Insight in Adhesion Protein Sialylation and Microgravity Dependent Cell Adhesion—An Omics Network Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selected Cell Adhesion Proteins and Their Characterization Regarding Sialylation
2.1.1. Cadherins and Other Cell-Cell Adhesion Proteins
2.1.2. Integrins
2.1.3. Cell Adhesion Molecules
2.1.4. CD44 Antigen
2.1.5. Interaction of Sialylated Proteins
2.2. Enzymes Responsible for the Status of Adhesion Proteins
2.2.1. Regulation of Quantities
2.2.2. Regulation of Activities
2.3. Biochemical and Biophysical Effects of SAs Present on Extracellular Domains of Surface Proteins
3. Materials and Methods
3.1. Biological Experiments
3.1.1. Cancer Cell Proteins
3.1.2. Endothelial Cell Proteins
3.1.3. Cancer Cell Genes
3.2. Creation of A Semantic Network
3.3. Interaction Analysis
3.4. Statistical Evaluation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ST3GAL1 | CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1 |
ST3GAL4 | CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 4 |
ST6GALNac2 | Alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 2 |
ST6GAL1 | Beta-galactoside alpha-2,6-sialyltransferase 1 |
SLC35A1 | CMP-sialic acid transporter |
NEU1 | Sialidase-1 |
SA | Sialic acid |
NANS | Sialic acid synthase |
CAV1 | Caveolin-1 |
CDH2 | Cadherin-2 |
CDH1 | Cadherin-1 |
CADM1 | Cell adhesion molecule 1 |
ICAM-1 | Intercellular adhesion molecule 1 |
NCAM-1 | Neural cell adhesion molecule 1 |
NCAM-2 | Neural cell adhesion molecule 2 |
PECAM-1 | Platelet endothelial cell adhesion molecule 1 |
EPCAM | Epithelial cell adhesion molecule |
JAMA | Junctional adhesion molecule A |
CTNND1 | Catenin delta 1 |
CD44 | CD44 antigen |
ITGB1 | Integrin beta-1 |
ITGB3 | Integrin beta-3 |
ITGB4 | Integrin beta-4 |
ITGA2 | Integrin alpha-2 |
ITGA5 | Integrin alpha-5 |
ITGA6 | Integrin alpha-6 |
RDF | Resource description framework (RDF) |
SPARQL | Semantic protocol and RDF query language (SPARQL) |
SKB | Semantic knowledge base |
LfQ | Label free quantification |
RPM | Random positioning machine |
AD cells | Cells growing adherently on the RPM |
MCS cells | Cells growing within multicellular spheroids on the RPM |
References
- Aleshcheva, G.; Bauer, J.; Hemmersbach, R.; Slumstrup, L.; Wehland, M.; Infanger, M.; Grimm, D. Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions. Basic Clin. Pharmacol. Toxicol. 2016, 119, 26–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buravkova, L.B.; Grigorieva, O.V.; Konstantinova, N.A.; Guershovich, Y.G.; Guershovich, P.M. Cell-to-cell interactions in microgravity experiments in vitro. Aviakosmicheskaya i Ekologicheskaya Meditsina 2013, 47, 68–72. [Google Scholar]
- Meyers, V.E.; Zayzafoon, M.; Gonda, S.R.; Gathings, W.E.; McDonald, J.M. Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. J. Cell Biochem. 2004, 93, 697–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krüger, M.; Melnik, D.; Kopp, S.; Buken, C.; Sahana, J.; Bauer, J.; Wehland, M.; Hemmersbach, R.; Corydon, T.J.; Infanger, M.; et al. Fighting thyroid cancer with microgravity research. Int. J. Mol. Sci. 2019, 20, 2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, J.; Kopp, S.; Schlagberger, E.M.; Grosse, J.; Sahana, J.; Riwaldt, S.; Wehland, M.; Luetzenberg, R.; Infanger, M.; Grimm, D. Proteome analysis of human follicular thyroid cancer cells exposed to the random positioning machine. Int. J. Mol. Sci. 2017, 18, 546. [Google Scholar] [CrossRef] [Green Version]
- Sahana, J.; Nassef, M.Z.; Wehland, M.; Kopp, S.; Krüger, M.; Corydon, T.J.; Infanger, M.; Bauer, J.; Grimm, D. Decreased E-Cadherin in MCF7 Human Breast Cancer Cells Forming Multicellular Spheroids Exposed to Simulated Microgravity. Proteomics 2018, 18, 1800015. [Google Scholar]
- Ma, X.; Sickmann, A.; Pietsch, J.; Wildgruber, R.; Weber, G.; Infanger, M.; Bauer, J.; Grimm, D. Proteomic differences between microvascular endothelial cells and the EA.hy926 cell line forming three-dimensional structures. Proteomics 2014, 14, 689–698. [Google Scholar] [CrossRef]
- Ma, X.; Pietsch, J.; Wehland, M.; Schulz, H.; Saar, K.; Hübner, N.; Bauer, J.; Braun, M.; Schwarzwälder, A.; Segerer, J.; et al. Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space. FASEB J. 2014, 28, 813–835. [Google Scholar] [CrossRef]
- Tan, X.; Xu, A.; Zhao, T.; Zhao, Q.; Zhang, J.; Fan, C.; Deng, Y.; Freywald, A.; Genth, H.; Xiang, J. Simulated microgravity inhibits cell focal adhesions leading to reduced melanoma cell proliferation and metastasis via FAK/RhoA-regulated mTORC1 and AMPK pathways. Sci. Rep. 2018, 8, 3769. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.Y.; Sun, S.J.; Zhang, F.; Luo, C.H.; Zheng, L.; Wu, Y.; Li, N.; Zhang, C.; Wang, C.Z.; Chen, Q.; et al. Microgravity-induced hepatogenic differentiation of rBMSCs on board the SJ-10 satellite. FASEB J. 2019, 33, 4273–4286. [Google Scholar] [CrossRef] [Green Version]
