Boron Toxicity and Deficiency in Agricultural Plants
Abstract
:1. Introduction
2. Micronutrient Boron
2.1. Boron Is an Essential Micronutrient for Higher Plants
2.2. Roles of Boron in Plant Metabolism
2.3. Boron Uptake
3. Boron in the Environment
3.1. Sources of Boron
3.2. Soil Boron
3.3. Alleviation of the Effects of Boron Deficiency and Toxicity
4. Agricultural Plants and Boron
4.1. Boron Deficiency
4.2. Boron Toxicity
5. Summary
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
B | Boron |
CAS | Chemical Abstracts Service |
IUPAC | International Union of Pure and Applied Chemistry |
RGII | rhamnogalacturonan II |
MIP | major intrinsic protein |
NIP | nodulin 26-like intrinsic protein |
BOR | borate transporters |
DTPA | diethylene triamine pentaacetic acid |
QTL | quantitative trait locus |
CIMMYT | International Maize and Wheat Improvement Center |
References
- Marschner, H. Mineral Nutrition in Higher Plants, 2nd ed.; Academic Press Inc.: London, UK, 1995; p. 889. [Google Scholar] [CrossRef]
- Dordas, C.; Chrispeels, M.J.; Brown, P.H. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol. 2000, 124, 1349–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, P.H.; Bellaloui, N.; Wimmer, M.A.; Bassil, E.S.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F.; Romheld, V. Boron in plant biology. Plant Biol. 2002, 4, 205–223. [Google Scholar] [CrossRef]
- Ploquin, J. Le bore dans l’alimentation. Bull. Soc. Sci. Hyg. Aliment. 1967, 55, 70–113. [Google Scholar]
- Agulhon, H. Présence et utilité du bore chez les végétaux. Ann. Inst. Pasteur 1910, 24, 321–329. [Google Scholar] [CrossRef]
- Mazé, P. Determination des elements mineraux rares necessaires as development du mais. Compt. Rend. 1915, 160, 211–214. [Google Scholar]
- Warington, K. The effect of boric acid and borax on the broad bean and certain other plants. Ann. Bot. 1923, 37, 629–672. [Google Scholar] [CrossRef]
- Sommer, A.L.; Lipman, C.B. Evidence of the indispensable nature of zinc and boron for higher green plants. Plant Physiol. 1926, 1, 231–249. [Google Scholar] [CrossRef]
- Ludbrook, W.V. Effects of various concentrations of boron on the growth of pine seedlings. J. Aust. Inst. Agric. Sci. 1942, 8, 112–114. [Google Scholar]
- Bowen, J.E.; Gauch, H.G. Essentiality of boron for Dryopteris dentata and Selaginella apoda. Am. Fern J. 1965, 55, 67–73. [Google Scholar] [CrossRef]
- Lewin, J.C. Boron as a growth requirement for diatoms. J. Phycol. 1966, 2, 160–163. [Google Scholar] [CrossRef]
- Warington, K. Boron in agriculture. Nature 1937, 140, 1016. [Google Scholar] [CrossRef]
- WHO/FAO/IAEA. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996; pp. 175–179. [Google Scholar]
- Nielsen, F.H. Boron in human and animal nutrition. Plant Soil 1997, 193, 199–208. [Google Scholar] [CrossRef]
- Nielsen, F.H. The emergence of boron as nutritionally important throughout the life cycle. Nutrition 2000, 16, 512–514. [Google Scholar] [CrossRef]
- Nielsen, F.H.; Meacham, S.L. Growing evidence for human health benefits of boron. J. Evid. Based Integr. Med. 2011, 16, 169–180. [Google Scholar] [CrossRef]
- Khaliq, H.; Juming, Z.; Ke-Mei, P. The physiological role of boron on health. Biol. Trace Elem. Res. 2018, 186, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.H. Boron: The essential element for vascular plants that never was. New Phytol. 2019, 221, 1685–1690. [Google Scholar] [CrossRef] [Green Version]
- Wimmer, M.A.; Abreu, I.; Bell, R.W.; Bienert, M.D.; Brown, P.H.; Dell, B.; Fujiwara, T.; Goldbach, H.E.; Lehto, T.; Mock, H.P.; et al. Boron: An essential element for vascular plants. A comment on Lewis (2019) ‘Boron: The essential element for vascular plants that never was’. New Phytol. 2019. [Google Scholar] [CrossRef]
- Goldbach, H.E.; Wimmer, M.A.; Findeklee, P. Discussion paper: Boron – How can the critical level be defined? J. Plant Nutr. Soil Sci. 2000, 163, 115–121. [Google Scholar] [CrossRef]
- Bolaños, L.; Lukaszewski, K.; Bonilla, I.; Blevins, D. Why boron? Plant Physiol. Biochem. 2004, 42, 907–912. [Google Scholar] [CrossRef]
- Berger, K.C. Boron in soils and crops. In Advances in Agronomy; Norman, A.G., Ed.; Academic Press: New York, NY, USA, 1949; Volume 1, pp. 321–351. [Google Scholar] [CrossRef]
- Darvill, A.; McNeil, M.; Alberschein, P.; Delmer, D.P. The primary cell wall of flowering plants. In The Biochemistry of Plants. A Comprehensive Treatise; Tolbert, N.E., Ed.; Academic Press: New York, NY, USA, 1980; Volume 1, pp. 91–161. [Google Scholar]
- Teasdale, R.D.; Richards, D.K. Boron deficiency in cultured pine cells: Quantitative studies of the interaction with Ca and Mg. Plant Physiol. 1990, 93, 1071–1077. [Google Scholar] [CrossRef]
- Loomis, W.D.; Durst, R.W. Chemistry and biology of boron. BioFactors 1992, 3, 229–239. [Google Scholar] [PubMed]
- Hu, H.; Brown, P.H. Localisation of boron in cell walls of squash tobacco and its association with pectin; evidence for a structural role of boron in cell wall. Plant Physiol. 1994, 105, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Brown, P.H.; Labavitch, J.M. Species variability in boron requirement is correlated with cell wall pectin. J. Exp. Bot. 1996, 47, 227–232. [Google Scholar] [CrossRef]
- Kobayashi, M.; Matoh, T.; Azuma, J. Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol. 1996, 110, 1017–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matoh, T.; Kawaguchi, S.; Kobayashi, M. Ubiquity of a boraterhamnogalacturonan II complex in the cell walls of higher plants. Plant Cell Physiol. 1996, 37, 636–640. [Google Scholar] [CrossRef] [Green Version]
- Dell, B.; Huang, L. Physiological response of plants to low boron. Plant Soil 1997, 193, 103–120. [Google Scholar] [CrossRef]
- Matoh, T. Boron in plant cell walls. Plant Soil 1997, 193, 59–70. [Google Scholar] [CrossRef]
- Power, P.P.; Woods, W.G. The chemistry of boron and its speciation in plants. Plant Soil 1997, 193, 1–13. [Google Scholar] [CrossRef]
