Chromosomal Distribution of Genes Conferring Tolerance to Abiotic Stresses Versus That of Genes Controlling Resistance to Biotic Stresses in Plants
1. Introduction
2. Chromosomal Distribution Patterns of Genes for Abiotic-Stress Tolerance vs. Biotic-Stress Resistance
Conflicts of Interest
References
- Assmann, S.M. Natural variation in abiotic stress and climate change responses in Arabidopsis: Implications for twenty-first-century agriculture. Int. J. Plant Sci. 2013, 174, 3–26. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.Y.; Wang, Q.Y.; Bai, R.; Li, R.X.; Chen, L.; Xu, Y.F.; Zhang, M.; Duan, D. The effect of transcription factor MYB14 on defense mechanisms in Vitis quinquangularis-Pingyi. Int. J. Mol. Sci. 2020, 21, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.K.; Gong, X.; Cao, F.B.; Wang, Y.Z.; Zhang, G.P.; Wu, F.B. HvPAA1 encodes a P-Type ATPase, a novel gene for cadmium accumulation and tolerance in barley (Hordeum vulgare L.). Int. J. Mol. Sci. 2019, 20, 1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.C.; Magwanga, R.O.; Cai, X.Y.; Zhou, Z.L.; Wang, X.X.; Wang, Y.H.; Zhang, Z.M.; Jin, D.S.; Guo, X.L.; Wei, Y.Y.; et al. Deep transcriptome analysis reveals reactive oxygen species (ROS) network evolution, response to abiotic stress, and regulation of fiber development in cotton. Int. J. Mol. Sci. 2019, 20, 1863. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Li, J.Z.; Yang, Q.S.; Jamil, W.; Teng, Y.W.; Bai, S.L. Phylogenetic, molecular, and functional characterization of PpyCBF proteins in Asian pears (Pyrus pyrifolia). Int. J. Mol. Sci. 2019, 20, 2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.X.; Zhang, D.; Sun, W.; Wang, T.Z. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. Int. J. Mol. Sci. 2019, 20, 2424. [Google Scholar] [CrossRef] [Green Version]
- Yong, Y.B.; Zhang, Y.; Lyu, Y.M. A stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis. Int. J. Mol. Sci. 2019, 20, 3225. [Google Scholar] [CrossRef] [Green Version]
- Yong, Y.B.; Zhang, Y.; Lyu, Y.M. A MYB-related transcription factor from Lilium lancifolium L. (LlMYB3) is involved in anthocyanin biosynthesis pathway and enhances multiple abiotic stress tolerance in Arabidopsis thaliana. Int. J. Mol. Sci. 2019, 20, 3195. [Google Scholar] [CrossRef] [Green Version]
- Yoon, M.Y.; Kim, M.Y.; Ha, J.; Lee, T.; Kim, K.D.; Lee, S.H. QTL analysis of resistance to high-intensity UV-B irradiation in soybean (Glycine max [L.] Merr.). Int. J. Mol. Sci. 2019, 20, 3287. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, H.H.; Lu, X.Q.; Chen, L.Z.; Liu, J.; Wu, H. Identification and expression analysis of GRAS transcription factors to elucidate candidate genes related to stolons, fruit ripening and abiotic stresses in woodland strawberry (Fragaria vesca). Int. J. Mol. Sci. 2019, 20, 4593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katiyar, A.; Mudgil, Y. Arabidopsis NDL-AGB1 modules play role in abiotic stress and hormonal responses along with their specific functions. Int. J. Mol. Sci. 2019, 20, 4736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noman, M.; Jameel, A.; Qiang, W.D.; Ahmad, N.; Liu, W.C.; Wang, F.W.; Li, H.Y. Overexpression of GmCAMTA12 enhanced drought tolerance in Arabidopsis and soybean. Int. J. Mol. Sci. 