- Nassef, M.Z.; Kopp, S.; Wehland, M.; Melnik, D.; Sahana, J.; Krüger, M.; Corydon, T.J.; Oltmann, H.; Schmitz, B.; Schütte, A.; et al. Real microgravity influences the cytoskeleton and focal adhesions in human breast cancer cells. Int. J. Mol. Sci. 2019, 20, 3156. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Liu, P.; Chen, L.; Wang, Y.; Wang, Z.; Zhang, B. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials 2015, 41, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Buravkova, L.B.; Rudimov, E.G.; Andreeva, E.R.; Grigoriev, A.I. The ICAM-1 expression level determines the susceptibility of human endothelial cells to simulated microgravity. J. Cell Biochem. 2018, 119, 2875–2885. [Google Scholar] [CrossRef] [PubMed]
- Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E.M. CNS development under altered gravity: Cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity. Adv. Space Res. 2004, 33, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, A.; Grimm, D.; Sahana, J.; Bauer, J.; Krüger, M.; Infanger, M.; Magnusson, N.E. Key proteins involved in spheroid formation and angiogenesis in endothelial cells after long-Term exposure to simulated microgravity. Cell Physiol. Biochem. 2018, 45, 429–445. [Google Scholar] [CrossRef]
- Ebnerasuly, F.; Hajebrahimi, Z.; Tabaie, S.M.; Darbouy, M. Simulated microgravity condition alters the gene expression of some ECM and adhesion molecules in adipose derived stem cells. Int. J. Mol. Cell Med. 2018, 7, 146–157. [Google Scholar]
- Li, Y.; Gao, X.; Ling, S.; Zhong, G.; Sun, W.; Liu, C.; Li, J.; Song, J.; Zhao, D.; Jin, X.; et al. Knockdown of CD44 inhibits the alteration of osteoclast function induced by simulated microgravity. Acta Astronaut. 2019. [Google Scholar] [CrossRef]
- Goodison, S.; Urquidi, V.; Tarin, D. CD44 cell adhesion molecules. J. Clin. Pathol. Mol. Pathol. 1999, 52, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Katayama, Y.; Hidalgo, A.; Chang, J.; Peired, A.; Frenette, P.S. CD44 is a physiological E-selectin ligand on neutrophils. J. Exp. Med. 2005, 201, 1183–1189. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Wehland, M.; Infanger, M.; Grimm, D.; Gombocz, E. Semantic analysis of posttranslational modification of proteins accumulated in thyroid cancer cells exposed to simulated microgravity. Int. J. Mol. Sci. 2018, 19, 2257. [Google Scholar] [CrossRef] [Green Version]
- Respress, J.L.; Gershovich, P.M.; Wang, T.; Reynolds, J.O.; Skapura, D.G.; Sutton, J.P.; Miyake, C.Y.; Wehrens, X.H.T. Long-term simulated microgravity causes cardiac RyR2 phosphorylation and arrhythmias in mice. Int. J. Cardiol. 2014, 176, 994–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettis, T.; Kim, B.J.; Hamrick, M.W. Impact of muscle atrophy on bone metabolism and bone strength: Implications for muscle-bone crosstalk with aging and disuse. Osteoporosis Int. 2018, 29, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, W.; Liu, H.; Li, J.; Wang, J.; Li, Y.; Chen, X.; Yang, Z.; Fan, M. Dystrophin involved in the susceptibility of slow muscles to hindlimb unloading via concomitant activation of TGF-β1/Smad3 signaling and ubiquitin-proteasome degradation in mice. Cell Biochem. Biophys. 2014, 70, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Wehland, M.; Pietsch, J.; Sickmann, A.; Weber, G.; Grimm, D. Annotated Gene and Proteome Data Support Recognition of Interconnections Between the Results of Different Experiments in Space Research. Microgravity Sci. Technol. 2016, 28, 357–365. [Google Scholar] [CrossRef]
- Zhao, T.; Li, R.; Tan, X.; Zhang, J.; Fan, C.; Zhao, Q.; Deng, Y.; Xu, A.; Lukong, K.E.; Genth, H.; et al. Simulated microgravity reduces focal adhesions and alters cytoskeleton and nuclear positioning leading to enhanced apoptosis via suppressing FAK/Rhoa-mediated mTORC1/NF-κB and ERK1/2 pathways. Int. J. Mol. Sci. 2018, 19, 1994. [Google Scholar] [CrossRef] [Green Version]
- Kopp, S.; Kruger, M.; Bauer, J.; Wehland, M.; Corydon, T.J.; Sahana, J.; Nassef, M.Z.; Melnik, D.; Bauer, T.J.; Schulz, H.; et al. Microgravity affects thyroid cancer cells during the texus-53 mission stronger than hypergravity. Int. J. Mol. Sci. 2018, 19, 4001. [Google Scholar] [CrossRef] [Green Version]
- Ohtsubo, K.; Marth, J.D. Glycosylation in Cellular Mechanisms of Health and Disease. Cell 2006, 126, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Lamblin, G.; Degroote, S.; Perini, J.-M.; Delmotte, P.; Scharfman, A.; Davril, M.; Lo-Guidice, J.-M.; Houdret, N.; Dumur, V.; Klein, A.; et al. Human airway mucin glycosylation: A combinatory of carbohydrate determinants which vary in cystic fibrosis. Glycoconjugate J. 2001, 18, 661–684. [Google Scholar] [CrossRef]
- Morelle, W.; Michalski, J.-C. Analysis of protein glycosylation by mass spectrometry. Nat. Protocols 2007, 2, 1585–1602. [Google Scholar] [CrossRef]
- Mehrishi, J.N.; Bauer, J. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis 2002, 23, 1984–1994. [Google Scholar] [CrossRef]
- Du, J.; Hong, S.; Dong, L.; Cheng, B.; Lin, L.; Zhao, B.; Chen, Y.-G.; Chen, X. Dynamic sialylation in transforming growth factor-β (TGF-β)-induced epithelial to mesenchymal transition. J. Biol. Chem. 2015, 290, 12000–12013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Brand-Miller, J. The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr. 2013, 57, 1351–1369. [Google Scholar] [CrossRef] [Green Version]
