Afifi, R.; Nakkash, R.; Akl, E.A.; Ward, K.D.; Salloum, R.G.; Barnett, T.E.; Primack, B.A.; et al. Consensus statement on assessment of waterpipe smoking in epidemiological studies. Tob. Control 2017, 26, 338–343. [Google Scholar] [CrossRef]
- Kaur, G.; Muthumalage, T.; Rahman, I. Mechanisms of toxicity and biomarkers of flavoring and flavor enhancing chemicals in emerging tobacco and non-tobacco products. Toxicol. Lett. 2018, 288, 143–155. [Google Scholar] [CrossRef]
- Nemmar, A.; Raza, H.; Yuvaraju, P.; Beegam, S.; John, A.; Yasin, J.; Hameed, R.S.; Adeghate, E.; Ali, B.H. Nose-only water-pipe smoking effects on airway resistance, inflammation and oxidative stress in mice. J. Appl. Physiol. 2013, 115, 1316–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemmar, A.; Al-Salam, S.; Yuvaraju, P.; Beegam, S.; Yasin, J.; Ali, B.H. Chronic exposure to water-pipe smoke induces cardiovascular dysfunction in mice. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H329–H339. [Google Scholar] [CrossRef] [PubMed]
- Khabour, O.F.; Alzoubi, K.H.; Bani-Ahmad, M.; Dodin, A.; Eissenberg, T.; Shihadeh, A. Acute exposure to waterpipe tobacco smoke induces changes in the oxidative and inflammatory markers in mouse lung. Inhal. Toxicol. 2012, 24, 667–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentur, L.; Hellou, E.; Goldbart, A.; Pillar, G.; Monovich, E.; Salameh, M.; Scherb, I.; Bentur, Y. Laboratory and clinical acute effects of active and passive indoor group water-pipe (narghile) smoking. Chest 2014, 145, 803–809. [Google Scholar] [CrossRef]
- Hakim, F.; Hellou, E.; Goldbart, A.; Katz, R.; Bentur, Y.; Bentur, L. The acute effects of water-pipe smoking on the cardiorespiratory system. Chest 2011, 139, 775–781. [Google Scholar] [CrossRef]
- Sibai, A.M.; Tohme, R.A.; Almedawar, M.M.; Itani, T.; Yassine, S.I.; Nohra, E.A.; Isma’eel, H.A. Lifetime cumulative exposure to waterpipe smoking is associated with coronary artery disease. Atherosclerosis 2014, 234, 454–460. [Google Scholar] [CrossRef]
- Nemmar, A.; Yuvaraju, P.; Beegam, S.; John, A.; Raza, H.; Ali, B.H. Cardiovascular effects of nose-only water-pipe smoking exposure in mice. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H740–H746. [Google Scholar] [CrossRef]
- Javed, F.; Alharthi, S.S.; BinShabaib, M.S.; Gajendra, S.; Romanos, G.E.; Rahman, I. Toxicological impact of waterpipe smoking and flavorings in the oral cavity and respiratory system. Inhal. Toxicol. 2017, 29, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Bonhomme, M.G.; Holder-Hayes, E.; Ambrose, B.K.; Tworek, C.; Feirman, S.P.; King, B.A.; Apelberg, B.J. Flavoured non-cigarette tobacco product use among US adults: 2013–2014. Tob. Control 2016, 25, ii4–ii13. [Google Scholar] [CrossRef]
- Knishkowy, B.; Amitai, Y. Water-pipe (narghile) smoking: An emerging health risk behavior. Pediatrics 2005, 116, e113–e119. [Google Scholar] [CrossRef] [Green Version]
- Hawari, F.I.; Obeidat, N.A.; Ayub, H.; Ghonimat, I.; Eissenberg, T.; Dawahrah, S.; Beano, H. The acute effects of waterpipe smoking on lung function and exercise capacity in a pilot study of healthy participants. Inhal. Toxicol. 2013, 25, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Azar, R.R.; Frangieh, A.H.; Mroue, J.; Bassila, L.; Kasty, M.; Hage, G.; Kadri, Z. Acute effects of waterpipe smoking on blood pressure and heart rate: A real-life trial. Inhal. Toxicol. 2016, 28, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Barua, R.S.; Ambrose, J.A. Mechanisms of coronary thrombosis in cigarette smoke exposure. Arter. Thromb. Vasc. Biol. 2013, 33, 1460–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, G.; Siekmeier, R.; Grammer, T.B.; Boehm, B.O.; Marz, W.; Kleber, M.E. Alterations in the coagulation system of active smokers from the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Adv. Exp. Med. Biol. 2015, 832, 9–14. [Google Scholar]
