Genetic Dissection of Phomopsis Stem Canker Resistance in Cultivated Sunflower Using High Density SNP Linkage Map
Abstract
:1. Introduction
2. Results
2.1. Phomopsis Disease Screening of Sunflower RIL Population
2.2. Linkage Map Construction
2.3. Quantitative Trait Loci Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Experimental Design and Phenotypic Evaluation
4.3. Statistical Analysis
4.4. DNA Extraction and SNP Genotyping
4.5. Linkage Mapping
4.6. QTL Mapping
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gulya, T.; Rashid, K.Y.; Masirevic, S.M. Sunflower diseases. In Sunflower Technology and Production; Schneiter, A.A., Ed.; ASA-CSSA-SSSA: Madison, WI, USA, 1997; pp. 263–379. [Google Scholar]
- Masirevic, S.; Gulya, T.J. Sclerotinia and Phomopsis-two devastating sunflower pathogens. Field Crop. Res. 1992, 30, 271–300. [Google Scholar] [CrossRef]
- Debaeke, P.; Estragnat, A.; Reau, R. Influence of crop management on sunflower stem canker (Diaporthe helianthi). Agronomie 2003, 23, 581–592. [Google Scholar] [CrossRef]
- Acimovic, M. The effect of Phomopsis sp. infection of grain yield and oil content on sunflower plants. Helia 1986, 9, 73–76. [Google Scholar]
- Muntañola-Cvetković, M.; Mihaljčević, M.; Petrov, M. On the identity of the causative agent of a serious Phomopsis-Diaporthe disease in sunflower plants. Nova Hedwig. 1981, 34, 417–435. [Google Scholar]
- Gulya, T.J.; Thompson, S.M.; Ryley, M. Evaluation of public sunflower germplasm and commercial hybrids for resistance to Phomopsis stem canker at multiple field sites. In Proceedings of the 34th Sunflower Research Workshop, Fargo, ND, USA, 12–13 January 2012; National Sunflower Association: Mandan, ND, USA, 2012. Available online: https://www.sunflowernsa.com/Research/Research-Forum-PowerPoint-Presentations-Since-2008/2012/ (accessed on 3 December 2019).
- Gulya, T.; Harveson, R.; Mathew, F.; Block, C.; Thompson, S.; Kandel, H.; Berglund, D.; Sandbakken, J.; Kleingartner, L.; Markell, S. Comprehensive disease survey of U.S. sunflower: Disease trends, research priorities and unanticipated impacts. Plant Dis. 2019, 103, 601–618. [Google Scholar] [CrossRef] [Green Version]
- Kandel, H. National Sunflower Association Survey Results. In Proceedings of the 33rd Sunflower Research Workshop, Fargo, ND, USA, 13–14 January 2011; National Sunflower Association: Mandan, ND, USA, 2011. Available online: https://www.sunflowernsa.com/Research/Research-Forum-PowerPoint-Presentations-Since-2008/2011/ (accessed on 3 December 2019).
- Kandel, H. National Sunflower Association Survey Results. In Proceedings of the 34th Sunflower Research Workshop, Fargo, ND, USA, 12–13 January 2012; National Sunflower Association: Mandan, ND, USA, 2012. Available online: https://www.sunflowernsa.com/Research/Research-Forum-PowerPoint-Presentations-Since-2008/2012/ (accessed on 3 December 2019).