- Seaman, G.V.F. Electrochemical features of platelet interactions. Thrombosis Res. 1976, 8 (Suppl. 2), 235–246. [Google Scholar] [CrossRef]
- Rodrigues, E.; Macauley, M.S. Hypersialylation in cancer: Modulation of inflammation and therapeutic opportunities. Cancers 2018, 10, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotton, T.R.; Joseph, D.D.A.; Jiao, W.; Parker, E.J. Probing the determinants of phosphorylated sugar-substrate binding for human sialic acid synthase. Biochim. Biophys. Acta Proteins Proteom. 2014, 1844, 2257–2264. [Google Scholar] [CrossRef] [PubMed]
- Nishihara, S. Solute carrier family 35 (CMP-sialic acid transporter), member A1 (SLC35A1). In Handbook of Glycosyltransferases and Related Genes, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1369–1377. [Google Scholar]
- Bhide, G.P.; Colley, K.J. Sialylation of N-glycans: Mechanism, cellular compartmentalization and function. Histochem. Cell Biol. 2017, 147, 149–174. [Google Scholar] [CrossRef] [PubMed]
- Bonten, E.; Van Der Spoel, A.; Fornerod, M.; Grosveld, G.; D’Azzo, A. Characterization of human lysosomal neuraminidase defines the molecular basis of the metabolic storage disorder sialidosis. Genes Dev. 1996, 10, 3156–3169. [Google Scholar] [CrossRef] [Green Version]
- Monti, E.; Bassi, M.T.; Bresciani, R.; Civini, S.; Croci, G.L.; Papini, N.; Riboni, M.; Zanchetti, G.; Ballabio, A.; Preti, A.; et al. Molecular cloning and characterization of NEU4, the fourth member of the human sialidase gene family. Genomic 2004, 83, 445–453. [Google Scholar] [CrossRef]
- Vajaria, B.N.; Patel, P.S. Glycosylation: A hallmark of cancer? Glycoconj. J. 2017, 34, 147–156. [Google Scholar] [CrossRef]
- Kelm, S.; Schauer, R. Sialic acids in molecular and cellular interactions. Int. Rev. Cytol. 1997, 175, 137–240. [Google Scholar]
- Joshi, L.; Shuler, M.L.; Wood, H.A. Production of a sialylated N-linked glycoprotein in insect cells. Biotechnol. Progress 2001, 17, 822–827. [Google Scholar] [CrossRef]
- Gombocz, E.A.; Stanley, R.A.; Rockey, C.; Nishimura, T. Data Integration Framework for Discovery and Validation: Smart Merging of Experimental and Public Data Across Ontologies and Taxonomies. Available online: https://de.slideshare.net/crockey/data-integration-framework-for-discovery-and-validation (accessed on 1 March 2020).
- Stanley, R.A.; Gombocz, E.A. System, Method, Software Architecture, and Business Model for Intellegent Object Based Information Platform. U.S. Patent 7,702,639, 2010. [Google Scholar]
- Bauer, T.J.; Gombocz, E.; Krüger, M.; Sahana, J.; Corydon, T.J.; Bauer, J.; Infanger, M.; Grimm, D. Augmenting cancer cell proteomics with cellular images—A semantic approach to understand focal adhesion. J. Biomed. Inf. 2019, 100, 103320. [Google Scholar] [CrossRef] [PubMed]
- Deman, J.J.; van Larebeke, N.A.; Bruyneel, E.A.; Bracke, M.E.; Vermeulen, S.J.; Vennekens, K.M.; Mareel, M.M. Removal of sialic acid from the surface of human MCF-7 mammary cancer cells abolishes E-cadherin-dependent cell-cell adhesion in an aggregation assay. In Vitro Cell Dev. Biol. Anim. 1995, 31, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Steelant, W.F.A.; Recchi, M.-A.; Noë, V.T.; Boilly-Marer, Y.; Bruyneel, E.A.; Verbert, A.; Mareel, M.M.; Delannoy, P. Sialylation of E-cadherin does not change the spontaneous or ET-18-OMe-mediated aggregation of MCF-7 human breast cancer cells. Clin. Exp. Metastasis 1999, 17, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Bassagañas, S.; Carvalho, S.; Dias, A.M.; Pérez-Garay, M.; Ortiz, M.R.; Figueras, J.; Reis, C.A.; Pinho, S.S.; Peracaula, R. Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of α2β1 integrin and E-cadherin function. PLoS ONE 2014, 9, e98595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Cheng, L.; Wang, L.-J.; Liu, H.-C.; Li, L.; Wang, X.-L.; Geng, M.-Y. Cell surface sialic acid inhibits Cx43 gap junction functions in constructed Hela cancer cells involving in sialylated N-cadherin. Mol. Cell Biochem. 2010, 344, 241–251. [Google Scholar] [CrossRef]
- Ciołczyk-Wierzbicka, D.; Amoresano, A.; Casbarra, A.; Hoja-Łukowicz, D.; Lityńska, A.; Laidler, P. The structure of the oligosaccharides of N-cadherin from human melanoma cell lines. Glycoconjugate J. 2003, 20, 483–492. [Google Scholar] [CrossRef]
- Przybyło, M.; Hoja-Lukowicz, D.; Lityńska, A.; Laidler, P. Different glycosylation of cadherins from human bladder non-malignant and cancer cell lines. Cancer Cell Int. 2001, 2, 5. [Google Scholar]
- Geyer, H.; Geyer, R.; Odenthal-Schnittler, M.; Schnittler, H.J. Characterization of human vascular endothelial cadherin glycans. Glycobiology 1999, 9, 915–925. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Zhang, J.; Liu, Y.; Chen, L.; Yu, C. TNF-α regulates the proteolytic degradation of ST6Gal-1 and endothelial cell-cell junctions through upregulating expression of BACE1. Sci. Rep. 2017, 7, 40256. [Google Scholar] [CrossRef]
- Krüger, M.; Pietsch, J.; Bauer, J.; Kopp, S.; Carvalho, D.T.O.; Baatout, S.; Moreels, M.; Melnik, D.; Wehland, M.; Egli, M.; et al. Growth of endothelial cells in space and in simulated microgravity—A comparison on the secretory level. Cell Physiol. Biochem. 2019, 52, 1039–1060. [Google Scholar]
