Neuroimaging Biomarkers for Predicting Treatment Response and Recurrence of Major Depressive Disorder
Abstract
:1. Necessity of Predictors for Treatment Response and Recurrence
2. Clinical and Genetic Predictors
3. Neuroimaging Biomarkers
3.1. Structural Imaging and Volumetric Data
3.2. Diffusion Tensor Imaging
3.3. Functional MRI
3.4. Electroencephalography
3.5. Molecular Imaging (PET and SPECT)
3.6. Magnetic Resonance Spectroscopy and Near-Infrared Spectroscopy
3.7. Imaging Pharmacogenetics
3.8. Machine Learning
4. Current Status and Limitations of Neuroimaging Research in MDD and Future Studies
Funding
Conflicts of Interest
Abbreviations
MDD | Major depressive disorder |
MRI | Magnetic resonance imaging |
REM | Rapid eye movement |
CBT | Cognitive behavior therapy |
BDNF | Brain-derived neurotrophic factor |
EEG | Electroencephalography |
fMRI | Functional magnetic resonance imaging |
DTI | Diffusion tensor imaging |
MRS | Magnetic resonance spectroscopy |
NIRS | Near-infrared spectroscopy |
PET | Positron emission tomography |
SPECT | Single-photon emission computed tomography |
SSRI | Selective serotonin reuptake inhibitor |
ECT | Electroconvulsive therapy |
SNRI | Serotonin–norepinephrine reuptake inhibitor |
FA | Fractional anisotropy |
MD | Mean diffusivity |
TBSS | Track-Based Spatial Statistics |
RD | Radial diffusivity |
RSFC | Resting state functional connectivity |
rTMS | Repetitive transcranial magnetic stimulation |
18FDG-PET | (18)F-fluoro-2-deoxy-d-glucose PET |
SERT | Serotonin transporter |
rCBF | Regional cerebral blood flow |
GABA | Gamma-aminobutyric acid |
5-HTTLPR | Serotonin transporter-linked promoter region |
CAN-BIND | Canadian Biomarker Integration Network in Depression |
References
- Undurraga, J.; Baldessarini, R.J. Randomized, placebo-controlled trials of antidepressants for acute major depression: Thirty-year meta-analytic review. Neuropsychopharmacology 2012, 37, 851–864. [Google Scholar] [CrossRef] [Green Version]
- Gelenberg, A.; Freeman, M.; Markowitz, J.; Rosenbaum, J.; Thase, M.; Trivedi, M.; Van Rhoads, R. American Psychiatric Association practice guidelines for the treatment of patients with major depressive disorder. Am. J. Psychiatry 2010, 167, 9–118. [Google Scholar]
- Judd, L.L.; Akiskal, H.S.; Maser, J.D.; Zeller, P.J.; Endicott, J.; Coryell, W.; Paulus, M.P.; Kunovac, J.L.; Leon, A.C.; Mueller, T.I.; et al. Major depressive disorder: A prospective study of residual subthreshold depressive symptoms as predictor of rapid relapse. J. Affect. Disord. 1998, 50, 97–108. [Google Scholar]
- Pettit, J.W.; Lewinsohn, P.M.; Roberts, R.E.; Seeley, J.R.; Monteith, L. The long-term course of depression: Development of an empirical index and identification of early adult outcomes. