Effect of Streptozotocin-Inducted Diabetes on the Pathophysiology of Enteric Neurons in the Small Intestine Based on the Porcine Diabetes Model
Abstract
:1. Introduction
2. Results
2.1. General Condition
2.2. Cocaine- and Amphetamine-Regulated Transcript (CART) Distribution
2.2.1. Duodenum
2.2.2. Jejunum
2.2.3. Ileum
2.3. Galanin (GAL) Distribution
2.3.1. Duodenum
2.3.2. Jejunum
2.3.3. Ileum
2.4. Vasoactive Intestinal Polypeptide (VIP) Distribution
2.4.1. Duodenum
2.4.2. Jejunum
2.4.3. Ileum
2.5. Calcitonin Gene-Related Peptide (CGRP) Distribution
2.5.1. Duodenum
2.5.2. Jejunum
2.5.3. Ileum
2.6. Vesicular Acetylcholine Transporter (VAChT)
2.6.1. Duodenum
2.6.2. Jejunum
2.6.3. Ileum
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H.J. The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Adv. Exp. Med. Biol. 2014, 817, 39–71. [Google Scholar]
- Furness, J.B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 286–294. [Google Scholar] [CrossRef]
- Furness, J.B. The enteric nervous system: Normal functions and enteric neuropathies. Neurogastroenterol. Motil. 2008, 20 (Suppl. 1), 32–38. [Google Scholar]
- Schemann, M.; Neunlist, M. The human enteric nervous system. Neurogastroenterol. Motil. 2004, 16 (Suppl. 1), 55–59. [Google Scholar]
- Furness, J.B. The organisation of the autonomic nervous system: Peripheral connections. Auton Neurosci. 2006, 130, 1–5. [Google Scholar] [CrossRef]
- Arciszewski, M.B.; Barabasz, S.; Skobowiat, C.; Maksymowicz, W.; Majewski, M. Immunodetection of cocaine- and amphetamine-regulated transcript in the rumen, reticulum, omasum and abomasum of the sheep. Anat. Histol. Embryol. 2009, 38, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Zacharko-Siembida, A.; Arciszewski, M.B. Co-expression patterns of cocaine- and amphetamine-regulated transcript (CART) with neuropeptides in dorsal root ganglia of the pig. Anat. Histol. Embryol. 2014, 43, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Furness, J.B. Intestinofugal neurons and sympathetic reflexes that bypass the central nervous system. J. Comp. Neurol. 2003, 455, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Lomax, A.E.; Furness, J.B. Neurochemical classification of enteric neurons in the guinea-pig distal colon. Cell Tissue Res. 2000, 302, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Clerc, N.; Furness, J.B.; Li, Z.S.; Bornstein, J.C.; Kunze, W.A. Morphological and immunohistochemical identification of neurons and their targets in the guinea-pig duodenum. Neuroscience 1998, 86, 679–694. [Google Scholar] [CrossRef]
- Furness, J.B. Types of neurons in the enteric nervous system. J. Auton Nerv. Syst. 2000, 81, 87–96. [Google Scholar] [CrossRef]
- Lomax, A.E.; Zhang, J.Y.; Furness, J.B. Origins of cholinergic inputs to the cell bodies of intestinofugal neurons in the guinea pig distal colon. J. Comp. Neurol. 2000, 416, 451–460. [Google Scholar] [CrossRef]
- Li, Z.S.; Furness, J.B. Immunohistochemical localisation of cholinergic markers in putative intrinsic primary afferent neurons of the guinea-pig small intestine. Cell Tissue Res. 1998, 294, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, P.; Judge, M.E.; Thim, L.; Ribel, U.; Christjansen, K.N.; Wulff, B.S.; Clausen, J.T.; Jensen, P.B.; Madsen, O.D.; Vrang, N.; et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 1998, 393, 72–76. [Google Scholar] [CrossRef]
- Wierup, N.; Gunnarsdóttir, A.; Ekblad, E.; Sundler, F. Characterisation of CART-containing neurons and cells in the porcine pancreas, gastro-intestinal tract, adrenal and thyroid glands. BMC Neurosci. 2007, 8, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekblad, E. CART in the enteric nervous system. Peptides 2006, 27, 2024–2030. [Google Scholar] [CrossRef]
- Ekblad, E.; Kuhar, M.; Wierup, N.; Sundler, F. Cocaine- and amphetamine-regulated transcript: Distribution and function in rat gastrointestinal tract. Neurogastroenterol. Motil. 2003, 15, 545–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hökfelt, T.; Tatemoto, K. Galanin 25 years with a multitalented neuropeptide. Cell. Mol. Life Sci. 2008, 65, 1793–1795. [Google Scholar] [CrossRef]