- Minami, A.; Shimono, Y.; Mizutani, K.; Nobutani, K.; Momose, K.; Azuma, T.; Takai, Y. Reduction of the ST6 β-Galactosamide α-2,6-sialyltransferase 1 (ST6GAL1)-catalyzed sialylation of nectin-like molecule 2/cell adhesion molecule 1 and enhancement of ErbB2/ErbB3 signaling by microRNA-199a. J. Biol. Chem. 2013, 288, 11845–11853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, D.W.; Tolbert, C.E.; Graham, D.M.; Wittchen, E.; Bear, J.E.; Burridge, K. N-glycosylation controls the function of junctional adhesion molecule-A. Mol. Biol. Cell 2015, 26, 3205–3214. [Google Scholar] [CrossRef]
- Hou, S.; Hang, Q.; Isaji, T.; Lu, J.; Fukuda, T.; Gu, J. Importance of membrane-proximal N-glycosylation on integrin β1 in its activation and complex formation. FASEB J. 2016, 30, 4120–4131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Pan, D.; Bellis, S.L.; Song, Y. Effect of altered glycosylation on the structure of the I-like domain of β1 integrin: A molecular dynamics study. Proteins Struct. Funct. Genet. 2008, 73, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Semel, A.C.; Seales, E.C.; Singhal, A.; Eklund, E.A.; Colley, K.J.; Bellis, S.L. Hyposialylation of integrins stimulates the activity of myeloid fibronectin receptors. J. Biol. Chem. 2002, 277, 32830–32836. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, F.M.; Seales, E.C.; Clem, W.C.; Hennessy, K.M.; Zhuo, Y.; Bellis, S.L. Tumor cell migration and invasion are regulated by expression of variant integrin glycoforms. Exp. Cell Res. 2008, 314, 2941–2950. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Park, J.J.; Lee, Y.S. Adhesion of ST6Gal I-mediated human colon cancer cells to fibronectin contributes to cell survival by integrin β1-mediated paxillin and AKT activation. Oncol. Rep. 2010, 23, 757–761. [Google Scholar]
- Jurado, G.A.; Brunson, B.A.; Wakefield, J.K.; Frost, A.R.; Bellis, S.L. Hypersialylation of β 1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res. 2005, 65, 4645–4652. [Google Scholar]
- Zhuo, Y.; Chammas, R.; Bellis, S.L. Sialylation of β1 integrins blocks cell adhesion to galectin-3 and protects cells against galectin-3-induced apoptosis. J. Biol. Chem. 2008, 283, 22177–22185. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Tang, Y.-A.; Huang, S.-M.; Juan, H.-F.; Wu, L.-W.; Sun, Y.-C.; Wang, S.-C.; Wu, K.-W.; Balraj, G.; Chang, T.T.; et al. A novel sialyltransferase inhibitor suppresses FAK/paxillin signaling and cancer angiogenesis and metastasis pathways. Cancer Res. 2011, 71, 473–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, C.-H.; Wang, C.-H.; Chang, H.-C.; More, S.V.; Li, W.-S.; Hung, W.-C. A novel sialyltransferase inhibitor AL10 suppresses invasion and metastasis of lung cancer cells by inhibiting integrin-mediated signaling. J. Cell Physiol. 2010, 223, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wu, L.; Shen, S.; Wu, S.; Burdick, M.M. Effect of alpha 2,6 sialylation on integrin-mediated adhesion of breast cancer cells to fibronectin and collagen IV. Life Sci. 2016, 149, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Slambrouck, S.; Groux-Degroote, S.; Krzewinski-Recchi, M.A.; Cazet, A.; Delannoy, P.; Steelant, W.F.A. Carbohydrate-to-carbohydrate interactions between α2,3-linked sialic acids on α2 integrin subunits and asialo-GM1 underlie the bone metastatic behaviour of LNCAP-derivative C4-2B prostate cancer cells. Biosci. Rep. 2014, 34, e00138. [Google Scholar] [CrossRef] [PubMed]
- Ethier, M.; Krokhin, O.; Ens, W.; Standing, K.G.; Wilkins, J.A.; Perreault, H. Global and site-specific detection of human integrin α5β1 glycosylation using tandem mass spectrometry and the StrOligo algorithm. Rapid Commun. Mass Spectrom. 2005, 19, 721–727. [Google Scholar] [CrossRef]
- Kolasińska, E.; Janik, M.E.; Lityńska, A.; Przybyło, M. Contribution of sialic acids to integrin α5β1 functioning in melanoma cells. Adv. Med. Sci. 2019, 64, 267–273. [Google Scholar] [CrossRef]
- Sanchez-Ruderisch, H.; Detjen, K.M.; Welzel, M.; André, S.; Fischer, C.; Gabius, H.-J.; Rosewicz, S. Galectin-1 sensitizes carcinoma cells to anoikis via the fibronectin receptor α5β1-integrin. Cell Death Differ. 2011, 18, 806–816. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.; Song, Y. Role of altered sialylation of the i-like domain of β1 integrin in the binding of fibronectin to β1 integrin: Thermodynamics and conformational analyses. Biophys. J. 2010, 99, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Isaji, T.; Sato, Y.; Fukuda, T.; Gu, J. N-glycosylation of the I-like domain of β1 integrin is essential for β1 integrin expression and biological function. Identification of the minimal N-glycosylation requirement for α5β1. J. Biol. Chem. 2009, 284, 12207–12216. [Google Scholar] [CrossRef] [Green Version]
- Nadanaka, S.; Sato, C.; Kitajima, K.; Katagiri, K.; Irie, S.; Yamagata, T. Occurrence of Oligosialic Acids on Integrin α5β1-Subunit and Their Involvement in Cell Adhesion to Fibronectin. J. Biol. Chem. 2001, 276, 33657–33664. [Google Scholar] [CrossRef] [Green Version]