- Mathew, F.; Alananbeh, K.; Balbyshev, N.; Heitkamp, E.; Castlebury, L.; Gulya, T.; Markell, S. Reevaluation of Phomopsis species affecting sunflowers in the United States. In Proceedings of the 18th International Sunflower Conference, Mar del Plata, Argentina, 26 February–1 March 2012; International Sunflower Association: Paris, France, 2012; pp. 211–214. [Google Scholar]
- Mathew, F.M.; Alananbeh, K.M.; Jordahl, J.G.; Meyer, S.M.; Castlebury, L.A.; Gulya, T.J.; Markell, S.G. Phomopsis stem canker: A reemerging threat to sunflower (Helianthus annuus) in the United States. Phytopathology 2015, 105, 990–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, S.; Young, A.; Shivas, R. Phomopsis stem canker—An emerging disease of Australian sunflowers. In Proceedings of the 1st Australian Summer Grains Conference, Gold Coast, QLD, Australia, 21–24 June 2010; George-Jaeggli, B., Jordan, D.J., Eds.; Grains Research and Development Corporation: Canberra, Australia, 2010. [Google Scholar]
- Thompson, S.M.; Tan, Y.P.; Young, A.J.; Neate, S.M.; Shivas, R.G. Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia 2011, 27, 80–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihaljčević, M.; Muntañola-Cvetković, M.; Petrov, M. Further studies on the sunflower disease caused by Diaporthe (Phomopsis) helianthi and possibilities of breeding for resistance. In Proceedings of the 10th International Sunflower Conference, Surfers Paradise, Australia, 14–18 March 1982; International Sunflower Association: Paris, France, 1982; pp. 157–159. [Google Scholar]
- Cuk, L. The uses of wild species in sunflower breeding. J. Edible Oil Ind. 1982, 1, 23–27. [Google Scholar]
- Škorić, D. Sunflower breeding for resistance to Diaporthe/Phomopsis helianthi Munt.-Cvet. et al. Helia 1985, 8, 21–23. [Google Scholar]
- Masirevic, S.; Gulya, T.J. Phomopsis screening of sunflower germplasm in the USDA Helianthus collection. In Proceedings of the 14th International Sunflower Conference, Beijing, China, 12–20 June 1996; International Sunflower Association: Paris, France, 1996; pp. 83–89. [Google Scholar]
- Gulya, T.J. Phomopsis stem canker resistance in USDA and commercial sunflower germplasm. In Proceedings of the 19th Sunflower Research Workshop, Fargo, ND, USA, 9–10 January 1997; National Sunflower Association: Mandan, ND, USA, 1997; pp. 76–78. [Google Scholar]
- Gulya, T.J. Evaluating sunflower germplasm for resistance to Phomopsis stem canker. In Proceedings of the 20th Sunflower Research Workshop, Fargo, ND, USA, 15–16 January 1998; National Sunflower Association: Mandan, ND, USA, 1998; pp. 92–94. [Google Scholar]
- Masirevic, S. Evaluation of sunflower germplasm for resistance to Phomopsis stem canker. In Proceedings of the 15th International Sunflower Conference, Toulouse, France, 12–15 June 2000; International Sunflower Association: Paris, France, 2000; pp. 84–89. [Google Scholar]
- Gulya, T.J.; Marek, L.F.; Gavrilova, V. Disease resistance in cultivated sunflower derived from public germplasm collection. In Breeding of Sunflower on Resistance to Diseases, Proceedings of the International Symposium, Krasnodar, Russia, 23–24 June 2010; International Sunflower Association: Paris, France, 2010; pp. 7–18. [Google Scholar]
- Talukder, Z.I.; Hulke, B.S.; Marek, L.F.; Gulya, T.J. Sources of resistance to sunflower diseases in a global collection of domesticated USDA plant introductions. Crop. Sci. 2014, 54, 694–705. [Google Scholar] [CrossRef]
- Mathew, F.M.; Olson, T.; Marek, L.F.; Gulya, T.J.; Markell, S.G. Identification of sunflower (Helianthus annuus) accessions resistant to Diaporthe helianthi and Diaporthe gulyae. Plant Health Prog. 2018, 19, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Vrânceanu, A.V.; Csép, N.; Pîrvu, N.; Stoenescu, F.M. Genetic variability of sunflower reaction to the attack of Phomopsis helianthi Munt.Cvet. et al. Helia 1983, 6, 23–25. [Google Scholar]
- Tourvieille de Labrouhe, D.; Vear, F.; Pelletier, C. Use of two mycelium tests in breeding sunflower resistant to Phomopsis. In Proceedings of the 12th International Sunflower Conference, Novi Sad, Yugoslavia, 25–29 July 1988; International Sunflower Association: Paris, France, 1988; pp. 110–114. [Google Scholar]