- Muddathir, A.R.M.; Abd Alla, M.I.; Khabour, O.F. Waterpipe Smoking Is Associated with Changes in Fibrinogen, FVII, and FVIII Levels. Acta Haematol. 2018, 140, 159–165. [Google Scholar] [CrossRef]
- Gerloff, J.; Sundar, I.K.; Freter, R.; Sekera, E.R.; Friedman, A.E.; Robinson, R.; Pagano, T.; Rahman, I. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts. Appl. Vitr. Toxicol. 2017, 3, 28–40. [Google Scholar] [CrossRef]
- Alsaad, A.M.; Al-Arifi, M.N.; Maayah, Z.H.; Attafi, I.M.; Alanazi, F.E.; Belali, O.M.; Alhoshani, A.; Asiri, Y.A.; Korashy, H.M. Genotoxic impact of long-term cigarette and waterpipe smoking on DNA damage and oxidative stress in healthy subjects. Toxicol. Mech. Methods 2019, 29, 119–127. [Google Scholar] [CrossRef]
- Golbidi, S.; Li, H.; Laher, I. Oxidative Stress: A Unifying Mechanism for Cell Damage Induced by Noise, (Water-Pipe) Smoking, and Emotional Stress-Therapeutic Strategies Targeting Redox Imbalance. Antioxid. Redox Signal. 2018, 28, 741–759. [Google Scholar] [CrossRef]
- Scandalios, J.G. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 2005, 38, 995–1014. [Google Scholar] [CrossRef]
- Nemmar, A.; Yuvaraju, P.; Beegam, S.; Fahim, M.A.; Ali, B.H. Cerium Oxide Nanoparticles in Lung Acutely Induce Oxidative Stress, Inflammation, and DNA Damage in Various Organs of Mice. Oxid. Med. Cell Longev. 2017, 2017, 9639035. [Google Scholar] [CrossRef] [Green Version]
- Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc. Pharm. 2015, 71, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Bengalli, R.; Ferri, E.; Labra, M.; Mantecca, P. Lung Toxicity of Condensed Aerosol from E-CIG Liquids: Influence of the Flavor and the In Vitro Model Used. Int. J. Environ. Res. Public Health 2017, 14, 1254. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Romagna, G.; Allifranchini, E.; Ripamonti, E.; Bocchietto, E.; Todeschi, S.; Tsiapras, D.; Kyrzopoulos, S.; Voudris, V. Comparison of the cytotoxic potential of cigarette smoke and electronic cigarette vapour extract on cultured myocardial cells. Int. J. Environ. Res. Public Health 2013, 10, 5146–5162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemmar, A.; Salam, S.A.; Beegam, S.; Yuvaraju, P.; Ali, B.H. Gum Arabic Ameliorates Impaired Coagulation and Cardiotoxicity Induced by Water-Pipe Smoke Exposure in Mice. Front. Physiol. 2019, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Bernecker, O.Y.; Huq, F.; Heist, E.K.; Podesser, B.K.; Hajjar, R.J. Apoptosis in heart failure and the senescent heart. Cardiovasc. Toxicol. 2003, 3, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci. Rep. 2017, 7, 44735. [Google Scholar] [CrossRef] [Green Version]
- Savitskaya, M.A.; Onishchenko, G.E. Mechanisms of Apoptosis. Biochem. (Mosc.) 2015, 80, 1393–1405. [Google Scholar] [CrossRef]
- Muller, T.; Hengstermann, A. Nrf2: Friend and foe in preventing cigarette smoking-dependent lung disease. Chem. Res. Toxicol. 2012, 25, 1805–1824. [Google Scholar] [CrossRef]
- Barancik, M.; Gresova, L.; Bartekova, M.; Dovinova, I. Nrf2 as a key player of redox regulation in cardiovascular diseases. Physiol. Res. 2016, 65 (Suppl. 1), S1–S10. [Google Scholar] [CrossRef]
- Lian, Y.; Xia, X.; Zhao, H.; Zhu, Y. The potential of chrysophanol in protecting against high fat-induced cardiac injury through Nrf2-regulated anti-inflammation, anti-oxidant and anti-fibrosis in Nrf2 knockout mice. Biomed. Pharm. 2017, 93, 1175–1189. [Google Scholar] [CrossRef]