- Pocheć, E.; Lityńska, A.; Bubka, M.; Amoresano, A.; Casbarra, A. Characterization of the oligosaccharide component of alpha(3)beta(1) integrin from human bladder carcinoma cell line T24 and its role in adhesion and migration. Eur. J. Cell Biol. 2006, 85, 47–57. [Google Scholar] [CrossRef]
- Huang, Z.; Miao, X.; Patarroyo, M.; Nilsson, G.P.; Pernow, J.; Li, N. Tetraspanin CD151 and integrin α6β1 mediate platelet-enhanced endothelial colony forming cell angiogenesis. J. Thrombosis Haemostasis 2016, 14, 606–618. [Google Scholar] [CrossRef] [PubMed]
- Uemura, T.; Shiozaki, K.; Yamaguchi, K.; Miyazaki, S.; Satomi, S.; Kato, K.; Sakuraba, H.; Miyagi, T. Contribution of sialidase NEU1 to suppression of metastasis of human colon cancer cells through desialylation of integrin β4. Oncogene 2009, 28, 1218–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pocheć, E.; Bubka, M.; Rydlewska, M.; Janik, M.; Pokrywka, M.; Lityńska, A. Aberrant glycosylation αVβ3- integrin is associated with melanoma progression. Anticancer Res. 2015, 35, 2093–2103. [Google Scholar] [PubMed]
- Imamaki, R.; Ogawa, K.; Kizuka, Y.; Komi, Y.; Kojima, S.; Kotani, N.; Honke, K.; Honda, T.; Taniguchi, N.; Kitazume, S. Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis. Oncogene 2018, 37, 4287–4299. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhang, S.; Zou, X.; Lu, J.; Yang, X.; Xu, Z.; Shan, A.; Jia, W.; Liu, F.; Yan, X.; et al. The β-galactoside α2,6-sialyltranferase I (ST6GAL1) inhibits the colorectal cancer metastasis by stabilizing intercellular adhesion molecule-I via sialylation. Cancer Manag. Res. 2019, 11, 6185–6199. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, O.; Abe, M.; Hashimoto, Y. Sialylation by β-galactoside α-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma. Int. J. Oncol. 2015, 46, 973–980. [Google Scholar] [CrossRef] [Green Version]
- Rutishauser, U. Polysialic acid at the cell surface: Biophysics in service of cell interactions and tissue plasticity. J. Cell Biochem. 1998, 70, 304–312. [Google Scholar] [CrossRef]
- Hoja-Łukowicz, D.; Przybyło, M.; Duda, M.; Pocheć, E.; Bubka, M. On the trail of the glycan codes stored in cancer-related cell adhesion proteins. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 3237–3257. [Google Scholar] [CrossRef] [PubMed]
- Moller, C.J.; Christgau, S.; Williamson, M.R.; Madson, O.D.; Zhango, N.; Bock, E.; Baekkeskov, S. Differential expression of neural cell-adhesion molecule and cadherins in pancreatic-islets, glucagonomas and insulinomas. Mol. Endocrinol. 1992, 6, 1332–1342. [Google Scholar]
- Colley, K.J.; Kitajima, K.; Sato, C. Polysialic acid: Biosynthesis, novel functions and applications. Critical Rev. Biochem. Mol. Biol. 2014, 49, 498–532. [Google Scholar] [CrossRef] [PubMed]
- Hane, M.; Matsuoka, S.; Ono, S.; Miyata, S.; Kitajima, K.; Sato, C. Protective effects of polysialic acid on proteolytic cleavage of FGF2 and proBDNF/BDNF. Glycobiology 2015, 25, 1112–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifert, A.; Glanz, D.; Glaubitz, N.; Horstkorte, R.; Bork, K. Polysialylation of the neural cell adhesion molecule: Interfering with polysialylation and migration in neuroblastoma cells. Arch. Biochem. Biophys. 2012, 524, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Zhou, X.; Yang, J.; Jiang, Y.; Yang, H. Effects of the regulation of polysialyltransferase ST8SiaII on the invasiveness and metastasis of small cell lung cancer cells. Oncol. Rep. 2017, 37, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Storms, S.D.; Jensen, J.J.; Yaghmai, D.; Murray, B.A. Multiple mechanisms of N2A and CHO cell adhesion to NCAM purified from chick embryonic brain and retina. Exp. Cell Res. 1994, 214, 100–112. [Google Scholar] [CrossRef]
- Guan, F.; Wang, X.; He, F. Promotion of cell migration by neural cell adhesion molecule (NCAM) is enhanced by PSA in a polysialyltransferase-specific manner. PLoS ONE 2015, 10, e0124237. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, S.C.; Giehl, K.; Kastilan, C.; Hasel, C.; Mühlenhoff, M.; Adler, G.; Wedlich, D.; Menke, A. Polysialylated NCAM Represses E-Cadherin-Mediated Cell-Cell Adhesion in Pancreatic Tumor Cells. Gastroenterology 2008, 134, 1555–1566. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, L.; Song, W.; Yang, M.; Ju, H. Liberation of Protein-Specific Glycosylation Information for Glycan Analysis by Exonuclease III-Aided Recycling Hybridization. Anal. Chem. 2016, 88, 2923–2928. [Google Scholar] [CrossRef]
- Lee, C.; Liu, A.; Miranda-Ribera, A.; Hyun, S.W.; Lillehoj, E.P.; Cross, A.S.; Passaniti, A.; Grimm, P.R.; Kim, B.Y.; Welling, P.A.; et al. NEU1 sialidase regulates the sialylation state of CD31 and disrupts CD31-driven capillary-like tube formation in human lung microvascular endothelia. J. Biol. Chem. 2014, 289, 9121–9135. [Google Scholar] [CrossRef] [Green Version]
- Kitazume, S.; Imamaki, R.; Ogawa, K.; Komi, Y.; Futakawa, S.; Kojima, S.; Hashimoto, Y.; Marth, J.D.; Paulson, J.C.; Taniguchi, N. α2,6-sialic acid on Platelet Endothelial Cell Adhesion Molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling. J. Biol. Chem. 2010, 285, 6515–6521. [Google Scholar] [CrossRef] [Green Version]