- Bellaloui, N.; Brown, P.H. Cultivar differences in boron uptake and distribution in celery (Apium graveolens), tomato (Lycopersicon esculentum) and wheat (Triticum aestivum). Plant Soil 1998, 198, 153–158. [Google Scholar] [CrossRef]
- O’Neill, M.A.; Ishii, T.; Albersheim, P.; Darvill, A.G. Rhamnogalacturonan II: Structure and function of a borate-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol. 2004, 55, 109–139. [Google Scholar] [CrossRef] [Green Version]
- Miwa, K.; Fujiwara, T. Boron transport in plants: Co-ordinated regulation of transporters. Ann. Bot. 2010, 105, 1103–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chormova, D.; Fry, S.C. Boron bridging of rhamnogalacturonan-II is promoted in vitro by cationic chaperones, including polyhistidine and wall glycoproteins. New Phytol. 2016, 209, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Shelp, B.J. Physiology and biochemistry of boron in plants. In Boron and Its Role in Crop Production; Gupta, U.C., Ed.; CRC Press: Boca Raton, FL, USA, 1993; pp. 53–85. [Google Scholar]
- Blevins, D.G.; Lukaszewski, K.M. Boron in plant structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 481–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldbach, H.E.; Wimmer, M.A. Boron in plants and animals: Is there a role beyond cell-wall structure? J. Plant Nutr. Soil Sci. 2007, 170, 39–48. [Google Scholar] [CrossRef]
- Gauch, H.G.; Dugger, W.M., Jr. The role of boron in the translocation of sucrose. Plant Physiol. 1953, 28, 457–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovatt, C.J. Evolution of xylem resulted in a requirement for boron in the apical meristems of vascular plants. New Phytol. 1985, 99, 509–522. [Google Scholar] [CrossRef]
- Kastori, R.; Petrović, N. Effect of boron on nitrate reductase activity in young sunflower plants. J. Plant Nutr. 1989, 12, 621–632. [Google Scholar] [CrossRef]
- Huang, J.H.; Cai, Z.J.; Wen, S.X.; Guo, P.; Ye, X.; Lin, G.Z.; Chen, L.S. Effects of boron toxicity on root and leaf anatomy in two citrus species differing in boron tolerance. Trees 2014, 28, 1653–1666. [Google Scholar] [CrossRef]
- Seth, K.; Aery, N.C. Boron induced changes in biochemical constituents, enzymatic activities, and growth performance of wheat. Acta Physiol. Plant. 2017, 39, 244. [Google Scholar] [CrossRef]
- Brown, P.H.; Hu, H. Does boron play only a structural role in the growing tissues of higher plants? Plant Soil 1997, 196, 211–215. [Google Scholar] [CrossRef]
- Cakmak, I.; Römheld, V. Boron deficiency-induced impairments of cellular functions in plants. Plant Soil 1997, 193, 71–83. [Google Scholar] [CrossRef]
- Dzondo-Gadet, M.; Mayap-Nzietchueng, R.; Hess, K.; Nabet, P.; Belleville, F.; Dousset, B. Action of boron at the molecular level: Effects on transcription and translation in an acellular system. Biol. Trace Elem. Res. 2002, 85, 23–33. [Google Scholar] [CrossRef]
- Sonmez, O.; Aydemir, S.; Kaya, C. Mitigation effects of mycorrhiza on boron toxicity in wheat (Triticum durum) plants. N. Z. J. Crop Hort. Sci. 2009, 37, 99–104. [Google Scholar] [CrossRef]
- Wang, N.; Yang, C.; Pan, Z.; Liu, Y.; Peng, S. Boron deficiency in woody plants: Various responses and tolerance mechanism. Front. Plant Sci. 2015, 6, 916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, A.; Wu, X.; Ullah, A.; Fahad, S.; Muhammad, R.; Yan, L.; Jiang, C. Deficiency and toxicity of boron: Alterations in growth, oxidative damage and uptake by citrange orange plants. Ecotoxicol. Environ. Saf. 2017, 145, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Shireen, F.; Nawaz, M.A.; Chen, C.; Zhang, Q.; Zheng, Z.; Sohail, H.; Sun, J.; Cao, H.; Huang, Y.; Bie, Z. Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. Int. J. Mol. Sci. 2018, 19, 1856. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhao, Z.; Zhang, Z.; Zhang, W.; Zhou, J.; Xu, F.; Liu, X. Effect of boron deficiency on anatomical structure and chemical composition of petioles and photosynthesis of leaves in cotton (Gossypium hirsutum L.). Sci. Rep. 2017, 7, 4420. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Chen, L.S.; Jiang, H.X.; Smith, B.R.; Yang, L.T.; Xie, C.Y. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J. Plant Physiol. 2008, 165, 1331–1341. [Google Scholar] [CrossRef]
- Lu, Y.B.; Yang, L.T.; Li, Y.; Xu, J.; Liao, T.T.; Chen, Y.B.; Chen, L.S. Effects of boron deficiency on major metabolites, key enzymes and gas exchange in leaves and roots of Citrus sinensis seedlings. Tree Physiol. 2014, 34, 608–618. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.D.; Dong, X.C.; Liu, L.; Wu, L.; Peng, S.A.; Jiang, C.C. Metabolic profiling reveals altered pattern of central metabolism in navel orange plants as a result of boron deficiency. Physiol. Plant. 2015, 153, 513–524. [Google Scholar] [CrossRef]
- Cheng, C.; Rerkasem, B. Effects of boron on pollen viability in wheat. Plant Soil 1993, 155, 313–315. [Google Scholar] [CrossRef]
- Shelp, B.J.; Marentes, E.; Kitheka, A.M.; Vivekanandan, P. Boron mobility in plants. Physiol. Plant. 1995, 94, 356–361. [Google Scholar] [CrossRef]
- Rerkasem, B.; Jamjod, S. Boron deficiency in wheat: A review. Field Crop. Res. 2004, 89, 173–186. [Google Scholar] [CrossRef]
- Rerkasem, B.; Lordkaew, S.; Yimyam, N.; Jamjod, S. Evaluating boron efficiency in heat tolerant wheat germplasm. Int. J. Agric. Biol. 2019, 21, 385–390. [Google Scholar] [CrossRef]
- Hu, H.; Brown, P.H. Absorption of boron by plant roots. Plant Soil 1997, 193, 49–58. [Google Scholar] [CrossRef]
- Raven, J.A. Short- and long-distance transport of boric acid in plants. New Phytol. 1980, 84, 231–249. [Google Scholar] [CrossRef]
- Nable, R.O. Resistance to boron toxicity amongst several barley and wheat cultivars: A preliminary examination of the resistance mechanism. Plant Soil 1988, 112, 45–52. [Google Scholar] [CrossRef]
- Nable, R.O.; Lance, R.C.M.; Cartwright, B. Uptake of boron and silicon by barley genotypes with differing susceptibilities to boron toxicity. Ann. Bot. 1990, 66, 83–90. [Google Scholar] [CrossRef]