2019, 20, 4849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magwanga, R.O.; Kirungu, J.N.; Lu, P.; Cai, X.Y.; Zhou, Z.L.; Xu, Y.C.; Hou, Y.Q.; Agong, S.G.; Wang, K.B.; Liu, F. Map-based functional analysis of the GhNLP genes reveals their roles in enhancing tolerance to N-deficiency in cotton. Int. J. Mol. Sci. 2019, 20, 4953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.Z.; Miao, L.; Huang, B.; Gao, L.H.; He, C.X.; Yan, Y.; Wang, J.; Yu, X.C.; Li, Y.S. Genome-wide identification and characterization of cucumber BPC transcription factors and their responses to abiotic stresses and exogenous phytohormones. Int. J. Mol. Sci. 2019, 20, 5048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Wan, X.L.; Yu, J.Y.; Wang, K.L.; Zhang, J. Genome-wide identification, classification, and expression analysis of the Hsf gene family in carnation (Dianthus caryophyllus). Int. J. Mol. Sci. 2019, 20, 5233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imran, M.; Shafiq, S.; Farooq, M.A.; Naeem, M.K.; Widemann, E.; Bakhsh, A.; Jensen, K.B.; Wang, R.R.-C. Comparative genome-wide analysis and expression profiling of histone acetyltransferase (HAT) gene family in response to hormonal applications, metal and abiotic stresses in cotton. Int. J. Mol. Sci. 2019, 20, 5311. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.F.; Yu, B.W.; Ma, X.L.; Cao, B.H.; Chen, G.J.; Chen, C.M.; Lei, J.J. Cloning and expression analysis of the BocMBF1c gene involved in heat tolerance in Chinese kale. Int. J. Mol. Sci. 2019, 20, 5637. [Google Scholar] [CrossRef] [Green Version]
- Su, H.G.; Li, B.; Song, X.Y.; Ma, J.; Chen, J.; Zhou, Y.B.; Chen, M.; Min, D.H.; Xu, Z.S.; Ma, Y.Z. Genome-wide analysis of the DYW subgroup PPR gene family and identification of GmPPR4 responses to drought stress. Int. J. Mol. Sci. 2019, 20, 5667. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Zheng, W.J.; Liu, B.H.; Zheng, J.C.; Dong, F.S.; Liu, Z.F.; Wen, Z.Y.; Yang, F.; Wang, H.B.; Xu, Z.S.; et al. Characterizing the role of TaWRKY13 in salt tolerance. Int. J. Mol. Sci. 2019, 20, 5712. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Liu, H.F.; Zhang, L.; Hu, Z.Y.; Liu, J.; Hua, W.; Xu, S.M.; Liu, J. Genome-wide identification and characterization of FBA gene family in polyploid crop Brassica napus. Int. J. Mol. Sci. 2019, 20, 5749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, N.M.; Gorafi, Y.S.A.; Abdelrahman, M.; Abdellatef, E.; Tsujimoto, H. Stay-green trait: A prospective approach for yield potential, and drought and heats stress adaptation in globally important cereals. Int. J. Mol. Sci. 2019, 20, 5837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Liu, Y.X.; Yu, Q.; Zhao, S.P.; Zhao, J.Y.; Ru, J.N.; Cao, X.Y.; Fang, Z.W.; Chen, J.; Zhou, Y.B.; et al. Functional analysis of the soybean GmCDPK3 gene responding to drought and salt stresses. Int. J. Mol. Sci. 2019, 20, 5909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.L.; Hu, T.H.; Wang, W.L.; Hu, H.J.; Wei, Q.Z.; Wei, X.C.; Bao, C.L. Bioinformatics analysis of the lipoxygenase gene family in radish (Raphanus sativus) and functional characterization in response to abiotic and biotic stresses. Int. J. Mol. Sci. 2019, 20, 6095. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.; Li, Y.P.; Sun, S.L.; Duan, C.X.; Zhu, Z.D. Genetic mapping and molecular characterization of a broad-spectrum Phytophthora sojae resistance gene in Chinese soybean. Int. J. Mol. Sci. 2019, 20, 1809. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.Y.; Cheon, K.S.; Oh, J.; Oh, H.; Kim, S.L.; Kim, N.; Lee, E.; Choi, I.; Baek, J.; Kim, K.H.; et al. Rice genome resequencing reveals a major quantitative trait locus for resistance to Bakanae disease caused by Fusarium fujikuroi. Int. J. Mol. Sci. 2019, 20, 2598. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; He, X.Y.; Kumar, N.; Fuentes-Davila, G.; Sharma, R.K.; Dreisigacker, S.; Juliana, P.; Ataei, N.; Singh, P.K. Genome wide association study of Karnal bunt resistance in a wheat germplasm collection from Afghanistan. Int. J. Mol. Sci. 2019, 20, 3124. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Q.; Zhang, Y.X.; Chen, Y.Y.; Yu, N.; Cao, Y.R.; Zhan, X.D.; Cheng, S.H.; Cao, L.Y. LMM24 encodes receptor-like cytoplasmic kinase 109, which regulates cell death and defense responses in rice. Int. J. Mol. Sci. 2019, 20, 3243. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.Y.; Li, G.R.; Wan, H.S.; Li, L.P.; Li, J.; Yang, W.Y.; Pu, Z.J.; Yang, Z.J.; Yang, E.N. Identification of QTLs for stripe rust resistance in a recombinant inbred line population. Int. J. Mol. Sci. 2019, 20, 3410. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, M.; Morgounov, A.; Belamkar, V.; Wegulo, S.N.; Dababat, A.A.; Erginbas-Orakci, G.; El Bouhssini, M.; Gautam, P.; Poland, J.; Akci, N.; et al. Genome-wide association study for multiple biotic stress resistance in synthetic hexaploid wheat. Int. J. Mol. Sci. 2019, 20, 3667. [Google Scholar] [CrossRef] [Green Version]
- Li, H.H.; Dong, Z.J.; Ma, C.; Tian, X.B.; Qi, Z.J.; Wu, N.; Friebe, B.; Xiang, Z.G.; Xia, Q.; Liu, W.X.; et al. Physical mapping of stem rust resistance gene Sr52 from Dasypyrum villosum based on ph1b-Induced homoeologous recombination. Int. J. Mol. Sci. 2019, 20, 4887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.K.; Singh, S.; Deng, Z.Y.; He, X.Y.; Kehel, Z.; Singh, R.P. Characterization of QTLs for seedling resistance to Tan Spot and Septoria Nodorum Blotch in the PBW343/Kenya Nyangumi wheat recombinant inbred lines population. Int. J. Mol. Sci. 2019, 20, 5432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.S.; Wen, C.L.; Zhang, X.F.; Xu, X.L.; Yang, J.J.; Chen, B.; Geng, S.S. Identification of a major QTL (qRRs-10.1) that confers resistance to Ralstonia solanacearum in pepper (Capsicum annuum) using SLAF-BSA and QTL mapping. Int. J. Mol. Sci. 2019, 20, 5887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.J.; Tian, X.B.; Ma, C.; Xia, Q.; Wang, B.L.; Chen, Q.F.; Sehgal, S.K.; Friebe, B.; Li, H.H.; Liu, W.X. Physical mapping of Pm57, a powdery mildew resistance gene derived from Aegilops searsii. Int. J. Mol. Sci. 2020, 21, 322. [Google Scholar] [CrossRef] [Green Version]
- Wittkopp, P.J.; Kalay, G. Cis-regulatory elements: Molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 2011, 13, 59–69. [Google Scholar] [CrossRef]
Chromosome Arm | ||||||||
---|---|---|---|---|---|---|---|---|
Plant Species | Genes | Stress | Mechanisms | Chromosome | distal | proximal | total | Reference |