- Lertkiatmongkol, P.; Paddock, C.; Newman, D.K.; Zhu, J.; Thomas, M.J.; Newman, P.J. The role of sialylated glycans in human platelet endothelial cell adhesion molecule 1 (PECAM-1)-mediated trans homophilic interactions and endothelial cell barrier function. J. Biol. Chem. 2016, 291, 26216–26225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyun, S.W.; Liu, A.; Liu, Z.; Lillehoj, E.P.; Madri, J.A.; Reynolds, A.B.; Goldblum, S.E. As human lung microvascular endothelia achieve confluence, src family kinases are activated, and tyrosine-phosphorylated p120 catenin physically couples NEU1 sialidase to CD31. Cell Signal. 2017, 35, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Guvench, O. Revealing the mechanisms of protein disorder and N-glycosylation in CD44-hyaluronan binding using molecular simulation. Front. Immunol. 2015, 6, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faller, C.E.; Guvench, O. Terminal sialic acids on CD44 N-glycans can block hyaluronan binding by forming competing intramolecular contacts with arginine sidechains. Proteins Struct. Funct. Bioinf. 2014, 82, 3079–3089. [Google Scholar] [CrossRef] [Green Version]
- Katoh, S.; Miyagi, T.; Taniguchi, H.; Matsubara, Y.I.; Kadota, J.I.; Tominaga, A.; Kincade, P.W.; Matsukura, S.; Kohno, S. Cutting edge: An inducible sialidase regulates the hyaluronic acid binding ability of CD44-bearing human monocytes. J. Immunol. 1999, 162, 5058–5061. [Google Scholar]
- Isozaki, H.; Ohyama, T.; Mabuchi, H. Expression of cell adhesion molecule CD44 and sialyl Lewis A in gastric carcinoma and colorectal carcinoma in association with hepatic metastasis. Int. J. Oncol. 1998, 13, 935–939. [Google Scholar] [CrossRef]
- Matsubara, Y.; Katoh, S.; Taniguchi, H.; Oka, M.; Kadota, J.; Kohno, S. Expression of CD44 variants in lung cancer and its relationship to hyaluronan binding. J. Int. Med. Res. 2000, 28, 78–90. [Google Scholar] [CrossRef]
- Riwaldt, S.; Bauer, J.; Wehland, M.; Slumstrup, L.; Kopp, S.; Warnke, E.; Dittrich, A.; Magnusson, N.E.; Pietsch, J.; Corydon, T.J.; et al. Pathways regulating spheroid formation of human follicular thyroid cancer cells under simulated microgravity conditions: A genetic approach. Int. J. Mol. Sci. 2016, 17, 528. [Google Scholar] [CrossRef] [Green Version]
- Kopp, S.; Slumstrup, L.; Corydon, T.J.; Sahana, J.; Aleshcheva, G.; Islam, T.; Magnusson, N.E.; Wehland, M.; Bauer, J.; Infanger, M.; et al. Identifications of novel mechanisms in breast cancer cells involving duct-like multicellular spheroid formation after exposure to the random positioning machine. Sci. Rep. 2016, 6, 26887. [Google Scholar] [CrossRef]
- Bellis, S.L. Variant glycosylation: An underappreciated regulatory mechanism for β1 integrins. Biochim. Biophys. Acta Biomembr. 2004, 1663, 52–60. [Google Scholar] [CrossRef]
- Vajaria, B.N.; Patel, K.R.; Begum, R.; Patel, P.S. Sialylation: An Avenue to Target Cancer Cells. Pathol. Oncol. Res. 2016, 22, 443–447. [Google Scholar] [CrossRef]
- Sawada, T.; Ho, J.J.L.; Sagabe, T.; Yoon, W.H.; Chung, Y.S.; Sowa, M.; Kim, Y.S. Biphasic Effect of Cell Surface Sialic Acids on Pancreatic Cancer Cell Adhesiveness. Biochem. Biophys. Res. Commun. 1993, 195, 1096–1103. [Google Scholar] [CrossRef]
- Miyagi, T.; Takahashi, K.; Hata, K.; Shiozaki, K.; Yamaguchi, K. Sialidase significance for cancer progression. Glycoconj. J. 2012, 29, 567–577. [Google Scholar] [CrossRef]
- Bresalier, R.S.; Ho, S.B.; Schoeppner, H.L.; Kim, Y.S.; Sleisenger, M.H.; Brodt, P.; Byrd, J.C. Enhanced sialylation of mucin-associated carbohydrate structures in human colon cancer metastasis. Gastroenterology 1996, 110, 1354–1367. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.H.; Zhao, P.; Sun, T.; Gao, Z.; Moremen, K.W.; Boons, G.J.; Wells, L.; Steet, R. Selective exo-enzymatic labeling detects increased cell surface sialoglycoprotein expression upon megakaryocytic differentiation. J. Biol. Chem. 2016, 291, 3982–3989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döring, Y.; Noels, H.; Mandl, M.; Kramp, B.; Neideck, C.; Lievens, D.; Drechsler, M.; Megens, R.T.A.; Tilstam, P.V.; Langer, M.; et al. Deficiency of the sialyltransferase St3Gal4 reduces Ccl5-mediated myeloid cell recruitment and arrest. Circ. Res. 2014, 114, 976–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedlund, M.; Ng, E.; Varki, A.; Varki, N.M. α2-6-linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res. 2008, 68, 388–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Liu, Y.; Fu, X.; Zhang, Q.; Huang, H.; Zhang, C.; Li, W.; Zhang, J. miR-9 inhibits the metastatic ability of hepatocellular carcinoma via targeting beta galactoside alpha-2,6-sialyltransferase 1. J. Physiol. Biochem. 2018, 74, 491–501. [Google Scholar] [CrossRef]
- Kaburagi, T.; Kizuka, Y.; Kitazume, S.; Taniguchi, N. The inhibitory role of α2,6-sialylation in adipogenesis. J. Biol. Chem. 2017, 292, 2278–2286. [Google Scholar] [CrossRef] [Green Version]
- Kroes, R.A.; Moskal, J.R. The role of DNA methylation in ST6Gal1 expression in gliomas. Glycobiology 2016, 26, 1271–1283. [Google Scholar] [CrossRef]
- Man Ip, C.K.; Yung, S.; Chan, T.M.; Tsao, S.W.; Wong, A.S.T. p70 S6 kinase drives ovarian cancer metastasis through multicellular spheroid-peritoneum interaction and P-cadherin/β1 integrin signaling activation. Oncotarget 2014, 5, 9133–9149. [Google Scholar]