- Brown, P.H.; Hu, H. Boron uptake by sunflower, squash and cultured tobacco cells. Physiol. Plant. 1994, 91, 435–441. [Google Scholar] [CrossRef]
- Brown, P.H.; Hu, H. Phloem mobility of boron is species dependent. Evidence for phloem mobility in sorbitol rich species. Ann. Bot. 1996, 77, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.H.; Shelp, B.J. Boron mobility in plants. Plant Soil 1997, 193, 85–101. [Google Scholar] [CrossRef]
- Hu, H.; Penn, S.G.; Lebrilla, C.B.; Brown, P.H. Isolation and characterization of soluble boron complexes in higher plants (The mechanism of phloem mobility of boron). Plant Physiol. 1997, 113, 649–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stangoulis, J.; Tate, M.; Graham, R.; Bucknall, M.; Palmer, L.; Boughton, B.; Reid, R. The mechanism of boron mobility in wheat and canola phloem. Plant Physiol. 2010, 153, 876–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paull, J.G.; Cartwright, B.; Rathjen, A.J. Responses of wheat and barley genotypes to toxic concentrations of soil boron. Euphytica 1988, 39, 137–144. [Google Scholar] [CrossRef]
- Paull, J.G.; Rathjen, A.J.; Cartwright, B. Genetic control of tolerance to high concentrations of soil boron in wheat. In Proceedings of the 7th International Wheat Genetics Symposium, Cambridge, UK, 13–19 July 1988; Koebner, R.M.D., Miller, T.E., Eds.; England Institute of Plant Science Research: Cambridge, UK, 1988; Volume 2, pp. 871–877. [Google Scholar]
- Rehman, S.; Park, T.I.; Kim, Y.J.; Seo, Z.W.; Yun, S.J. Inverse relationship between boron toxicity tolerance and boron contents of barley seed and root. J. Plant Nutr. 2006, 29, 1779–1789. [Google Scholar] [CrossRef]
- Yau, S.K.; Hamblin, J.; Ryan, J. Phenotypic variation in boron toxicity tolerance in barley, durum and bread wheat. Rachis 1994, 13, 20–25. [Google Scholar]
- Mahalakshmi, V.; Yau, S.K.; Ryan, J.; Peacock, J.M. Boron toxicity in barley (Hordeum vulgare L.) seedlings in relation to soil temperature. Plant Soil 1995, 177, 151–156. [Google Scholar] [CrossRef]
- Torun, A.; Yazici, A.; Erdem, H.; Çakmak, I. Genotypic variation in tolerance to boron toxicity in 70 durum wheat genotypes. Turk. J. Agric. For. 2006, 30, 49–58. [Google Scholar]
- Brdar-Jokanović, M.; Maksimović, I.; Kraljević-Balalić, M.; Zeremski-Škorić, T.; Kondić-Špika, A.; Kobiljski, B. Boron concentration vs content as criterion for estimating boron tolerance in wheat. J. Plant Nutr. 2013, 36, 470–480. [Google Scholar] [CrossRef]
- Nable, R.O.; Bañuelos, G.S.; Paull, J.G. Boron toxicity. Plant Soil 1997, 193, 181–198. [Google Scholar] [CrossRef]
- Reid, R.; Fitzpatrick, K. Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol. 2009, 151, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, R.; Fitzpatrick, K. Redistribution of boron in leaves reduces boron toxicity. Plant Signal. Behav. 2009, 4, 1091–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roessner, U.; Patterson, J.H.; Forbes, M.G.; Fincher, G.B.; Langridge, P.; Bacic, A. An investigation of boron toxicity in barley using metabolomics. Plant Physiol. 2006, 142, 1087–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakuta, S.; Fujikawa, T.; Naito, S.; Takano, J. Tolerance to excess boron conditions acquired by stabilization of a BOR1 variant with weak polarity in Arabidopsis. Front. Cell Dev. Biol. 2016, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Papadakis, I.E.; Tsiantas, P.I.; Tsaniklidis, G.; Landi, M.; Psychoyou, M.; Fasseas, C. Changes in sugar metabolism associated to stem bark thickening partially assist young tissues of Eriobotrya japonica seedlings under boron stress. J. Plant Physiol. 2018, 231, 337–345. [Google Scholar] [CrossRef]
- Nable, R.O. Effects of Boron Toxicity upon the Mineral Nutrient Composition of Barley and Wheat Cultivars; Divisional Report No. 104; CSIRO Division of Soils: Glen Osmond, Australia, 1989; pp. 1–10. [Google Scholar]
- Huang, C.; Graham, R.D. Resistance of wheat genotypes to boron toxicity is expressed at the cellular level. Plant Soil 1990, 126, 295–300. [Google Scholar] [CrossRef]
- Reid, R. Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol. 2007, 48, 1673–1678. [Google Scholar] [CrossRef]
- Sutton, T.; Baumann, U.; Hayes, J.; Collins, N.C.; Shi, B.J.; Schnurbusch, T.; Hay, A.; Mayo, G.; Pallotta, M.; Tester, M.; et al. Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 2007, 318, 1446–1449. [Google Scholar] [CrossRef]
- Frommer, W.B.; von Wirén, N. Ping-pong with boron. Nature 2002, 410, 282–283. [Google Scholar] [CrossRef]
- Hayes, J.E.; Reid, R.J. Boron tolerance in barley is mediated by efflux of boron from the roots. Plant Physiol. 2004, 136, 3376–3382. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.K. Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytol. 2006, 169, 647–666. [Google Scholar] [CrossRef] [PubMed]
- Takano, J.; Wada, M.; Ludewig, U.; Schaaf, G.; von Wirén, N.; Fujiwara, T. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 2006, 18, 1498–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takano, J.; Tanaka, M.; Toyoda, A.; Miwa, K.; Kasai, K.; Fuji, K.; Onouchi, H.; Naito, S.; Fujiwara, T. Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc. Natl. Acad. Sci. USA 2010, 107, 5220–5225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, M.; Takano, J.; Chiba, Y.; Lombardo, F.; Ogasawara, Y.; Onouchi, H.; Naito, S.; Fujiwara, T. Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron condition in Arabidopsis. Plant Cell 2011, 23, 3547–3559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Yoshinari, A.; Shimada, T.; Hara-Nishimura, I.; Mitani-Ueno, N.; Ma, J.F.; Naito, S.; Takano, J. Polar localization of the NIP5;1 boric acid channel is maintained by endocytosis and facilitates boron transport in Arabidopsis roots. Plant Cell 2017, 29, 824–842. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Wallace, I.S.; Takano, J.; Roberts, D.M.; Fujiwara, T. NIP6;1 is a boric acid channel for preferential transport of boron to growing short tissues in Arabidopsis. Plant Cell 2008, 20, 2860–2875. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Ghoi, W.-G.; Wallace, I.S.; Baudry, J.; Roberts, D.M. Arabidopsis thaliana NIP7;1: An anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore. Biochemistry 2011, 50, 6633–6641. [Google Scholar] [CrossRef]