Barley (Hordeum vulgare) | P-Type ATPase (HvPAA1) gene in a single QTL qShCd7H | Cadmium | Plasma membrane-localized cation-transporting ATPase. | 7H | 0 | 1 | 1 | Wang et al. 2019 [4] |
Cotton (Gossypium hirsutum) | ROS-network genes (CSD1, APX1, APX2, MDAR1, GPX4-6-7, FER2, RBOH6, RBOH11, FRO5, AOX, GLR, and PER, etc.) | Cold, heat, dehydration, salt | ROS network-mediated signal pathway. | Nine each of A and D genomes | 21 | 15 | 36 | Xu et al. 2019 [5] |
Pear (Pyrus pyrifolia) | C-repeat binding factor (PpyCBF1 to 6) genes | Low temperature, salt, drought, and abscisic acid (ABA). | ABA-dependent and -independent pathways, ROS and antioxidant. | 1, 4, 6, 7, 14 and one scoffold. | - | - | - | Ahmad et al. 2019 [6] |
Rice (Oryza sativa) | AHA2, FRO2, IRT1, FIT, FRD3, FPN1, YSL2, VIT1, NRAMP3/4 | Iron deficiency. | Iron acquisition from soil, iron transport fromroots to shoots, and iron storage in cells. | - | - | - | - | Zhang et al. 2019 [7] |
Arabidopsis thaliana | Stress-Responsive NAC Transcription Factor (LlNAC2) of tiger lily | Cold, drought, salt stresses, and abscisic acid (ABA). | DREB1/ZFHD4/CBF-COR interaction and ABA signaling pathways. | 1S (in Arabidopsis) | 1 | 0 | 1 | Yong et al. 2019a [8] |
Arabidopsis thaliana | MYB related homolog (LlMYB3) of tiger lily | Cold, drought, and salt stresses, ABA treatment. | LlCHS2 and anthocyanin biosynthesis pathway. | 5L (in Arabidopsis) | 1 | 0 | 1 | Yong et al. 2019b [9] |
Soybean (Glycine max) | four QTLs for resistance to high-intensity UV-B irradiation (UVBR12-1, 6-1, 10-1, and 14-1) | UV-B irradiation (high light, heat, dehydration), | Possibly, actin-binding spectrin like protein interacting with membrane phosphoinositides in cellular signaling for defense. | 12, 6, 10, and 14 | 2 | 2 | 4 | Yoon et al. 2019 [10] |
Woodland Strawberry (Fragaria vesca) | GIBBERELLIN-INSENSITIVE (GAI), REPRESSOR OF GA1-3 (RGA) and SCARECROW (SCR) protein (FveGRAS) genes | Cold, heat, and GA3 treatments. | Stolon formation, fruit ripening and abiotic stresses. | All 7 | 25 | 10 | 35 | Chen et al. 2019 [11] |
Arabidopsis thaliana | N-MYC Downregulated Like Proteins (NDL1, NDL2, NDL3) interacting with ANN1, SLT1, OAS-TL, ARS27A, RGS1, AGB1 | Heat, cold, dehydration, DNA damage, reducing agent, increased intracellular calcium, metal ions like cadmium, nickel and cobalt, hormones. | N-MYC Downregulated Like Proteins (NDLs) interacting with G-Proteins in signal transduction in response to drought, heat, salinity and light intensity. | All 5 | 5 | 4 | 9 | Katiyar and Mudgil 2019 [12] |
Soybean (Glycine max) | calmodulin binding transcription activator gene (GmCAMTA) | Drought. | Calmodulin binding Ca-CaM-CAMTA-mediated stress regulatory mechanisms. | 8 out of 20 (5, 7, 8, 9, 11, 15, 17, 18) | 10 | 5 | 15 | Noman et al. 2019 [13] |
Cotton (Gossypium hirsutum) | nodule inception-like protein (GhNLP) genes | Nitrogen deficiency | Promoters of NLP genes interact with stress-associated transcription factors and be targeted by many miRNAs. | All 26 | 91 | 14 | 105 | Magwanga et al. 2019 [14] |
Cucumber (Cucumis sativus L.) | GAGA-binding BASIC PENTACYSTEINE (BPC) transcription factor genes (CsBPCs) | Salt, drought, cold, heat, ABA, SA, JA, ETH, 2,4-D, GA. | Germination, growth and development, as well as responses to abiotic stresses and plant hormones. | 3 of 7 (2, 5, 7) | 3 | 1 | 4 | Li et al. 2019 [15] |