- Lu, J.; Isaji, T.; Im, S.; Fukuda, T.; Hashii, N.; Takakura, D.; Kawasaki, N.; Gu, J. β-Galactoside α2,6-sialyltranferase 1 promotes transforming growth factor-β-mediated epithelial-mesenchymal transition. J. Biol. Chem. 2014, 289, 34627–34641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Lee, H.-J.; Bae, S.; Lee, Y.-S. Protein sialylation by sialyltransferase involves radiation resistance. Mol. Cancer Res. 2008, 6, 1316–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pshezhetsky, A.V.; Ashmarina, M. Keeping it trim: Roles of neuraminidases in CNS function. Glycoconjugate J. 2018, 35, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Glanz, V.Y.; Myasoedova, V.A.; Grechko, A.V.; Orekhov, A.N. Sialidase activity in human pathologies. Eur. J. Pharmacol. 2019, 842, 345–350. [Google Scholar] [CrossRef]
- Tringali, C.; Lupo, B.; Cirillo, F.; Papini, N.; Anastasia, L.; Lamorte, G.; Colombi, P.; Bresciani, R.; Monti, E.; Tettamanti, G.; et al. Silencing of membrane-associated sialidase Neu3 diminishes apoptosis resistance and triggers megakaryocytic differentiation of chronic myeloid leukemic cells K562 through the increase of ganglioside GM3. Cell Death Differ. 2009, 16, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Colomb, F.; Krzewinski-Recchi, M.-A.; Steenackers, A.; Vincent, A.; Harduin-Lepers, A.; Delannoy, P.; Groux-Degroote, S. TNF up-regulates ST3GAL4 and sialyl-Lewisx expression in lung epithelial cells through an intronic ATF2-responsive element. Biochem. J. 2017, 474, 65–78. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, J.; Ruan, Y.; Sun, L.; Xu, C.; Jiang, H. Sialyltransferase ST3GAL1 promotes cell migration, invasion, and TGF-β1-induced EMT and confers paclitaxel resistance in ovarian cancer. Cell Death Disease 2018, 9, 1102. [Google Scholar] [CrossRef] [Green Version]
- Dalziel, M.; Dall’Olio, F.; Mungul, A.; Piller, V.; Piller, F. Ras oncogene induces β-galactoside α2,6-sialyltransferase (ST6Gal I) via a RalGEF-mediated signal to its housekeeping promoter. Eur. J. Biochem. 2004, 271, 3623–3634. [Google Scholar] [CrossRef]
- Jia, L.; Luo, S.; Ren, X.; Li, Y.; Hu, J.; Liu, B.; Zhao, L.; Shan, Y.; Zhou, H. miR-182 and miR-135b Mediate the Tumorigenesis and Invasiveness of Colorectal Cancer Cells via Targeting ST6GALNAC2 and PI3K/AKT Pathway. Digest. Diseases Sci. 2017, 62, 3447–3459. [Google Scholar] [CrossRef]
- Li, Y.L.; Wu, G.Z.; Zeng, L.; Dawe, G.S.; Sun, L.; Loers, G.; Tilling, T.; Cui, S.; Schachner, M.; Xiao, Z.C. Cell surface sialylation and fucosylation are regulated by the cell recognition molecule L1 via PLCγ and cooperate to modulate embryonic stem cell survival and proliferation. FEBS Lett. 2009, 583, 703–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Q.; Ren, C.; Wang, L.; Zhao, Y.; Wang, S. Knockdown of ST6Gal-I inhibits the growth and invasion of osteosarcoma MG-63 cells. Biomed. Pharmacother. 2015, 72, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Ren, A.; Wang, X.; Fan, X.; Zhao, Y.; Gao, G.F.; Cleary, P.; Wang, B. Influenza viral neuraminidase primes bacterial coinfection through TGF-β—Mediated expression of host cell receptors. Proc. Natl. Acad. Sci. USA 2015, 112, 238–243. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Fan, J.; Liu, L.; Zhang, L.; Wang, S.; Zhang, J. Caveolin-1 up-regulates integrin α2,6-sialylation to promote integrin α5β1-dependent hepatocarcinoma cell adhesion. FEBS Lett. 2013, 587, 782–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Yamaguchi, K.; Wada, T.; Hata, K.; Zhao, X.; Fujimoto, T.; Miyagi, T.; Collins, B.M.; Davis, M.J.; Hancock, J.F.; et al. Structure-Based Reassessment of the Caveolin Signaling Model: Do Caveolae Regulate Signaling through Caveolin-Protein Interactions? Dev. Cell 2012, 23, 11–20. [Google Scholar]
- Riwaldt, S.; Bauer, J.; Pietsch, J.; Braun, M.; Segerer, J.; Schwarzwälder, A.; Corydon, T.J.; Infanger, M.; Grimm, D. The importance of caveolin-1 as key-regulator of three-dimensional growth in thyroid cancer cells cultured under real and simulated microgravity conditions. Int. J. Mol. Sci. 2015, 16, 28296–28310. [Google Scholar] [CrossRef]
- Riwaldt, S.; Pietsch, J.; Sickmann, A.; Bauer, J.; Braun, M.; Segerer, J.; Schwarzwälder, A.; Aleshcheva, G.; Corydon, T.J.; Infanger, M.; et al. Identification of proteins involved in inhibition of spheroid formation under microgravity. Proteomics 2015, 15, 2945–2952. [Google Scholar] [CrossRef]
- Warnke, E.; Pietsch, J.; Wehland, M.; Bauer, J.; Infanger, M.; Görög, M.; Hemmersbach, R.; Braun, M.; Ma, X.; Sahana, J.; et al. Spheroid formation of human thyroid cancer cells under simulated microgravity: A possible role of CTGF and CAV1. Cell Commun. Signal. 2014, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Slivinsky, G.G.; Hymer, W.C.; Bauer, J.; Morrison, D.R. Cellular electrophoretic mobility data: A first approach to a database. Electrophoresis 1997, 18, 1109–1119. [Google Scholar] [CrossRef]
- Weber, G.; Grimm, D.; Bauer, J. Application of binary buffer systems to free flow cell electrophoresis. Electrophoresis 2000, 21, 325–328. [Google Scholar] [CrossRef]