- Schnurbusch, T.; Hayes, J.; Hrmova, M.; Baumann, U.; Ramesh, S.A.; Tyerman, S.D.; Langridge, P.; Sutton, T. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol. 2010, 153, 1706–1715. [Google Scholar] [CrossRef] [Green Version]
- Durbak, A.R.; Phillips, K.A.; O’Neill, M.A.; Mares, J.; Gallavotti, A.; Malcomber, S.T.; Gassmann, W.; McSteen, P. Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell 2014, 26, 2978–2995. [Google Scholar] [CrossRef] [Green Version]
- Hanaoka, H.; Uraguchi, S.; Takano, J.; Tanaka, M.; Fujiwara, T. OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. Plant J. 2014, 78, 890–902. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.F.; Yamaji, N.; Liu, X.W.; Yokosho, K.; Shen, R.F.; Ma, J.F. Preferential distribution of boron to developing tissues is mediated by the intrinsic protein OsNIP3. Plant Physiol. 2018, 176, 1739–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noguchi, K.; Yasumori, M.; Imai, T.; Naito, S.; Matsunaga, T.; Oda, H.; Hayashi, H.; Chino, M.; Fujiwara, T. bor1-1, an Arabidopsis thaliana mutant that requires a high level of boron. Plant Physiol. 1997, 115, 901–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takano, J.; Yamagami, M.; Noguchi, K.; Hayashi, H.; Fujiwara, T. Preferential translocation of boron to young leaves in Arabidopsis thaliana regulated by the BOR1 gene. Soil Sci. Plant Nutr. 2001, 47, 345–357. [Google Scholar] [CrossRef]
- Takano, J.; Noguchi, K.; Yasumori, M.; Kobayashi, M.; Gajdos, Z.; Miwa, K.; Hayashi, H.; Yoneyama, T.; Fujiwara, T. Arabidopsis boron transporter for xylem loading. Nature 2002, 420, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Hanaoka, H.; Kobayashi, M.; Miyoshi, K.; Miwa, K.; Fujiwara, T. Cell-type specificity of the expression of OsBOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 2007, 19, 2624–2635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leaungthitikanchana, S.; Fujibe, T.; Tanaka, M.; Wang, S.; Sotta, N.; Takano, J.; Fujiwara, T. Differential expression of three BOR1 genes corresponding to different genomes in response to boron conditions in hexaploid wheat (Triticum aestivum L.). Plant Cell Physiol. 2013, 54, 1056–1063. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, M.; Tabi, Z.; Galli, M.; Malcomber, S.; Buck, A.; Muszynski, M.; Gallavotti, A. The borate efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility. Plant Cell 2014, 26, 2962–2977. [Google Scholar] [CrossRef] [Green Version]
- Yoshinari, A.; Takano, J. Insights into the mechanisms underlying boron homeostasis in plants. Front. Plant Sci. 2017, 8, 1951. [Google Scholar] [CrossRef] [Green Version]
- Diehn, T.A.; Bienert, M.D.; Pommerrenig, B.; Liu, Z.; Spitzer, C.; Bernhardt, N.; Fuge, J.; Bieber, A.; Richet, N.; Chaumont, F.; et al. Boron demanding tissues of Brassica napus express specific sets of functional Nodulin26-like Intrinsic Proteins and BOR1 transporters. Plant J. 2019, 100, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Miwa, K.; Wakuta, S.; Takada, S.; Ide, K.; Takano, J.; Naito, S.; Omori, H.; Matsunaga, T.; Fujiwara, T. Roles of BOR2, a boron exporter, in cross linking of rhamnogalacturonan II and root elongation under boron limitation in Arabidopsis. Plant Physiol. 2013, 163, 1699–1709. [Google Scholar] [CrossRef] [Green Version]
- Chormova, D.; Messenger, D.J.; Fry, S.C. Boron bridging of rhamnogalacturonan-II, monitored by gel electrophoresis, occurs during polysaccharide synthesis and secretion but not post-secretion. Plant J. 2014, 77, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Miwa, K.; Takano, J.; Fujiwara, T. Improvement of seed yields under boron limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, in Arabidopsis thaliana. Plant J. 2006, 46, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Miwa, K.; Takano, J.; Omori, H.; Seki, M.; Shinozaki, K.; Fujiwara, T. Plants tolerant of high boron levels. Science 2007, 318, 1417. [Google Scholar] [CrossRef] [PubMed]
- Pallotta, M.; Schnurbusch, T.; Hayes, J.; Hay, A.; Baumann, U.; Paull, J.; Langridge, P.; Sutton, T. Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature 2014, 514, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Reid, R. Understanding the boron transport network in plants. Plant Soil 2014, 385, 1–13. [Google Scholar] [CrossRef]
- Mishra, S.; Heckathorn, S.A.; Frantz, J.M.; Krause, C. The effect of boron availability, CO2, and irradiance on relative accumulation of the major boron transport proteins, BOR1 and NIP5;1. Biol. Plant. 2018, 62, 121–128. [Google Scholar] [CrossRef]
- Yang, L.T.; Qi, Y.P.; Lu, Y.B.; Guo, P.; Sang, W.; Feng, H.; Zhang, H.X.; Chen, L.S. iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency. J. Proteom. 2013, 93, 179–206. [Google Scholar] [CrossRef]
- Lu, Y.B.; Yang, L.T.; Qi, Y.P.; Li, Y.; Li, Z.; Chen, Y.B.; Huang, Z.R.; Chen, L.S. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing. BMC Plant Biol. 2014, 14, 123. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.B.; Qi, Y.P.; Yang, L.T.; Lee, J.; Guo, P.; Ye, X.; Jia, M.Y.; Li, M.L.; Chen, L.S. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves. Front. Plant Sci. 2015, 6, 585. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.-F.; Liu, Y.-Z.; Sheng, O.; Wei, Q.-J.; Yang, C.-Q.; Peng, S.-A. Transcription profiles of boron-deficiency-responsive genes in citrus rootstock root by suppression subtractive hybridization and cDNA microarray. Front. Plant Sci. 2015, 5, 795. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Mutoh, T.; Matoh, T. Boron nutrition of cultured tobacco BY-2 cells. IV. Genes induced under low boron supply. J. Exp. Bot. 2004, 55, 1441–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasajima, I.; Fujiwara, T. Identification of novel Arabidopsis thaliana genes which are induced by high levels of boron. Plant Biotech. 2007, 24, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Kasajima, I.; Ide, Y.; Yokota Hirai, M.; Fujiwara, T. WRKY6 is involved in the response to boron deficiency in Arabidopsis thaliana. Physiol. Plant. 2010, 139, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Morgan, V. Boron geochemistry. In Supplement to Mellor’s Comprehensive reatise on Inorganic and Theoretical Chemistry, Boron-Oxygen Compounds; Mellor, W., Ed.; Longman: New York, NY, USA, 1980; Volume 5, Part A. [Google Scholar]