- Dianat, M.; Radan, M.; Badavi, M.; Mard, S.A.; Bayati, V.; Ahmadizadeh, M. Crocin attenuates cigarette smoke-induced lung injury and cardiac dysfunction by anti-oxidative effects: The role of Nrf2 antioxidant system in preventing oxidative stress. Respir. Res. 2018, 19, 58. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.A.; Zhang, M.; Yin, F. Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front. Pharm. 2012, 3, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maziak, W.; Rastam, S.; Shihadeh, A.L.; Bazzi, A.; Ibrahim, I.; Zaatari, G.S.; Ward, K.D.; Eissenberg, T. Nicotine exposure in daily waterpipe smokers and its relation to puff topography. Addict. Behav. 2011, 36, 397–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta, M.; Buchhalter, A.; Breland, A.; Hamilton, D.; Eissenberg, T. Urine cotinine as an index of smoking status in smokers during 96-hr abstinence: Comparison between gas chromatography/mass spectrometry and immunoassay test strips. Nicotine Tob. Res. 2004, 6, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Macaron, C.; Macaron, Z.; Maalouf, M.T.; Macaron, N.; Moore, A. Urinary cotinine in narguila or chicha tobacco smokers. J. Med. Liban. 1997, 45, 19–20. [Google Scholar] [PubMed]
- Ali, B.H.; Al Balushi, K.A.; Ashique, M.; Shalaby, A.; Al Kindi, M.A.; Adham, S.A.; Karaca, T.; Beegam, S.; Yuvaraju, P.; Nemmar, A. Chronic Water-Pipe Smoke Exposure Induces Injurious Effects to Reproductive System in Male Mice. Front. Physiol. 2017, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Taufik, F.F.; Giovana, L.; Susanto, A.D. Levels of urinary cotinine and exhaled carbon monoxide after shisha smoking. J. Phys. Conf. Ser. 2018, 1073, 022019. [Google Scholar] [CrossRef] [Green Version]
- Schubert, J.; Muller, F.D.; Schmidt, R.; Luch, A.; Schulz, T.G. Waterpipe smoke: Source of toxic and carcinogenic VOCs, phenols and heavy metals? Arch. Toxicol. 2015, 89, 2129–2139. [Google Scholar] [CrossRef]
- Schubert, J.; Luch, A.; Schulz, T.G. Waterpipe smoking: Analysis of the aroma profile of flavored waterpipe tobaccos. Talanta 2013, 115, 665–674. [Google Scholar] [CrossRef]
- Perraud, V.; Lawler, M.J.; Malecha, K.T.; Johnson, R.M.; Herman, D.A.; Staimer, N.; Kleinman, M.T.; Nizkorodov, S.A.; Smith, J.N. Chemical characterization of nanoparticles and volatiles present in mainstream hookah smoke. Aerosol. Sci. Technol. 2019, 53, 1023–1039. [Google Scholar] [CrossRef]
- Nemmar, A.; Al-Salam, S.; Beegam, S.; Yuvaraju, P.; Oulhaj, A.; Ali, B.H. Water-Pipe Smoke Exposure-Induced Circulatory Disturbances in Mice, and the Influence of Betaine Supplementation Thereon. Cell. Physiol. Biochem. 2017, 41, 1098–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemmar, A.; Al-Salam, S.; Beegam, S.; Yuvaraju, P.; Zaaba, N.E.; Yasin, J.; Ali, B.H. Waterpipe Tobacco Smoke Inhalation Triggers Thrombogenicity, Cardiac Inflammation and Oxidative Stress in Mice: Effects of Flavouring. Int. J. Mol. Sci. 2020, 21, 1291. https://doi.org/10.3390/ijms21041291
Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Zaaba NE, Yasin J, Ali BH. Waterpipe Tobacco Smoke Inhalation Triggers Thrombogenicity, Cardiac Inflammation and Oxidative Stress in Mice: Effects of Flavouring. International Journal of Molecular Sciences. 2020; 21(4):1291. https://doi.org/10.3390/ijms21041291
Chicago/Turabian StyleNemmar, Abderrahim, Suhail Al-Salam, Sumaya Beegam, Priya Yuvaraju, Nur Elena Zaaba, Javed Yasin, and Badreldin H. Ali. 2020. "Waterpipe Tobacco Smoke Inhalation Triggers Thrombogenicity, Cardiac Inflammation and Oxidative Stress in Mice: Effects of Flavouring" International Journal of Molecular Sciences 21, no. 4: 1291. https://doi.org/10.3390/ijms21041291
APA StyleNemmar, A., Al-Salam, S., Beegam, S., Yuvaraju, P., Zaaba, N. E., Yasin, J., & Ali, B. H. (2020). Waterpipe Tobacco Smoke Inhalation Triggers Thrombogenicity, Cardiac Inflammation and Oxidative Stress in Mice: Effects of Flavouring. International Journal of Molecular Sciences, 21(4), 1291. https://doi.org/10.3390/ijms21041291