- Arciszewski, M.B.; Ekblad, E. Effects of vasoactive intestinal peptide and galanin on survival of cultured porcine myenteric neurons. Regul. Pept. 2005, 125, 185–192. [Google Scholar] [CrossRef]
- Lang, R.; Gundlach, A.L.; Kofler, B. The galanin peptide family: Receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol. Ther. 2007, 115, 177–207. [Google Scholar] [CrossRef]
- Sarnelli, G.; Vanden Berghe, P.; Raeymaekers, P.; Janssens, J.; Tack, J. Inhibitory effects of galanin on evoked [Ca2+] responses in cultured myenteric neurons. Am. J. Physiol. Gastrointest Liver Physiol. 2004, 286, G1009–G1014. [Google Scholar] [CrossRef]
- Sundler, F.; Ekblad, E.; Grunditz, T.; Håkanson, R.; Uddman, R. Vasoactive intestinal peptide in the peripheral nervous system. Ann. N. Y. Acad. Sci. 1988, 527, 143–167. [Google Scholar] [CrossRef]
- Ekblad, E.; Sundler, F. Distinct receptors mediate pituitary adenylate cyclase-activating peptide- and vasoactive intestinal peptide-induced relaxation of rat ileal longitudinal muscle. Eur. J. Pharmacol. 1997, 334, 61–66. [Google Scholar] [CrossRef]
- Sandgren, K.; Lin, Z.; Fex Svenningsen, A.; Ekblad, E. Vasoactive intestinal peptide and nitric oxide promote survival of adult rat myenteric neurons in culture. J. Neurosci. Res. 2003, 72, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Roza, C.; Reeh, P.W.; Substance, P. Calcitonin gene related peptide and PGE2 co-released from the mouse colon: A new model to study nociceptive and inflammatory responses in viscera, in vitro. Pain. 2001, 93, 213–219. [Google Scholar] [CrossRef]
- Grider, J.R. CGRP as a transmitter in the sensory pathway mediating peristaltic reflex. Am. J. Physiol. 1994, 266, G1139–G1145. [Google Scholar] [CrossRef] [PubMed]
- Maggi, C.A.; Giuliani, S.; Zagorodnyuk, V. Calcitonin gene-related peptide (CGRP) in the circular muscle of guinea-pig colon: Role as inhibitory transmitter and mechanisms of relaxation. Regul. Pept. 1996, 61, 27–36. [Google Scholar] [CrossRef]
- Holzer, P.; Barthó, L.; Matusák, O.; Bauer, V. Calcitonin gene-related peptide action on intestinal circular muscle. Am. J. Physiol. 1989, 256, G546–G552. [Google Scholar] [CrossRef]
- Palus, K.; Całka, J. Neurochemical Plasticity of the Coeliac-Superior Mesenteric Ganglion Complex Neurons Projecting to the Prepyloric Area of the Porcine Stomach following Hyperacidity. Neural. Plast. 2016, 2016, 8596214. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, B.C.; Cheng, H.T.; Stables, C.L.; Smith, A.L.; Feldman, E.L. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol. 2012, 11, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekharan, B.; Srinivasan, S. Diabetes and the enteric nervous system. Neurogastroenterol. Motil. 2007, 19, 951–960. [Google Scholar] [CrossRef] [Green Version]
- Yarandi, S.S.; Srinivasan, S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: Current status and future directions. Neurogastroenterol. Motil. 2014, 26, 611–624. [Google Scholar] [CrossRef]
- Al-Awar, A.; Kupai, K.; Veszelka, M.; Szűcs, G.; Attieh, Z.; Murlasits, Z.; Török, S.; Pósa, A.; Varga, C. Experimental Diabetes Mellitus in Different Animal Models. J. Diabetes Res. 2016, 2016, 9051426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, E.; Braun-Reichhart, C.; Streckel, E.; Renner, S. Genetically engineered pig models for diabetes research. Transgenic Res. 2014, 23, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Bulc, M.; Palus, K.; Zielonka, Ł.; Gajęcka, M.; Całka, J. Changes in expression of inhibitory substances in the intramural neurons of the stomach following streptozotocin- induced diabetes in the pig. World J. Gastroenterol. 2017, 23, 6088–6099. [Google Scholar] [CrossRef] [PubMed]