- Samman, S.; Naghii, M.R.; Lyons Wall, P.M.; Verus, A.P. The nutritional and metabolic effects of boron in humans and animals. Biol. Trace Elem. Res. 1998, 66, 227–235. [Google Scholar] [CrossRef]
- Ben-Gal, A. The Contribution of foliar exposure to boron toxicity. J. Plant Nutr. 2007, 30, 1705–1716. [Google Scholar] [CrossRef]
- Hilal, N.; Kim, G.J.; Somerfield, C. Boron removal from saline water: A comprehensive review. Desalination 2011, 273, 23–35. [Google Scholar] [CrossRef]
- Das, R.; Mandal, B.; Sarkar, D.; Pradhan, A.K.; Datta, A.; Padhan, D.; Seth, A.; Kumar, R.; De, N.; Mishra, V.N.; et al. Boron availability in soils and its nutrition of crops under long-term fertility experiments in India. Geoderma 2019, 351, 116–129. [Google Scholar] [CrossRef]
- Vera, A.; Moreno, J.L.; García, C.; Morais, D.; Bastida, F. Boron in soil: The impacts on the biomass, composition and activity of the soil microbial community. Sci. Total Environ. 2019, 685, 564–573. [Google Scholar] [CrossRef]
- Shorrocks, V.M. The occurrence and correction of boron deficiency. Plant Soil 1997, 193, 121–148. [Google Scholar] [CrossRef]
- Rehman, A.; Farooq, M.; Nawaz, A.; Ahmad, R. Influence of boron nutrition on the rice productivity, kernel quality and biofortification in different production systems. Field Crop. Res. 2014, 169, 123–131. [Google Scholar] [CrossRef]
- Miljković, N. Characteristics of Vojvodina Saline Soils and the Problem of Boron in Them. Ph.D. Thesis, University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia, 1960. (In Serbian). [Google Scholar]
- Yau, S.K.; Nachit, M.M.; Ryan, J.; Hamblin, J. Phenotypic variation in boron toxicity tolerance at seedling stage in durum wheat (Triticum durum). Euphytica 1995, 83, 185–191. [Google Scholar] [CrossRef]
- Koç, C. Effects on environment and agriculture of geothermal wastewater and boron pollution in Great Menderes Basin. Environ. Monit. Assess. 2007, 125, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Margaritopoulou, T.; Papadakis, I.E.; Araniti, F. Boron toxicity in higher plants: An update. Planta 2019, 250, 1011–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloke, A. Richtwerte-80: Orientierungsdaten für Tolerierbare Gesamtgehalte Einiger Elemente in Kulturböden. Mitteilungen 1–3; Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA): Speyer, Germany, 1980; pp. 9–11. [Google Scholar]
- Camacho-Cristóbal, J.J.; Rexach, J.; González-Fontes, A. Boron in plants: Deficiency and toxicity. J. Integr. Plant Biol. 2008, 50, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Padbhushan, R.; Kumar, D. Fractions of soil boron: A review. J. Agric. Sci. 2017, 155, 1023–1032. [Google Scholar] [CrossRef]
- Eaton, F.M. Deficiency, toxicity and accumulation of boron in plants. J. Agric. Res. 1944, 69, 237–277. [Google Scholar]
- Allison, L.E.; Brown, J.W.; Hayward, H.E.; Richards, L.A.; Bernstein, L.; Fireman, M.; Pearson, G.A.; Wilcox, L.V.; Bower, C.A.; Hatcher, J.T.; et al. Diagnosis and Improvement of Saline and Alkali Soils. Agriculture Handbook 60; United States Department of Agriculture: Washington, DC, USA, 1954; p. 160.
- de Abreu, C.A.; van Raij, B.; de Abreu, M.F.; González, A.P. Routine soil testing to monitor heavy metals and boron. Sci. Agric. 2005, 62, 564–571. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils; Blackie Academic & Professional, Chapman and Hall: London, UK, 1995; p. 368. [Google Scholar]
- Raij, B.V.; Quaggio, J.A.; Cantarella, H.; Abreu, C.A. Interpretação dos resultados de análise de solo. In Recomendações de Adubação e Calagem Para o Estado de São Paulo, 2nd ed.; Raij, B.V., Cantarella, H., Quaggio, J.A., Furlani, A.C., Eds.; Campinas Instituto Agronômico, Fundação IAC: São Paulo, Brazil, 1996; pp. 8–13. [Google Scholar]
- Sun, A.; Gou, D.; Dong, Y.; Xu, Q.; Cao, G. Extraction and analysis of available boron isotopes in soil using multicollector inductively coupled plasma mass spectrometry. J. Agric. Food Chem. 2019, 67, 7183–7189. [Google Scholar] [CrossRef]
- Gupta, U.C. Boron nutrition in crops. Adv. Agron. 1979, 31, 273–307. [Google Scholar] [CrossRef]
- Reisenauer, H.M.; Walsh, L.M.; Hoeft, R.G. Testing Soils for Sulfur, Boron, Molybdenum, and Chlorine. Soil Testing and Plant Analysis; Walsh, L.M., Beaton, J.D., Eds.; Soil Science Society of America: Madison, WI, USA, 1973; pp. 173–200. [Google Scholar]
- Goldberg, S.; Scott, M.L.; Suarez, D.L. Predicting boron adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Sci. Soc. Am. J. 2000, 64, 1356–1363. [Google Scholar] [CrossRef] [Green Version]
- Mertens, J.; Van Laer, L.; Salaets, P.; Smolders, E. Phytotoxic doses of boron in contrasting soils depend on soil water content. Plant Soil 2011, 342, 73–82. [Google Scholar] [CrossRef]
- Sillanpaa, M.; Vlek, P.L.G. Micronutrients and the Agroecology of Tropical in Mediterranean Regions. Micronutrients in Tropical Food Crop Production; Vlek, P.L.G., Ed.; Martinus Nijhoff/Dr W. Junk Publishers: Dordrecht, The Netherlands, 1985; pp. 151–167. [Google Scholar]
- Furlani, Â.M.C.; Carvalho, C.P.; De Freitas, J.G.; Verdial, M.F. Wheat cultivar tolerance to boron deficiency and toxicity in nutrient solution. Sci. Agric. 2003, 60, 359–370. [Google Scholar] [CrossRef]
- Cartwright, B.; Zarcinas, B.A.; Mayfield, A.H. Toxic concentrations of boron in a red-brown earth at Gladstone, South Australia. Aust. J. Soil Res. 1984, 22, 261–272. [Google Scholar] [CrossRef]