- Vrânceanu, A.V.; Craiciu, D.S.; Soare, G.; Pacureanu, M.; Voinescu, G.; Sandu, I. Sunflower genetic resistance to Phomopsis helianthi attack. In Proceedings of the 13th International Sunflower Conference, Pisa, Italy, 7–11 September 1992; International Sunflower Association: Paris, France, 1992; pp. 1301–1306. [Google Scholar]
- Vear, F.; Garreyn, M.; Tourvieille de Labrouhe, D. Inheritance of resistance to Phomopsis (Diaporthe helianthi) in sunflower. Plant Breed. 1997, 116, 277–281. [Google Scholar] [CrossRef]
- Degener, J.; Melchinger, A.E.; Hahn, V. Inheritance of resistance to Phomopsis in sunflower study of leaf and stem resistance after artificial and natural infection. Helia 1999, 22, 105–116. [Google Scholar]
- Degléne, L.; Alibert, G.; Lesigne, P.; Tourvieille de Labrouhe, D.; Sarrafi, A. Inheritance of resistance to stem canker (Phomopsis helianthi) in sunflower. Plant Pathol. 1999, 48, 559–563. [Google Scholar] [CrossRef]
- Viguié, A.; Vear, F.; Tourvieille de Labrouhe, D. Interaction between French isolates of Phomopsis/Diaporthe helianthi Munt.-Cvet. et al. and sunflower (Helianthus annuus L.) genotypes. Eur. J. Plant Pathol. 1999, 105, 693–702. [Google Scholar] [CrossRef]
- Viguié, A.; Tourvieille de Labrouhe, D.; Vear, F. Inheritance of several sources of resistance to Phomopsis stem canker (Diaporthe helianthi Munt.-Cvet.) in sunflower (Helianthus annuus L.). Euphytica 2000, 116, 167–179. [Google Scholar] [CrossRef]
- Langar, K.; Griveau, Y.; Kaan, F.; Serieys, H.; Vares, D.; Berville, A. Evaluation of parameters accounting for Phomopsis resistance using natural infection and artificial inoculation on recombinant inbred lines from a cross between susceptible and resistant sunflower. Eur. J. Plant Pathol. 2002, 108, 307–315. [Google Scholar] [CrossRef]
- Thompson, S.; Tan, Y.P.; Neate, S.; Aitken, E.; Shivas, R. Previously undescribed species of Diaporthe responsible for stem cankers on Australian sunflowers–an ongoing investigation of causal species. In Proceedings of the 18th International Sunflower Conference, Mar del Plata, Argentina, 26 February–1 March 2012; International Sunflower Association: Paris, France, 2012; p. 94. [Google Scholar]
- Mathew, F.M.; Rashid, K.Y.; Gulya, T.J.; Markell, S.G. First report of Phomopsis stem canker of sunflower (Helianthus annuus) caused by Diaporthe gulyae in Canada. Plant Dis. 2015, 99, 160. [Google Scholar] [CrossRef]
- Olson, T.; Kontz, B.; Markell, S.G.; Gulya, T.J.; Mathew, F.M. First report of Diaporthe stewartii causing Phomopsis stem canker of sunflower (Helianthus annuus) in Minnesota. Plant Dis. 2016, 101, 382. [Google Scholar] [CrossRef]
- Bert, P.-F.; Jouan, I.; Tourvieille de Labrouhe, D.; Serre, F.; Nicolas, P.; Vear, F. Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.): 1. QTL involved in resistance to Sclerotinia sclerotiorum and Diaporthe helianthi. Theor. Appl. Genet. 2002, 105, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Langar, K.; Griveau, Y.; Serieys, H.; Kann, F.; Berville, A. Mapping components of resistance to Phomopsis (Diaporthe helianthi) in a population of sunflower recombinant inbred lines. In Proceedings of the 16th International Sunflower Conference, Fargo, ND, USA, 29 August–2 September 2004; Seiler, G.J., Ed.; International Sunflower Association: Paris, France, 2004; pp. 643–649. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Hulke, B.S.; Markell, S.G.; Kane, N.C.; Mathew, F.M. Phomopsis stem canker of sunflower in North America: Correlation with climate and solutions through breeding and management. OCL 2019, 26, 13. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Rieseberg, L.H. Personal Communication; University of British Columbia: Vancouver, BC, Canada, 2019. [Google Scholar]
- Badouin, H.; Gouzy, J.; Grassa, C.; Murat, F.; Staton, S.E.; Cottret, L.; Lelandais-Brière, C.; Owens, G.L.; Carrère, S.; Mayjonade, B.; et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 2017, 546, 148–152. [Google Scholar] [CrossRef]
- Bowers, J.E.; Bachlava, E.; Brunick, R.L.; Rieseberg, L.H.; Knapp, S.J.; Burke, J.M. Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses. G3 Genes Genomes Genet. 2012, 2, 721–729. [Google Scholar] [CrossRef] [Green Version]
- Talukder, Z.I.; Gong, L.; Hulke, B.S.; Pegadaraju, V.; Song, Q.; Schultz, Q.; Qi, L.L. A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12. PLoS ONE 2014, 9, e98628. [Google Scholar] [CrossRef]
