Structural Characterization of an Archaeal Lipid Bilayer as a Function of Hydration and Temperature
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydration
2.2. Temperature
3. Materials and Methods
3.1. Chemicals
3.2. Lipid Bilayers Formation
3.3. Neutron Diffraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DoPhPC | 1,2-di-O-phytanyl-sn-glycero-3-phosphocholine |
DoPhPE | 1,2-di-O-phytanyl-sn-glycero-3-phosphoethanolamine |
ILL | Institut Laue–Langevin |
NSLD | Neutron Scattering Length Density |
RH | Relative Humidity |
References
- De Rosa, M.; Gambacorta, A.; Gliozzi, A. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol. Rev. 1986, 50, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Gambacorta, A.; Trincone, A.; Nicolaus, B.; Lama, L.; De Rosa, M. Unique features of lipids of Archaea. Syst. Appl. Microbiol. 1993, 16, 518–527. [Google Scholar] [CrossRef]
- Redwood, W.R.; Pfeiffer, F.R.; Weisbach, J.A.; Thompson, T.E. Physical properties of bilayer membranes formed from a synthetic saturated phospholipid in n-decane. BBA Biomembr. 1971, 233, 1–6. [Google Scholar] [CrossRef]
- Tristram-Nagle, S.; Kim, D.J.; Akhunzada, N.; Kuerka, N.; Mathai, J.C.; Katsaras, J.; Zeidel, M.; Nagle, J.F. Structure and water permeability of fully hydrated diphytanoylPC. Chem. Phys. Lipids 2010, 163, 630–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milianta, P.J.; Muzzio, M.; Denver, J.; Cawley, G.; Lee, S. Water permeability across symmetric and asymmetric droplet interface bilayers: Interaction of cholesterol sulfate with DPhPC. Langmuir 2015, 31, 12187–12196. [Google Scholar] [CrossRef]
- Guler, S.D.; Ghosh, D.D.; Pan, J.; Mathai, J.C.; Zeidel, M.L.; Nagle, J.F.; Tristram-Nagle, S. Effects of ether vs. ester linkage on lipid bilayer structure and water permeability. Chem. Phys. Lipids 2009, 160, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, H.; Petersen, N.O.; Chan, S.I. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. Biochim. Biophys. Acta 1979, 555, 147–167. [Google Scholar] [CrossRef]
- Shinoda, W.; Mikami, M.; Baba, T.; Hato, M. Molecular dynamics study on the effect of chain branching on the physical properties of lipid bilayers: Structural stability. J. Phys. Chem. B 2003, 107, 14030–14035. [Google Scholar] [CrossRef]
- Shinoda, W.; Mikami, M.; Baba, T.; Hato, M. Dynamics of a highly branched lipid bilayer: A molecular dynamics study. Chem. Phys. Lett. 2004, 390, 35–40. [Google Scholar] [CrossRef]
- Baba, T.; Toshima, Y.; Minamikawa, H.; Hato, M.; Suzuki, K.; Kamo, N. Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids. Biochim. Biophys. Acta Biomembr. 1999, 1421, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Yasmann, A.; Sukharev, S. Properties of diphytanoyl phospholipids at the air-water interface. Langmuir 2015, 31, 350–357. [Google Scholar] [CrossRef]
- Nagle, J.F. Theory of lipid monolayer and bilayer phase transitions: Effect of headgroup interactions. J. Membr. Biol. 1976, 27, 233–250. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Jackman, J.; Wilson, D.; Jarvoll, P.; Alfredsson, V.; Okeyo, G.; Duran, R. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers’ electrical stability. Colloids Surf. B Biointerfaces 2011, 82, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525. [Google Scholar] [CrossRef]
- Kulkarni, C.V. Calculating the ‘chain splay’ of amphiphilic molecules: Towards quantifying the molecular shapes. Chem. Phys. Lipids 2019, 218, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kara, S.; Babii, O.; Tkachenko, A.N.; Ulrich, A.S.; Afonin, S.; Komarov, I.V. Diphytanoyl lipids as model systems for studying membrane-active peptides. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1828–1837. [Google Scholar] [CrossRef]
- Wu, Y.; He, K.; Ludtke, S.J.; Huang, H.W. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: Diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys. J. 1995, 68, 2361–2369. [Google Scholar] [CrossRef] [Green Version]
- Hung, W.C.; Chen, F.Y.; Huang, H.W. Order-disorder transition in bilayers of diphytanolyl phosphatidylcholine. Biochim. Biophys. Acta 2000, 1467, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.-H.; Sue, S.-C.; Lyu, P.-C.; Wu, W. Membrane packing geometry of diphytanoylphosphatidylcholine is highly sensitive to hydration: Phospholipid polymorphism induced by molecular rearrangement in the headgroup region. Biophys. J. 1997, 73, 870–877. [Google Scholar] [CrossRef] [Green Version]
- Nagle, J.F.; Tristram-Nagle, S. Structure of lipid bilayers. Biochim. Biophys. Acta Rev. Biomembr. 2000, 1469, 159–195. [Google Scholar] [CrossRef] [Green Version]