- Paull, J.G.; Rathjen, A.J.; Cartwright, B. Major gene control of tolerance of bread wheat (Triticum aestivum L.) to high concentrations of soil boron. Euphytica 1991, 55, 217–228. [Google Scholar] [CrossRef]
- Cartwright, B.; Zarcinas, B.A.; Spouncer, L.R. Boron toxicity in South Australian barley crops. Aust. J. Agric. Res. 1986, 37, 351–359. [Google Scholar] [CrossRef]
- Brennan, R.F.; Adcock, K.G. Incidence of boron toxicity in spring barley in Southwestern Australia. J. Plant Nutr. 2004, 27, 411–425. [Google Scholar] [CrossRef]
- Yau, S.K.; Saxena, M.C. Variation in growth, development, and yield of durum wheat in response to high soil boron. I. Average effects. Aust. J. Agric. Res. 1997, 48, 945–949. [Google Scholar] [CrossRef]
- Riley, M.M.; Robson, A.D. Pattern of supply affects boron toxicity in barley. J. Plant Nutr. 1994, 17, 1721–1738. [Google Scholar] [CrossRef]
- Avci, M.; Akar, T. Severity and spatial distribution of boron toxicity in barley cultivated areas of Central Anatolia and Transitional zones. Turk. J. Agric. For. 2005, 29, 377–382. [Google Scholar]
- Berger, K.C.; Truog, E. Boron deficiencies as revealed by plant and soil tests. J. Am. Soc. Agron. 1940, 32, 297–301. [Google Scholar] [CrossRef]
- Sah, R.N.; Brown, P.H. Boron determination—A review of analytical methods. Microchem. J. 1997, 56, 285–304. [Google Scholar] [CrossRef]
- Jeffrey, A.J.; McCallum, L.E. Investigation of a hot 0.01m CaCl2 soil boron extraction procedure followed by ICP-AES analysis. Commun. Soil Sci. Plant Anal. 1988, 19, 663–673. [Google Scholar] [CrossRef]
- Cartwright, B.; Tiller, K.G.; Zarcinas, B.A.; Spouncer, L.R. The chemical assessment of the boron status of soils. Aust. J. Soil Res. 1983, 21, 321–332. [Google Scholar] [CrossRef]
- Ponnamperuma, F.N.; Cayton, M.T.; Lantin, R.S. Dilute hydrochloric acid as an extractant for available zinc, copper and boron in rice soils. Plant Soil 1981, 61, 297–310. [Google Scholar] [CrossRef]
- de Abreu, C.A.; de Abreu, M.F.; van Raij, B.; Bataglia, O.C.; de Andrade, J.C. Extraction of boron from soil by microwave heating for ICP-AES determination. Commun. Soil Sci. Plant Anal. 1994, 25, 3321–3333. [Google Scholar] [CrossRef]
- Miller, R.O.; Vaughan, B.; Kutoby-Amacher, J. Extraction of soil boron with DTPA-sorbitol. Soil-Plant Anal. Spring 2000, 4–5, 10. [Google Scholar]
- Moreira, A.; Castro, C.; Fageria, N.K. Effect of boron application on yield, foliar boron concentration, and efficiency of soil boron extracting solutions in a Xanthic Ferralsol cultivated with banana in central Amazon. Commun. Soil Sci. Plant Anal. 2011, 42, 2169–2178. [Google Scholar] [CrossRef]
- Goldberg, S.; Suarez, D.L. A new soil test for quantitative measurement of available and adsorbed boron. Soil Sci. Soc. Am. J. 2014, 78, 480–485. [Google Scholar] [CrossRef]
- Güneş, A.; Alpaslan, M.; Inal, A. Effects of boron fertilization on the yield and some yield components of bread and durum wheat. Turk. J. Agric. For. 2003, 27, 329–335. [Google Scholar]
- Soylu, S.; Sade, B.; Topal, A.; Akgün, N.; Gezgin, S.; Hakki, E.E.; Babaoğlu, M. Responses of irrigated durum and bread wheat cultivars to boron application in a low boron calcareous soil. Turk. J. Agric. For. 2005, 29, 275–286. [Google Scholar]
- Fontes, R.L.F.; Medeiros, J.F.; Neves, J.C.L.; Carvalho, O.S.; Medeiros, J.C. Growth of Brazilian cotton cultivars in response to soil applied boron. J. Plant Nutr. 2008, 31, 902–918. [Google Scholar] [CrossRef]
- Jin, Z.; Minyan, W.; Lianghuan, W.; Jiangguo, W.; Chunhai, S. Impacts of combination of foliar iron and boron application on iron biofortification and nutritional quality of rice grain. J. Plant Nutr. 2008, 31, 1599–1611. [Google Scholar] [CrossRef]
- Sahrawat, K.L.; Rego, T.J.; Wani, S.P.; Pardhasaradhi, G. Sulfur, boron, and zinc fertilization effects on grain and straw quality of maize and sorghum grown in semi-arid tropical region of India. J. Plant Nutr. 2008, 31, 1578–1584. [Google Scholar] [CrossRef] [Green Version]
- Duran, C.; Arce-Johnson, P.; Aquea, F. Methylboronic acid fertilization alleviates boron deficiency symptoms in Arabidopsis thaliana. Planta 2018, 248, 221–229. [Google Scholar] [CrossRef]
- Sapkota, A.; Meccage, E.C.; Stougaard, R.N.; Tanner, J.P.; Peterson, D.M.; Torrion, J.A. Boron fertilization of irrigated alfalfa in Montana. Crop Forage Turfgrass Manag. 2018, 4, 170085. [Google Scholar] [CrossRef] [Green Version]
- Fujiyama, B.S.; Silva, A.R.B.; Silva Júnior, M.L.; Cardoso, N.R.P.; Fonseca, A.B.; Viana, R.G.; Sampaio, L.S. Boron fertilization enhances photosynthesis and water use efficiency in soybean at vegetative growth stage. J. Plant Nutr. 2019, 42, 2498–2506. [Google Scholar] [CrossRef]
- Reeve, R.C.; Pillsbury, A.F.; Wilcox, L.V. Reclamation of a saline and high boron soil in the Cochella Valley of California. Hilgardia 1955, 24, 69–91. [Google Scholar] [CrossRef] [Green Version]
- Dhassi, K.; Drissi, S.; Makroum, K.; Er-Rezza, H.; Amlal, F.; Houssa, A.A. Soil boron migration as influenced by leaching rate and soil characteristics: A column study. Commun. Soil Sci. Plant Anal. 2019, 50, 1663–1670. [Google Scholar] [CrossRef]
- Hossain, A.K.M.Z.; Asgar, M.A.; Hossain, M.A.; Tosaki, T.; Koyama, H.; Hara, T. Boron-calcium synergically alleviates aluminum toxicity in wheat plants (Triticum aestivum L.). Soil Sci. Plant Nutr. 2005, 51, 43–49. [Google Scholar] [CrossRef]
- Inal, A.; Pilbeam, D.J.; Gunes, A. Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. J. Plant Nutr. 2009, 32, 112–128. [Google Scholar] [CrossRef]
- Turan, M.A.; Taban, N.; Taban, S. Effect of calcium on the alleviation of boron toxicity and localization of boron and calcium in cell wall of wheat. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 99–103. [Google Scholar] [CrossRef]
- El-Feky, S.S.; El-Shintinawy, F.A.; Shaker, E.M.; El-Din, H.A.S. Effect of elevated boron concentrations on the growth and yield of barley (Hordeum vulgare L.) and alleviation of its toxicity using different plant growth modulators. Aust. J. Crop Sci. 2012, 6, 1687–1695. [Google Scholar]
- Esteban, V.; Pacheco, P.; Tapia, L.; Bastías, E. Remediation of salt and boron-affected soil by addition of organic matter: An investigation into improving tomato plant productivity. Idesia (Chile) 2016, 34, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, D.L.; Yip, N.Y.; Gilron, J.; Elimelech, M. Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. J. Membr. Sci. 2012, 415, 1–8. [Google Scholar] [CrossRef]
- Wolska, J.; Bryjak, M. Methods for boron removal from aqueous solutions—A review. Desalination 2013, 310, 18–24. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A. Principals of Plant Nutrition, 4th ed.; International Potash Institute: Bern, Switzerland, 1987; p. 687. [Google Scholar]
- Snowball, K.; Robson, A.D. Symptoms of Nutrient Deficiencies: Subterranean Clover and Wheat; Department of Soil Science and Plant Nutrition, University of Western Australia: Nedlands, Australia, 1983; p. 73. [Google Scholar]
- Asad, A.; Bell, R.W.; Dell, B. A critical comparison of the external and internal boron requirements for contrasting species in boron-buffered solution culture. Plant Soil 2001, 233, 31–45. [Google Scholar] [CrossRef]
- Wongmo, J.; Jamjod, S.; Rerkasem, B. Contrasting responses to boron deficiency in barley and wheat. Plant Soil 2004, 259, 103–110. [Google Scholar] [CrossRef]
- Rerkasem, B.; Jamjod, S. Boron deficiency induced male sterility in wheat (Triticum aestivum L.) and implications for plant breeding. Euphytica 1997, 96, 257–262. [Google Scholar] [CrossRef]
- Rerkasem, B.; Jamjod, S. Genotypic variation in plant response to low boron and implications for plant breeding. Plant Soil 1997, 193, 169–180. [Google Scholar] [CrossRef]
- Rerkasem, B.; Netsangtip, R.; Lordkaew, S.; Cheng, C. Grain set failure in boron deficient wheat. Plant Soil 1993, 155, 309–312. [Google Scholar] [CrossRef]
- Pant, J.; Rerkasem, B.; Noppakoonwong, R. Effect of water stress on the boron response of wheat genotypes under low boron field conditions. Plant Soil 1998, 202, 193–200. [Google Scholar] [CrossRef]
- Rerkasem, B.; Nirantrayagul, S.; Jamjod, S. Increasing boron efficiency in international bread wheat, durum wheat, triticale and barley germplasm will boost production on soils low in boron. Field Crops Res. 2004, 86, 175–184. [Google Scholar] [CrossRef]
- Bellaloui, N.; Brown, P.H.; Dandekar, A.M. Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco. Plant Physiol. 1999, 119, 735–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellaloui, N.; Yadavc, R.C.; Chern, M.-S.; Hu, H.; Gillen, A.M.; Greve, C.; Dandekar, A.M.; Ronald, P.C.; Brown, P.H. Transgenically enhanced sorbitol synthesis facilitates phloem-boron mobility in rice. Physiol. Plant. 2003, 117, 79–84. [Google Scholar] [CrossRef]
- Huang, L.; Pant, J.; Dell, B.; Bell, R.W. Effects of boron deficiency on anther development and floret fertility in wheat (Triticum aestivum L. ‘Wilgoyne’). Ann. Bot. 2000, 85, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Ye, Z.; Bell, R.W.; Dell, B. Boron nutrition and chilling tolerance of warm climate crop species. Ann. Bot. 2005, 96, 755–767. [Google Scholar] [CrossRef]
- Budhathoki, C.B.; Subedi, M.; Subedi, K.D. Variation in sterility among wheat (Triticum aestivum L.) genotypes in response to boron deficiency in Nepal. Euphytica 1997, 95, 21–26. [Google Scholar] [CrossRef]
- Subedi, K.D.; Budhathoki, C.B.; Subedi, M.; Yubak, D.G.C. Response of wheat genotypes to sowing date and boron fertilization aimed at controlling sterility in a rice-wheat rotation in Nepal. Plant Soil 1997, 188, 249–256. [Google Scholar] [CrossRef]
- Subedi, K.D.; Gregory, P.J.; Gooding, M.J. Boron accumulation and partitioning in wheat cultivars with contrasting tolerance to boron deficiency. Plant Soil 1999, 214, 141–152. [Google Scholar] [CrossRef]
- Jamjod, S.; Niruntrayagul, S.; Rerkasem, B. Genetic control of boron efficiency in wheat (Triticum aestivum L.). Euphytica 2004, 135, 21–27. [Google Scholar] [CrossRef]
- Huang, L.; Bell, R.W.; Dell, B. Boron supply into wheat (Triticum aestivum L. cv. ‘Wilgoyne’) ears whilst still enclosed within leaf sheaths. J. Exp. Bot. 2001, 52, 1731–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nachiangmai, D.; Dell, B.; Bell, R.; Huang, L.; Rerkasem, B. Enhanced boron transport into ear of wheat as a mechanism for boron efficiency. Plant Soil 2004, 264, 141–147. [Google Scholar] [CrossRef]
- Kato, Y.; Miwa, M.; Takano, J.; Wada, M.; Fujiwara, T. Highly boron deficiency-tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel. Plant Cell Physiol. 2009, 50, 58–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, D.; Li, W.; Hua, Y.; King, G.J.; Xu, F.; Shi, L. Genome-wide Identification and characterization of the aquaporin gene family and transcriptional responses to boron deficiency in Brassica napus. Front. Plant Sci. 2017, 8, 1336. [Google Scholar] [CrossRef]
- Uraguchi, S.; Kato, Y.; Hanaoka, H.; Miwa, K.; Fujiwara, T. Generation of boron-deficiency tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1. Front. Plant Sci. 2014, 5, 125. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, H.; Shi, L.; Xu, F. Physiological and genetic responses to boron deficiency in Brassica napus: A review. Soil Sci. Plant Nutr. 2014, 60, 304–313. [Google Scholar] [CrossRef]
- Zhang, D.; Hua, Y.; Wang, X.; Zhao, H.; Shi, L.; Xu, F. A high-density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.). PLoS ONE 2014, 9, e112089. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Zhou, T.; Ding, G.; Yang, Q.; Shi, L.; Xu, F. Physiological, genomic and transcriptional diversity in responses to boron deficiency in rapeseed genotypes. J. Exp. Bot. 2016, 67, 5769–5784. [Google Scholar] [CrossRef] [Green Version]
- Pommerrenig, B.; Junker, A.; Abreu, I.; Bieber, A.; Fuge, J.; Willner, E.; Bienert, M.D.; Altmann, T.; Bienert, G.P. Identification of rapeseed (Brassica napus) cultivars with a high tolerance to boron-deficient conditions. Front. Plant Sci. 2018, 9, 1142. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.J. Non-parasitic leaf spots of barley. Phytopathology 1934, 24, 726–742. [Google Scholar]