- Hulke, B.S.; Grassa, C.J.; Bowers, J.E.; Burke, J.M.; Qi, L.L.; Talukder, Z.I.; Rieseberg, L.H. A unified single nucleotide polymorphism map of sunflower (Helianthus annuus L.) derived from current genomic resources. Crop. Sci. 2015, 55, 1696–1702. [Google Scholar] [CrossRef]
- Talukder, Z.I.; Seiler, G.S.; Song, Q.; Ma, G.; Qi, L.L. SNP discovery and QTL mapping of Sclerotinia basal stalk rot resistance in sunflower using genotyping-by-sequencing (GBS). Plant Genome 2016, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Xu, S. Quantitative trait locus mapping can benefit from segregation distortion. Genetics 2008, 180, 2201–2208. [Google Scholar] [CrossRef] [Green Version]
- Zuo, J.; Niu, Y.; Cheng, P.; Feng, J.; Han, S.; Zhang, Y.; Shu, G.; Wang, Y.; Zhang, Y. Effect of marker segregation distortion on high density linkage map construction and QTL mapping in Soybean (Glycine max L.). Heredity 2019, 123, 579–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganal, M.W.; Altmann, T.; Röder, M.S. SNP identification in crop plants. Curr. Opin. Plant Biol. 2009, 12, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.B. Implementation of molecular markers for quantitative traits in breeding programs-challenges and opportunities. In New Directions for a Diverse Planet, Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004; Fischer, T., Turner, N., Angus, J., McIntyre, L., Robertson, M., Borrell, A., Lloyd, D., Eds.; Regional Institute Ltd.: Gosford, Australia, 2004. [Google Scholar]
- Gulya, T.J. Registration of five disease-resistant sunflower germplasms. Crop. Sci. 1985, 25, 719–720. [Google Scholar] [CrossRef]
- Miller, J.F.; Rodriguez, R.H.; Gulya, T.J. Evaluation of genetic materials for inheritance of resistance to Race 4 rust in sunflower. In Proceedings of the 12th International Sunflower Conference, Novi Sad, Yugoslavia, 25–29 July 1988; International Sunflower Association: Paris, France, 1988; pp. 361–365. [Google Scholar]
- Qi, L.L.; Hulke, B.S.; Vick, B.A.; Gulya, T.J. Molecular mapping of the rust resistance gene R4 to a large NBS-LRR cluster on linkage group 13 of sunflower. Theor. Appl. Genet. 2011, 123, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Schneiter, A.A.; Miller, J.F. Description of sunflower growth stages. Crop. Sci. 1981, 21, 901–903. [Google Scholar] [CrossRef]
- SAS Institute. SAS 9.4 Help and Documentation; SAS Institute: Cary, NC, USA, 2012. [Google Scholar]
- Madden, L.V.; Turechek, W.W.; Nita, M. Evaluation of generalized linear mixed models for analyzing disease incidence data obtained in designed experiments. Plant Dis. 2002, 86, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Nyquist, W.E. Estimation of heritability and prediction of selection response in plant populations. Crit. Rev. Plant Sci. 1991, 10, 235–322. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: http://www.R-project.org/ (accessed on 3 December 2019).
- Horne, E.C.; Kumpatla, S.E.; Patterson, K.A.; Gupta, M.; Thompson, S.A. Improved high-throughput sunflower and cotton genomic DNA extraction and PCR fidelity. Plant Mol. Biol. Rep. 2004, 22, 83–84. [Google Scholar] [CrossRef]
- Ott, A.; Liu, S.; Schnable, J.C.; Yeh, C.E.; Wang, K.; Schnable, P.S. tGBS® genotyping-by-sequencing enables reliable genotyping of heterozygous loci. Nucleic Acids Res. 2017, 45, e178. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Garrison, E.; Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
- Stam, P. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J. 1993, 3, 739–744. [Google Scholar] [CrossRef]
- Van Ooijen, J.W. JoinMap 4.0, Software for the Calculation of Genetic Linkage Maps in Experimental Populations; Kyazma BV: Wageningen, The Netherlands, 2006. [Google Scholar]
- Heffelfinger, C.; Fragoso, C.A.; Lorieux, M. Constructing linkage maps in the genomics era with MapDisto 2.0. Bioinformatics 2017, 33, 2224–2225. [Google Scholar] [CrossRef] [PubMed]
- Kosambi, D.D. The estimation of map distances from recombination values. Ann. Eugen. 1943, 12, 172–175. [Google Scholar] [CrossRef]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. Roy. Stat. Soc. B. 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Wang, S.; Basten, C.J.; Zeng, Z.B. Windows QTL Cartographer 2.5; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 2012; Available online: http://statgen.ncsu.edu/qtlcart/winqtl cart.htm (accessed on 1 November 2019).