- Stewart, L.C.; Kates, M.; Ekiel, I.H.; Smith, I.C.P. Molecular order and dynamics of diphytanylglycerol phospholipids: A 2H and 31P-NMR study. Chem. Phys. Lipids 1990, 54, 115–129. [Google Scholar] [CrossRef]
- Shinoda, W.; Mikami, M.; Baba, T.; Hato, M. Molecular dynamics study on the effects of chain branching on the physical properties of lipid bilayers: 2. Permeability. J. Phys. Chem. B 2004, 108, 9346–9356. [Google Scholar] [CrossRef]
- Kučerka, N.; Nieh, M.P.; Katsaras, J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta Biomembr. 2011, 1808, 2761–2771. [Google Scholar]
- Pohle, W.; Selle, C.; Fritzsche, H.; Binder, H. Fourier transform infrared spectroscopy as a probe for the study of the hydration of lipid self-assemblies. I. Methodology and general phenomena. Biospectroscopy 1998, 4, 267–280. [Google Scholar] [CrossRef]
- Gauger, D.R.; Binder, H.; Vogel, A.; Selle, C.; Pohle, W. Comparative FTIR-spectroscopic studies of the hydration of diphytanoylphosphatidylcholine and -ethanolamine. In Proceedings of the Journal of Molecular Structure. J. Mol. Struct. 2002, 614, 211–220. [Google Scholar] [CrossRef]
- Tristram-Nagle, S.A. Preparation of oriented, fully hydrated lipid samples for structure determination using X-ray scattering. Methods Mol. Biol. 2007, 400, 63–75. [Google Scholar]
- Cristiglio, V.; Giroud, B.; Didier, L.; Demé, B. D16 is back to business: More neutrons, more space, more fun. Neutron News 2015, 26, 22–24. [Google Scholar] [CrossRef]
- Gonthier, J.; Barrett, M.A.; Aguettaz, O.; Baudoin, S.; Bourgeat-Lami, E.; Demé, B.; Grimm, N.; Hauß, T.; Kiefer, K.; Lelièvre-Berna, E.; et al. BerILL: The ultimate humidity chamber for neutron scattering. J. Neutron Res. 2019, 21, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Oger, P.; Deme, B.; Peters, J.; Salvador Castell, M. Investigating the Ultrastructure of An Archaeal Membrane Containing Apolar Structural Lipids; Institut Laue-Langevin (ILL): Grenoble, France, 2016. [Google Scholar] [CrossRef]
- Katsaras, J. X-ray diffraction studies of oriented lipid bilayers. Biochem. Cell Biol. 1995, 73, 209–218. [Google Scholar] [CrossRef]
- Lyatskaya, Y.; Liu, Y.; Tristram-Nagle, S.; Katsaras, J.; Nagle, J.F. Method for obtaining structure and interactions from oriented lipid bilayers. Phys. Rev. E 2000, 63, 011907. [Google Scholar] [CrossRef] [Green Version]
- Worcester, D.L.; Franks, N.P. Structural analysis of hydrated egg lecithin and cholesterol bilayers II.Neutron diffraction. J. Mol. Biol. 1976, 100, 359–378. [Google Scholar] [CrossRef]
- OriginPro, Version 2016; OriginLab Corporation: Northampton, MA, USA, 2016.
- Polak, A.; Tarek, M.; Tomšič, M.; Valant, J.; Poklar Ulrih, N.; Jamnik, A.; Kamar, P.; Miklavčič, D. Structural Properties of Archaeal Lipid Bilayers: Small-Angle X-ray Scattering and Molecular Dynamics Simulation Study. Langmuir 2014, 30, 8308–8315. [Google Scholar] [CrossRef] [PubMed]
(Å) | 50% RH | 80% RH | 90% RH | 95% RH | 98% RH | 100% RH |
---|---|---|---|---|---|---|
D | 42.3 ± 0.2 | 45.2 ± 0.2 | 48.6 ± 0.1 | 49.5 ± 0.1 | 50.2 ± 0.1 | 50.4 ± 0.1 |
DB | 36.5 ± 0.2 | 36.9 ± 0.2 | 37.4 ± 0.2 | 37.4 ± 0.2 | ||
2DC | 30.6 ± 0.6 | 30.8 ± 0.4 | 31.1 ± 0.6 | 31.4 ± 0.6 | ||
Dw | 12.1 ± 0.3 | 12.8 ± 0.3 | 13.0 ± 0.3 | 13.0 ± 0.3 | ||
nw | 15.4 ± 0.3 | 16.1 ± 0.2 | 16.2 ± 0.2 | 16.2 ± 0.2 |
(Å) | 25 °C | 40 °C | 55 °C | 70 °C |
---|---|---|---|---|
D | 50.7 ± 0.1 | 52.5 ± 0.1 | 54.2 ± 0.2 | 60 ± 0.2 |
DB | 38.3 ± 0.2 | 38.2 ± 0.2 | ||
2DC | 32.2 ± 0.6 | 31.8 ± 0.6 | ||
Dw | 12.6 ± 0.3 | 14.3 ± 0.3 | ||
nw | 15.3 ± 0.2 | 17.5 ± 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvador-Castell, M.; Demé, B.; Oger, P.; Peters, J. Structural Characterization of an Archaeal Lipid Bilayer as a Function of Hydration and Temperature. Int. J. Mol. Sci. 2020, 21, 1816. https://doi.org/10.3390/ijms21051816
Salvador-Castell M, Demé B, Oger P, Peters J. Structural Characterization of an Archaeal Lipid Bilayer as a Function of Hydration and Temperature. International Journal of Molecular Sciences. 2020; 21(5):1816. https://doi.org/10.3390/ijms21051816
Chicago/Turabian StyleSalvador-Castell, Marta, Bruno Demé, Philippe Oger, and Judith Peters. 2020. "Structural Characterization of an Archaeal Lipid Bilayer as a Function of Hydration and Temperature" International Journal of Molecular Sciences 21, no. 5: 1816. https://doi.org/10.3390/ijms21051816
APA StyleSalvador-Castell, M., Demé, B., Oger, P., & Peters, J. (2020). Structural Characterization of an Archaeal Lipid Bilayer as a Function of Hydration and Temperature. International Journal of Molecular Sciences, 21(5), 1816. https://doi.org/10.3390/ijms21051816