Carnation (Dianthus caryophyllus) | Heat shock transcription factors (Hsfs) | Heat, drought, cold, salt, ABA, SA. | Promoters included various cis-acting elements that were related to stress, hormones, as well as development processes, controlling reactive oxygen species homeostasis, and ABA-mediated stress signaling. | 17 scaffolds | 10 | 7 | 17 | Li et al. 2019 [16] |
Cotton (Gossypium hirsutum) | Histone Acetyltransferase (HAT) Gene family | Salt, drought, cold, heavy metal, DNA damage, ABA, NAA. | Affect cotton growth, fiber development, and stress adaptation by regulation of chromatin structure, activate the gene transcription implicated in various cellular processes. | 8 of 26 (A-5,6,8,11 and D-5,6,10,11) | 16 | 2 | 18 | Imran et al. 2019 [17] |
Chinese kale (Brassica oleracea) | multi-protein bridging factor (MBF) 1c (BocMBF1c) | Heat stress: cellular response to hypoxia, ethylene-activated signaling pathway, positive regulation of transcription, DNA-templated response to abscisic acid heat, and water deprivation. | BocMBF1c contains three heat shock elements (HSEs) and helix-turn-helix (HTH) domains, regulating ABRFs, SA, trehalose, and ET thermal resistance-related pathways by binding with CTAGA, including DREB2A. | not presented; ortholog on chromosome 3 of Arabidopsis thaliana* | -; 0 | -; 1 * | -; 1 * | Zou et al. 2019 [18] |
Soybean (Glycine max) | Pentatricopeptide-repeat (PPR) proteins DYW subgroup genes; GmPPR4 | Drought and salt. | Delayed leaf rolling; higher content of proline (Pro); and lower contents of H2O2, O2, and malondialdehyde (MDA); increased transcripts of several drought-inducible genes. | all 20 chromosomes; GmPPR4 is on chromosome 1 distal end | 143 | 36 | 179 | Su et al. 2019 [19] |
Bread wheat (Triticum aestivum) | WRKY transcription factor superfamily genes; TaWRKY13* | Salt, drought, ABA, cold. | More root development, increased proline (Pro) and decreased malondialdehyde (MDA) contents. | all chromosomes except 4B and 7B; 2A | 33 | 24; 1* | 57 | Zhou et al. 2019 [20] |
oilseed rape (Brassica napus) | Fructose-1,6-bisphosphate aldolase (FBA) gene family (BnaFBA) | Salt, heat, drought, Sclerotinia sclerotiorum infection, and strigolactones (SLs) treatments. | Processes of glycolysis, gluconeogenesis, and Calvin cycle; Various cis-acting regulatory elements existed within the promoter regions of BnaFBA genes. | 19 on 15 B. napus chromosomes; 3 others to 2 random chromosomes (two on the An chromosomes and one on the Cn chromosome) | 7 | 15 | 22 | Zhao et al. 2019 [21] |
Sorghum (Sorghum bicolor) | stay-green QTL | Drought and heat. | N/C supply-demand, photosynthesis, water use efficiency, leaf anatomy, mineral and sugar transportation, senescence. | All 7 | 10 | 7 | 17 | Kamal et al. 2019 [22] |
Wheat (Triticum aestivum) | 1A, 2A, 4A, 5A, 1B, 2B, 3B, 4B, 4D, 7D | 10 | 8 | 18 | ||||
Rice (Oryza sativa) | 2 to 12 | 9 | 18 | 27 | ||||
Maize (Zea mays) | 1, 2, 3, 5, 6, 8, 9 | 12 | 11 | 23 | ||||
Barley (Hordeum vulgare) | All 7 | 4 | 6 | 10 | ||||