- Mehrishi, J.N. Action of Pronase and Neuraminidase on the Electrophoretic Mobility of Erythrocytes from Normal Cats and those with Spontaneous Tumours. Vox Sanguinis 1970, 18, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Cohly, H.H.P.; Sahana, J.; Grimm, D. Preparative enrichment of human tissue cells capable to change a site of growth in vitro or in vivo—Recent developments. Preparative Biochem. Biotechnol. 2018, 48, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, N.; Kulak, N.A.; Cox, J.; Neuhauser, N.; Mayr, K.; Hoerning, O.; Vorm, O.; Mann, M. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol. Cell Proteom. 2012, 11, M111.013722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007, 2, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Hein, M.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteom. 2014, 13, 2513–2526. [Google Scholar] [CrossRef] [Green Version]
- Pietsch, J.; Kussian, R.; Sickmann, A.; Bauer, J.; Weber, G.; Nissum, M.; Westphal, K.; Egli, M.; Grosse, J.; Schönberger, J.; et al. Application of free-flow IEF to identify protein candidates changing under microgravity conditions. Proteomics 2010, 10, 904–913. [Google Scholar] [CrossRef]
- Hancock, W.S.; Wu, S.L.; Stanley, R.A.; Gombocz, E.A. Publishing large proteome datasets: Scientific policy meets emerging technologies. Trends Biotechnol. 2002, 20, S39–S44. [Google Scholar] [CrossRef]
- Boutet, E.; Lieberherr, D.; Tognolli, M.; Schneider, M.; Bansal, D.; Bridge, A.J.; Poux, S.; Bougueleret, L.; Xenarios, I. UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: How to use the entry view. Methods Mol. Biol. 2016, 1374, 23–54. [Google Scholar]
- Lindberg, D.A. Internet access to the National Library of Medicine. Eff. Clin. Pract. 2000, 3, 256–260. [Google Scholar]
- Garnham, R.; Scott, E.; Livermore, K.E.; Munkley, J. ST6GAL1: A key player in cancer. Oncol. Lett. 2019, 18, 983–989. [Google Scholar] [PubMed] [Green Version]
Protein | Gene | MCF-7 | FTC-133 | ||||
---|---|---|---|---|---|---|---|
1g | AD | MCS | 1g | AD | MCS | ||
P19022 | CDH2 | 0 | 0 | 0 | 16.8 | 19.1 | 20.4 |
P12830 | * CDH1 | 40.8 ± 3.5 | 33.5 ± 4.4 | 19 ± 4.5 | 0 | 0 | 0 |
P05362 | ICAM-1 | 0 | 0 | 0 | 1.9 | 0 | 1.26 |
P13591 | NCAM-1 | 0 | 0 | 0 | 54.7 | 50.5 | 44.7 |
O15394 | NCAM-2 | 2 ± 0.5 | 1.7 ± 0.5 | 2.1 ± 0.5 | 0 | 0 | 0 |
P16422 | EPCAM | 4.85 ± 1.9 | 10.27 ± 2.9 | 3.61 ± 1.9 | 0 | 0 | 0 |
Q9BY67 | * CADM1 | 0.85 ± 0.3 | 0.5 ± 0. 4 | 0 | 4.9 | 4.5 | 6.15 |
Q9Y624 | JAMA | 2.55 ± 0.6 | 2 ± 1.4 | 3.4 ± 3.9 | 3.04 | 0 | 2.54 |
P16070 | * CD44 | 12.3 ± 1.3 | 3.8 ± 0.8 | 8.4 ± 2.2 | 31.8 | 71.4 | 63.6 |
P05556 | * ITGB1 | 15.1 ± 1.7 | 22.8 ± 3.8 | 16 ± 2.7 | 208 | 173 | 136 |
P05106 | ITGB3 | 0 | 0 | 0 | 5.31 | 3.44 | 4.3 |
P16144 | * ITGB4 | 7.4 ± 0.7 | 6.1 ± 1.4 | 3.1 ± 0.6 | 0 | 0 | 0 |
P06756 | * ITGAV | 7.4 ± 0.6 | 10.1 ± 2.5 | 8.6 ± 2.7 | 108 | 106 | 87.5 |
P17301 | * ITGA2 | 4.5 ± 0.3 | 5.8 ± 1.4 | 4.2 ± 0.4 | 3.36 | 4.04 | 3.24 |
P26006 | * ITGA3 | 1.4 ± 0.5 | 1.3 ± 0.9 | 0.8 ± 0.3 | 113 | 75.2 | 59.2 |
P08648 | * ITGA5 | 0.95 ± 0.2 | 1.5 ± 0.4 | 2.88 ± 0.7 | 24.9 | 36.2 | 28.3 |
P23229 | * ITGA6 | 0.8 ± 0.05 | 0.47 ± 0.05 | 0.49 ± 0.13 | 8.03 | 10 | 9.9 |
Protein | Gene | MCF-7 | FTC-133 | ||||
---|---|---|---|---|---|---|---|
1g | AD | MCS | 1g | AD | MCS | ||
Q9NR45 | NANS | 69.5 ± 4.7 | 107 ± 29 | 93.2 ± 14 | 7.34 | 8.9 | 11.5 |
P78382 | SLC35A1 | 0.29 ± 0.2 | 0 | 0.34 ± 0.26 | 0 | 0 | 0 |
Q11201 | ST3GAL1 | 0.2 ± 0.06 | 1.05 ± 0.5 | 0.71 ± 0.31 | 0 | 0 | 0 |
Q11206 | ST3GAL4 | 0 | 0.15 ± 0.18 | 0.33 ± 0.39 | 0.53 | 0 | 0 |
Q9UJ37 | ST6GALNac2 | 0.18 ± 0.08 | 0 | 0.12 ± 0.03 | 0 | 0 | 0 |
Q99519 | NEU1 | 0.97 ± 0.3 | 0.24 ± 0.36 | 0.78 ± 0.15 | 23.5 | 28.7 | 38.2 |
O60716 | * CTNND1 | 39.5 ± 1.5 | 39.4 ± 8.9 | 19.3 ± 4.5 | 125 | 103 | 82.6 |
Q03135 | * CAV1 | 13.2 ± 1.7 | 3.34 ± 0.43 | 8.66 ± 1.6 | 64.7 | 92.5 | 53.5 |
P15907 | ST6GAL1 | 0 | 0 | 0 | 0 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer, T.J.; Gombocz, E.; Wehland, M.; Bauer, J.; Infanger, M.; Grimm, D. Insight in Adhesion Protein Sialylation and Microgravity Dependent Cell Adhesion—An Omics Network Approach. Int. J. Mol. Sci. 2020, 21, 1749. https://doi.org/10.3390/ijms21051749
Bauer TJ, Gombocz E, Wehland M, Bauer J, Infanger M, Grimm D. Insight in Adhesion Protein Sialylation and Microgravity Dependent Cell Adhesion—An Omics Network Approach. International Journal of Molecular Sciences. 2020; 21(5):1749. https://doi.org/10.3390/ijms21051749
Chicago/Turabian StyleBauer, Thomas J., Erich Gombocz, Markus Wehland, Johann Bauer, Manfred Infanger, and Daniela Grimm. 2020. "Insight in Adhesion Protein Sialylation and Microgravity Dependent Cell Adhesion—An Omics Network Approach" International Journal of Molecular Sciences 21, no. 5: 1749. https://doi.org/10.3390/ijms21051749
APA StyleBauer, T. J., Gombocz, E., Wehland, M., Bauer, J., Infanger, M., & Grimm, D. (2020). Insight in Adhesion Protein Sialylation and Microgravity Dependent Cell Adhesion—An Omics Network Approach. International Journal of Molecular Sciences, 21(5), 1749. https://doi.org/10.3390/ijms21051749