- Zeng, Z.B. Precision mapping of quantitative trait loci. Genetics 1994, 136, 1457–1468. [Google Scholar]
- Churchill, G.A.; Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 1994, 138, 963–971. [Google Scholar]
- Joehanes, R.; Nelson, J.C. QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 2008, 24, 2788–2789. [Google Scholar] [CrossRef] [Green Version]
- Utz, H.F.; Melchinger, A.E. PLABQTL Version 1.2: A Computer Program to Map QTL; Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim: Stuttgart, Germany, 2006; Available online: https://plant-breeding.uni-hohenheim.de/software.html (accessed on 1 November 2019).
- Broman, K.W.; Wu, H.; Sen, S.; Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Li, H.H.; Zhang, L.Y.; Wang, J.K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop. J. 2015, 3, 269–283. [Google Scholar] [CrossRef] [Green Version]
Component | df | Variance Estimate | Confidence Limit (0.05) | F/Z Value † | p-Value > F/Z | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Genotype (Gen) | 165 | - | - | - | 4.23 | <0.0001 |
Environment (Env) | 6 | = 213.35 | 87.14 | 1091.70 | 1.69 | 0.0454 |
Rep (Env) | 14 | = 11.48 | 5.73 | 33.50 | 2.32 | 0.0101 |
Gen × Env | 987 | = 136.96 | 118.57 | 160.00 | 13.10 | <0.0001 |
Error | 2303 | = 260.59 | 246.10 | 276.42 | 33.74 | <0.0001 |
Environment | Crookston 2016 | Rothsay 2016 | Grandin 2016 | Rothsay 2017 | Crookston 2017 | Glyndon 2017 |
---|---|---|---|---|---|---|
Crookston 2016 | - | - | - | - | - | - |
Rothsay 2016 | 0.42 *** | - | - | - | - | - |
Grandin 2016 | 0.31 *** | 0.50 *** | - | - | - | - |
Rothsay 2017 | −0.08 | 0.15 | 0.35 *** | - | - | - |
Crookston 2017 | 0.22 ** | 0.38 *** | 0.50 *** | 0.50 *** | - | - |
Glyndon 2017 | 0.15 | 0.39 *** | 0.51 *** | 0.43 *** | 0.57 *** | - |
Staples 2018 | 0.27 *** | 0.38 *** | 0.59 *** | 0.16 * | 0.37 *** | 0.43 *** |
Linkage Group | Map Length (cM) | No. of Loci | No. of Markers | cM/Locus | cM/Marker |
---|---|---|---|---|---|
LG1 | 112.30 | 85 | 107 | 1.32 | 1.05 |
LG2 | 126.68 | 118 | 145 | 1.07 | 0.87 |
LG3 | 42.18 | 52 | 82 | 0.81 | 0.51 |
LG4 | 107.78 | 104 | 156 | 1.04 | 0.69 |
LG5 | 119.56 | 78 | 92 | 1.53 | 1.30 |
LG6 | 40.43 | 48 | 62 | 0.84 | 0.65 |
LG7 | 46.03 | 39 | 60 | 1.18 | 0.77 |
LG8 | 130.90 | 146 | 206 | 0.90 | 0.64 |
LG9 | 68.99 | 60 | 97 | 1.15 | 0.71 |
LG10 | 70.20 | 59 | 85 | 1.19 | 0.83 |
LG11 | 71.63 | 94 | 125 | 0.76 | 0.57 |
LG12 | 60.01 | 47 | 61 | 1.28 | 0.98 |
LG13 | 109.19 | 130 | 164 | 0.84 | 0.67 |
LG14 | 77.06 | 86 | 113 | 0.90 | 0.68 |
LG15 | 56.61 | 57 | 82 | 0.99 | 0.69 |
LG16 | 133.38 | 63 | 78 | 2.12 | 1.71 |
LG17 | 132.41 | 127 | 164 | 1.04 | 0.81 |
Total | 1505.34 | 1393 | 1879 | 1.08 | 0.80 |
QTL | LG | Pos (cM) | LOD | Left Marker | Pos (cM) | Right Marker | Pos (cM) | R2 | Additive | Resistance Allele |