Soybean (Glycine max) | Calcium-dependent protein kinases (CDPKs) genes; GmCDPK3 * | Drought and salt. | Increased proline (Pro) and chlorophyll contents and decreased malondialdehyde (MDA) content. | 12 of 20 (1 to 6, 10, 11, 14, 16, 18, 19) | 14; 1 * | 3 | 17 | Wang et al. 2019 [23] |
Radish (Raphanus sativus) | Lipoxygenases (LOXs) gene family RsLOX | Abiotic (drought, salinity, heat, and cold) and biotic (Plasmodiophora brassicae infection) stress conditions. | three tandem-clustered RsLOX genes are involved in responses to various environmental stresses via the jasmonic acid pathway. | 5 of 9 (2, 5, 7, 8, 9) | 5 | 6 | 11 | Wang et al. [24] |
Total | 432 | 196 | 628 | |||||
Ratio | 2.2:1 |
Chromosome Arm | ||||||||
---|---|---|---|---|---|---|---|---|
Plant Species | Genes | Biotic Stress | Mechanisms | Chromosome | distal | proximal | total | Reference |
Glycine max | RpsX | Phytophthora root rot (PRR) caused by Phytophthora sojae (Rps). | A 144-bp insertion in the Glyma.03g027200 sequence resulted in two additional leucine-rich (LRR) encoding fragments. | 3 | 1 | 0 | 1 | Zhong et al. 2019 [25] |
Oryza sativa | QTL qFfR9 with 35.15% additive effect | Bakanae disease (BD), caused by the fungal pathogen Fusarium fujikuroi. | Eight genes in the QTL may be candidate genes for BD resistance. | 9 | 1 | 0 | 1 | Kang et al. 2019 [26] |
Triticum aestivum | 18 QTL | Karnal bunt caused by Neovossia indica. | QTL are associated with NBS-LRR proteins, Serine/threonine-protein kinase, Protein Kinase family protein, Kinase family protein, Receptor-like kinase, C2H2-like zinc finger protein, F-box domain containing protein, Glycosyltransferase and Transcription factor gene families. | 1D, 2B, 2D, 4A, 4B, 5A, 5B, 6A, 6B, 7B, 7D | 15 | 3 | 18 | Gupta et al. 2019 [27] |
Oryza sativa | Lesion mimic mutant (LMM) gene LMM24 | lmm24 exhibited enhanced resistance to rice blast fungus Magnaporthe oryzae and up-regulation of defense response genes. | Receptor-like cytoplasmic kinase 109 (OsRLCK109) leads to dark brown lesions in leaves and growth retardation due to enhanced ROS accumulation. | LOC_Os03g24930 on chromosome 3 | 0 | 1 | 1 | Zhang et al. 2019 [28] |
Triticum aestivum | 3 QTL for stripe rust resistance | Stripe rust, caused by Puccinia striiformis f. sp. tritici. | QTL on 1B may be Yr29 (an APR gene); the minor QTL on 2Al may be a new stripe rust resistance locus; Qyr.saas-7B could be in the same locus of QYr.nsw-7B from Tiritea. | 1BL, 2AL, 7BL | 3 | 0 | 3 | Yang et al. 2019 [29] |
Triticum aestivum | 124 genomic regions associated with various diseases; several genes in those significant genomic regions had gene annotations suggesting their involvement in disease resistance. | wheat rusts (leaf; Puccinia triticina, stem; P. graminis f.sp. tritici, and stripe; P. striiformis f.sp. tritici) and crown rot (Fusarium spp.); cereal cyst nematode (Heterodera spp.); and Hessian fly (Mayetiola destructor). | Five genes were annotated as the leucine-rich repeat protein family and six genes were annotated as the F-box family protein, which were also reported to be involved in abiotic stress tolerance such as drought; Calcium-binding protein; ARM repeat superfamily protein; Elongation factor 1 alpha; Peroxidase; WAT1-related protein/EamA-like transporter family. | 21 chromosomes | 97 | 27 | 124 | Bhatta et al. 2019 [30] |