- Bulc, M.; Palus, K.; Dąbrowski, M.; Całka, J. Hyperglycaemia-Induced Downregulation in Expression of nNOS Intramural Neurons of the Small Intestine in the Pig. Int. J. Mol. Sci. 2019, 20, 1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulc, M.; Palus, K.; Całka, J.; Zielonka, Ł. Changes in Immunoreactivity of Sensory Substances within the Enteric Nervous System of the Porcine Stomach during Experimentally Induced Diabetes. J. Diabetes Res. 2018, 24. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.O.; Rolin, B. Use of the Goettingen Minipig as a Model of Diabetes with Special Focus on Type 1 Diabetes Research. ILAR. 2004, 45, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.O.; Wilken, M.; Gotfredsen, C.F.; Carr, R.D.; Svendsen, O.; Rolin, B. Mild streptozotocin diabetes in the Gottingen minipig. A novel model of moderate insulin deficiency and diabetes. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E1342–E1351. [Google Scholar] [CrossRef]
- Fricker, J. The pig: A new model of diabetic atherosclerosis. Drug Discov. Today. 2001, 6, 921–922. [Google Scholar] [CrossRef]
- Rosenfeld, L. Insulin: Discovery and controversy. Clin. Chem. 2002, 48, 2270–2288. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Motta, M.E. Mechanisms and factors associated with gastrointestinal symptoms in patients with diabetes mellitus. J. Pediatr (Rio J.) 2012, 88, 17–24. [Google Scholar] [CrossRef] [Green Version]
- King, A.J. The use of animal models in diabetes research. Br. J. Pharmacol. 2012, 166, 877–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schranz, D.B.; Lernmark, A. Immunology in diabetes: An update. Diabetes Metab. Rev. 1998, 14, 3–29. [Google Scholar] [CrossRef]
- Papatheodorou, K.; Papanas, N.; Banach, M.; Papazoglou, D.; Edmonds, M. Complications of Diabetes 2016. J. Diabetes Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013, 93, 137–188. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Chang, C.; Zhou, Z. Molecular mechanisms in autoimmune type 1 diabetes: A critical review. Clin Rev. Allergy Immunol. 2014, 47, 174–192. [Google Scholar] [CrossRef] [PubMed]
- Like, A.A.; Rossini, A.A. Streptozotocin-induced pancreatic insulitis: New model of diabetes mellitus. Science 1976, 193, 415–417. [Google Scholar] [CrossRef]
- Palus, K.; Bulc, M.; Całka, J. Changes in VIP-, SP- and CGRP- like immunoreactivity in intramural neurons within the pig stomach following supplementation with low and high doses of acrylamide. Neurotoxicology 2018, 69, 47–59. [Google Scholar] [CrossRef]
- Skobowiat, C.; Calka, J.; Majewski, M. Axotomy induced changes in neuronal plasticity of sympathetic chain ganglia (SChG) neurons supplying descending colon in the pig. Exp. Mol. Pathol. 2011, 90, 13–18. [Google Scholar] [CrossRef]
- Ballmann, M.; Conlon, J.M. Changes in the somatostatin, substance P and vasoactive intestinal polypeptide content of the gastrointestinal tract following streptozotocin-induced diabetes in the rat. Diabetologia 1985, 28, 355–358. [Google Scholar] [CrossRef] [Green Version]
- Nowak, T.V.; Chey, W.W.; Chang, T.M.; Weisbruch, J.P.; Fouquet, G. Effect of streptozotocin-induced diabetes mellitus on release of vasoactive intestinal polypeptide from rodent small intestine. Dig. Dis. Sci. 1995, 40, 828–836. [Google Scholar] [CrossRef]
- Whittaker, V.P. Vasoactive intestinal polypeptide (VIP) as a cholinergic co-transmitter: Some recent results. Cell Biol. Int. Rep. 1989, 13, 1039–1051. [Google Scholar] [CrossRef] [Green Version]
- Nasef, N.A.; Mehta, S.; Ferguson, L.R. Susceptibility to chronic inflammation: An update. Arch. Toxicol 2017, 91, 1131–1141. [Google Scholar] [CrossRef] [PubMed]
- Brenneman, D.E.; Philips, T.M.; Hauser, J.; Hill, J.M.; Spong, C.Y.; Gozes, I. Complex array of cytokines released by vasoactive intestinal pep-tide. Neuropeptides 2003, 37, 111–119. [Google Scholar] [CrossRef]
- El-Salhy, M. Neuroendocrine peptides of the gastrointestinal tract of an animal model of human type 2 diabetes mellitus. Acta Diabetol. 1998, 35, 194–198. [Google Scholar] [CrossRef] [PubMed]
- El-Salhy, M. Gastrointestinal transit in nonobese diabetic mouse: An animal model of human diabetes type 1. J. Diabetes Complicat. 2001, 15, 277–284. [Google Scholar] [CrossRef]
- Zawada, A.E.; Moszak, M.; Skrzypczak, D.; Grzymisławski, M. Gastrointestinal complications in patients with diabetes mellitus. Adv. Clin Exp. Med. 2018, 27, 567–572. [Google Scholar] [CrossRef]