---|---|---|---|---|---|---|---|---|---|---|
Qpsc-2.1 | 2 | 90.00 | 7.04 | S2_84829945 | 88.69 | S2_99451880 | 91.45 | 6.89 | 3.70 | HA 89 |
Qpsc-3.1 | 3 | 13.47 | 3.88 | S3_22684279 | 13.33 | C3_24497005 | 13.61 | 14.10 | 5.56 | HA-R3 |
Qpsc-3.2 | 3 | 20.00 | 6.20 | S3_59514629 | 16.80 | C3_112733070 | 20.22 | 11.80 | 6.23 | HA-R3 |
Qpsc-4.1 | 4 | 76.00 | 8.52 | S4_204504697 | 75.46 | S4_187776941 | 78.62 | 5.28 | 4.73 | HA 89 |
Qpsc-5.1 | 5 | 79.50 | 4.34 | C5_57562566 | 77.31 | S5_35209351 | 79.91 | 6.53 | 3.02 | HA-R3 |
Qpsc-5.2 | 5 | 86.19 | 6.19 | S5_97363446 | 84.80 | C5_95220778 | 86.78 | 7.95 | 5.22 | HA-R3 |
Qpsc-8.1 | 8 | 49.10 | 8.78 | S8_19807421 | 42.75 | S8_21996456 | 49.40 | 11.79 | 4.10 | HA-R3 |
Qpsc-10.1 | 10 | 22.00 | 7.54 | C10_101030161 | 21.71 | S10_8272308 | 26.65 | 10.50 | 4.39 | HA 89 |
Qpsc-11.1 | 11 | 35.40 | 6.50 | S11_41445957 | 33.95 | S11_44270406 | 35.57 | 12.32 | 4.37 | HA 89 |
Qpsc-12.1 | 12 | 25.00 | 5.62 | S12_38476421 | 19.47 | C12_63578064 | 26.01 | 9.10 | 3.27 | HA-R3 |
Qpsc-13.1 | 13 | 90.60 | 6.87 | S13_163494737 | 90.33 | S13_158935119 | 90.60 | 13.60 | 3.45 | HA-R3 |
Qpsc-13.2 | 13 | 99.00 | 7.96 | C13_161608693 | 97.77 | C13_180087451 | 99.03 | 5.24 | 4.90 | HA-R3 |
Qpsc-16.1 | 16 | 10.00 | 3.62 | S12_172320483 | 5.69 | S16_195063009 | 10.92 | 10.90 | 4.89 | HA-R3 |
Qpsc-17.1 | 17 | 29.00 | 13.31 | S14_47547220 | 24.81 | S13_165042726 | 29.45 | 9.76 | 5.66 | HA 89 |
Qpsc-17.2 | 17 | 40.00 | 6.13 | S17_170827390 | 39.82 | C17_170617819 | 41.21 | 17.39 | 10.09 | HA-R3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talukder, Z.I.; Underwood, W.; Ma, G.; Seiler, G.J.; Misar, C.G.; Cai, X.; Qi, L. Genetic Dissection of Phomopsis Stem Canker Resistance in Cultivated Sunflower Using High Density SNP Linkage Map. Int. J. Mol. Sci. 2020, 21, 1497. https://doi.org/10.3390/ijms21041497
Talukder ZI, Underwood W, Ma G, Seiler GJ, Misar CG, Cai X, Qi L. Genetic Dissection of Phomopsis Stem Canker Resistance in Cultivated Sunflower Using High Density SNP Linkage Map. International Journal of Molecular Sciences. 2020; 21(4):1497. https://doi.org/10.3390/ijms21041497
Chicago/Turabian StyleTalukder, Zahirul I., William Underwood, Guojia Ma, Gerald J. Seiler, Christopher G. Misar, Xiwen Cai, and Lili Qi. 2020. "Genetic Dissection of Phomopsis Stem Canker Resistance in Cultivated Sunflower Using High Density SNP Linkage Map" International Journal of Molecular Sciences 21, no. 4: 1497. https://doi.org/10.3390/ijms21041497
APA StyleTalukder, Z. I., Underwood, W., Ma, G., Seiler, G. J., Misar, C. G., Cai, X., & Qi, L. (2020). Genetic Dissection of Phomopsis Stem Canker Resistance in Cultivated Sunflower Using High Density SNP Linkage Map. International Journal of Molecular Sciences, 21(4), 1497. https://doi.org/10.3390/ijms21041497