Dasypyrum villosum to Triticum aestivum | Sr52 | Wheat stem rust caused by Puccinia graminis f. sp. Tritici. | Resistant to stem rust Ug99 races. | 6V#3L bin FL 0.92–1.00 to 6AL. | 1 | 0 | 1 | Li et al. 2019 [31] |
Triticum aestivum | Seven significant additive QTLs for TS resistance explaining 2.98 to 23.32% of the phenotypic variation; five QTLs explaining 5.24 to 20.87% of SNB resistance | Tan Spot (induced by Pyrenophora tritici-repentis) and Septoria Nodorum Blotch (caused by Parastagonospora nodorum). | Quantitative resistance: fungus P. tritici-repentis isolates produce at least three host-selective toxins (HSTs), Ptr ToxA, Ptr ToxB and Ptr ToxC that interact with products of specific host sensitivity genes located on chromosome arm 5BL, 2BS., and 1AS, respectively, to cause disease. | TS (1A, 1B, 5B, 7B and 7D); SNB (1A, 5A, and 5B) | 7 | 5 | 12 | Singh et al. 2019 [32] |
Capsicum annuum | A major QTL qRRs-10.1 | bacterial wilt (BW), caused by Ralstonia solanacearum. | A cluster of five predicted R genes and three defense-related genes. | chromosome 10 | 0 | 1 | 1 | Du et al. 2019 [33] |
Aegilops searsii to Triticum aestivum | Pm57 | Powdery mildew caused by Blumeria graminis f. sp. tritici. | Ten genes that are putative R genes which includes six coiled-coil nucleotide-binding site-leucine-rich repeat (CNL), three nucleotide-binding site-leucine-rich repeat (NL) and a leucine-rich receptor-like repeat (RLP) encoding proteins. | 2Ss#1, fraction length 0.72–0.87 | 1 | 0 | 1 | Dong et al. 2020 [34] |
Vitis quinquangularis | Transcription Factor VqMYB14 | bacterial flagellin peptide flg22 and harpins (glycine-rich and heat-stable proteins that are secreted through type III secretion system in gram-negative plant-pathogenic bacteria). | The promoter of VqMYB14 is induced by the elicitors flg22 to confer basal immunity (also called pathogen-associated molecular pattern (PAMP)-triggered immunity, PTI) and triggered by harpin to confer effector-triggered immunity (ETI). Overexpression of VqMYB14 enhance the main stilbene contents and expression of stilbene biosynthesis genes. | chromosome 7 | 0 | 1 | 1 | Luo et al. 2020 [3] |
Total | 126 | 38 | 164 | |||||
Ratio | 3.3:1 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.R.-C. Chromosomal Distribution of Genes Conferring Tolerance to Abiotic Stresses Versus That of Genes Controlling Resistance to Biotic Stresses in Plants. Int. J. Mol. Sci. 2020, 21, 1820. https://doi.org/10.3390/ijms21051820
Wang RR-C. Chromosomal Distribution of Genes Conferring Tolerance to Abiotic Stresses Versus That of Genes Controlling Resistance to Biotic Stresses in Plants. International Journal of Molecular Sciences. 2020; 21(5):1820. https://doi.org/10.3390/ijms21051820
Chicago/Turabian StyleWang, Richard R.-C. 2020. "Chromosomal Distribution of Genes Conferring Tolerance to Abiotic Stresses Versus That of Genes Controlling Resistance to Biotic Stresses in Plants" International Journal of Molecular Sciences 21, no. 5: 1820. https://doi.org/10.3390/ijms21051820
APA StyleWang, R. R. -C. (2020). Chromosomal Distribution of Genes Conferring Tolerance to Abiotic Stresses Versus That of Genes Controlling Resistance to Biotic Stresses in Plants. International Journal of Molecular Sciences, 21(5), 1820. https://doi.org/10.3390/ijms21051820