- Bañuelos, G.S.; Ajwa, H.A.; Caceres, L.; Dyer, D. Germination responses and boron accumulation in germplasm from Chile and the United States grown with boron-enriched water. Ecotoxicol. Environ. Saf. 1999, 43, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Paull, J.G.; Rathjen, A.J.; Cartwright, B.; Nable, R.O. Selection parameters for assessing the tolerance of wheat to high concentrations of boron. In Genetic Aspects of Plant Mineral Nutrition; El Bassam, N., Dambroth, M., Loughman, B.C., Eds.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1990; pp. 361–369. [Google Scholar]
- Yau, S.K.; Nachit, M.; Ryan, J. Variation in growth, development, and yield of durum wheat in response to high soil boron. II. Differences between genotypes. Aust. J. Agric. Res. 1997, 48, 951–958. [Google Scholar] [CrossRef]
- Yau, S.K.; Ryan, J. Boron toxicity tolerance in crops: A viable alternative to soil amelioration. Crop Sci. 2008, 48, 854–865. [Google Scholar] [CrossRef] [Green Version]
- Campbell, T.A.; Moody, D.B.; Jefferies, S.P.; Cartwright, B.; Rathjen, A.J. Grain yield evaluation of near isogenic lines for boron tolerance. In Proceedings of the 8th International Wheat Genetics Symposium, Beijing, China, 20–25 July 1993; Volume 2, pp. 1021–1027. [Google Scholar]
- Moody, D.B.; Rathjen, A.J.; Cartwright, B.; Paull, J.G.; Lewis, J. Genetic diversity and geographical distribution of tolerance to high levels of soil boron. In Proceedings of the 7th International Wheat Genetics Symposium, Cambridge, UK, 13–19 July 1988; Volume 2, pp. 859–865. [Google Scholar]
- Nable, R.O.; Paull, J.G.; Cartwright, B. Problems associated with the use of foliar analysis for diagnosing boron toxicity in barley. Plant Soil 1990, 128, 225–232. [Google Scholar] [CrossRef]
- Turan, M.A.; Taban, S.; Kayin, G.B.; Taban, N. Effect of boron application on calcium and boron concentrations in cell wall of durum (Triticum durum) and bread (Triticum aestivum) wheat. J. Plant Nutr. 2018, 41, 1351–1357. [Google Scholar] [CrossRef]
- De Vries, M.P.C. How reliable are results from pot experiments? Commun. Soil Sci. Plant Anal. 1980, 11, 895–902. [Google Scholar] [CrossRef]
- Gupta, U.C. Boron and molybdenum nutrition of wheat, barley and oats in Prince Edward Island soils. Can. J. Soil Sci. 1971, 51, 415–422. [Google Scholar] [CrossRef]
- Gupta, U.C.; MacLeod, J.A.; Sterling, J.D.E. Effects of boron and nitrogen on grain yield and boron and nitrogen concentrations of barley and wheat. Soil Sci. Soc. Am. J. 1976, 40, 723–726. [Google Scholar] [CrossRef]
- Davis, R.D.; Beckett, P.H.T.; Wollan, E. Critical levels of twenty potentially toxic elements in young spring barley. Plant Soil 1978, 49, 395–408. [Google Scholar] [CrossRef]
- Macho-Rivero, M.A.; Herrera-Rodríguez, M.B.; Brejcha, R.; Schäffner, A.R.; Tanaka, N.; Fujiwara, T.; González-Fontes, A.; Camacho-Cristóbal, J.J. Boron toxicity reduces water transport from root to shoot in Arabidopsis plants. Evidence for a reduced transpiration rate and expression of major PIP aquaporin genes. Plant Cell Physiol. 2018, 59, 841–849. [Google Scholar] [CrossRef]
- Ghaffari Nejad, S.A.; Savaghebi, G.R.; Farahbakhsh, M.; Maali Amiri, R.; Rezaei, H. Tolerance of some wheat varieties to boron toxicity. Cereal Res. Commun. 2015, 43, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Ferreyra, R.E.; Aljaro, A.U.; Ruiz, R.S.; Rojas, L.P.; Oster, J.D. Behavior of 42 crop species grown in saline soils with high boron concentrations. Agric. Water Manag. 1997, 34, 111–124. [Google Scholar] [CrossRef]
- Yau, S.K. Comparison of European with West Asian and North African winter barleys in tolerance to boron toxicity. Euphytica 2002, 123, 307–314. [Google Scholar] [CrossRef]
- Kalayci, M.; Alkan, A.; Çakmak, I.; Bayramoğlu, O.; Yilmaz, A.; Aydin, M.; Ozbek, V.; Ekiz, H.; Ozberisoy, F. Studies on differential response of wheat cultivars to boron toxicity. Euphytica 1998, 100, 123–129. [Google Scholar] [CrossRef]
- Brdar-Jokanović, M.; Zorić, M.; Kondić-Špika, A.; Maksimović, I.; Kobiljski, B.; Kraljević-Balalić, M. Boron tolerance in wheat accessions of different origin estimated in controlled and field conditions. J. Agric. Sci. Tech.-Iran 2017, 19, 345–356. [Google Scholar]
- Jefferies, S.P.; Pallotta, M.A.; Paull, J.G.; Karakousis, A.; Kretschmer, J.M.; Manning, S.; Islam, A.K.M.R.; Langridge, P.; Chalmers, K.J. Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum). Theor. Appl. Genet. 2000, 101, 767–777. [Google Scholar] [CrossRef]
- Schnurbusch, T.; Collins, N.C.; Eastwood, R.F.; Sutton, T.; Jefferies, S.P.; Langridge, P. Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor. Appl. Genet. 2007, 115, 451–461. [Google Scholar] [CrossRef]
- Schnurbusch, T.; Langridge, P.; Sutton, T. The Bo1 -specific PCR marker AWW5L7 is predictive of boron tolerance status in a range of exotic durum and bread wheats. Genome 2008, 51, 963–971. [Google Scholar] [CrossRef]
- Emebiri, L.C.; Ogbonnaya, F.C. Exploring the synthetic hexaploid wheat for novel sources of tolerance to excess boron. Mol. Breed. 2015, 35, 68. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brdar-Jokanović, M. Boron Toxicity and Deficiency in Agricultural Plants. Int. J. Mol. Sci. 2020, 21, 1424. https://doi.org/10.3390/ijms21041424
Brdar-Jokanović M. Boron Toxicity and Deficiency in Agricultural Plants. International Journal of Molecular Sciences. 2020; 21(4):1424. https://doi.org/10.3390/ijms21041424
Chicago/Turabian StyleBrdar-Jokanović, Milka. 2020. "Boron Toxicity and Deficiency in Agricultural Plants" International Journal of Molecular Sciences 21, no. 4: 1424. https://doi.org/10.3390/ijms21041424
APA StyleBrdar-Jokanović, M. (2020). Boron Toxicity and Deficiency in Agricultural Plants. International Journal of Molecular Sciences, 21(4), 1424. https://doi.org/10.3390/ijms21041424