- Heinricher, M.M. Pain Modulation and the Transition from Acute to Chronic Pain. Adv. Exp. Med. Biol. 2016, 904, 105–115. [Google Scholar]
- Belai, A.; Calcutt, N.A.; Carrington, A.L.; Diemel, L.T.; Tomlinson, D.R.; Burnstock, G. Enteric neuropeptides in streptozotocin-diabetic rats; effects of insulin and aldose reductase inhibition. J. Auton Nerv. Syst. 1996, 58, 163–169. [Google Scholar] [CrossRef]
- Belai, A.; Lincoln, J.; Burnstock, G. Lack of release of vasoactive intestinal polypeptide and calcitonin gene-related peptide during electrical stimulation of enteric nerves in streptozotocindiabetic rats. Gastroenterology 1987, 93, 1034–1040. [Google Scholar] [CrossRef]
- Belai, A.; Burnstock, G. Changes in adrenergic and peptidergic nerves in the submucous plexus of streptozocin-diabetic rat ileum. Gastroenterology 1990, 98, 1427–1436. [Google Scholar] [CrossRef]
- Marchand, L.; Kawasaki-Ogita, Y.; Place, J.; Fayolle, C.; Lauton, D.; Boulet, F.; Farret, A.; Renard, E. Long-Term Effects of Continuous Subcutaneous Insulin Infusion on Glucose Control and Microvascular Complications in Patients With Type 1 Diabetes. J. Diabetes Sci. Technol. 2017, 11, 924–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, Z.D.; Thacker, M.; Castelucci, P.; Bagyánszki, M.; Epstein, M.L.; Furness, J.B. Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res. 2008, 334, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Pidsudko, Z.; Wąsowicz, K.; Kaleczyc, J.; Majewski, M.; Lakomy, M. Proliferative enteropathy induced changes in expression of DβH, VAChT and NOS in the neurons on intramural ganglia of the porcain ileum. Veterin Med. 2008, 53, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Monckton, G.; Pehowich, E. Autonomic neuropathy in the streptozotocin diabetic rat. Can. J. Neurol. Sci. 1980, 7, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Spangeus, A.; Suhr, O.; El-Salhy, M. Diabetic state affects the innervation of gut in an animal model of human type 1 diabetes. Histol. Histopathol. 2000, 15, 739–744. [Google Scholar]
- LePard, K.J. Choline acetyltransferase and inducible nitric oxide synthase are increased in myenteric plexus of diabetic guinea pig. Auton. Neurosci. 2005, 118, 12–24. [Google Scholar] [CrossRef]
Date | Control Group mg/dL | SEM ± | Experimental Group mg/dL | SEM ± |
---|---|---|---|---|
Before streptozotocin injection | 90.18 | 0.10 | 90.4 | 0.10 |
1 week after streptozotocin injection | 91.44 | 0.10 | 312.48 | 0.38 |
2 weeks after streptozotocin injection | 88.38 | 0.18 | 372.96 | 0.24 |
3 weeks after streptozotocin injection | 93.42 | 0.06 | 388.44 | 0.27 |
4 weeks after streptozotocin injection | 95.58 | 0.12 | 361.44 | 0.09 |
5 weeks after streptozotocin injection | 87.12 | 0.32 | 400.68 | 1.21 |
6 weeks after streptozotocin injection | 93.6 | 0.1 | 386.1 | 1.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulc, M.; Całka, J.; Palus, K. Effect of Streptozotocin-Inducted Diabetes on the Pathophysiology of Enteric Neurons in the Small Intestine Based on the Porcine Diabetes Model. Int. J. Mol. Sci. 2020, 21, 2047. https://doi.org/10.3390/ijms21062047
Bulc M, Całka J, Palus K. Effect of Streptozotocin-Inducted Diabetes on the Pathophysiology of Enteric Neurons in the Small Intestine Based on the Porcine Diabetes Model. International Journal of Molecular Sciences. 2020; 21(6):2047. https://doi.org/10.3390/ijms21062047
Chicago/Turabian StyleBulc, Michał, Jarosław Całka, and Katarzyna Palus. 2020. "Effect of Streptozotocin-Inducted Diabetes on the Pathophysiology of Enteric Neurons in the Small Intestine Based on the Porcine Diabetes Model" International Journal of Molecular Sciences 21, no. 6: 2047. https://doi.org/10.3390/ijms21062047
APA StyleBulc, M., Całka, J., & Palus, K. (2020). Effect of Streptozotocin-Inducted Diabetes on the Pathophysiology of Enteric Neurons in the Small Intestine Based on the Porcine Diabetes Model. International Journal of Molecular Sciences, 21(6), 2047. https://doi.org/10.3390/ijms21062047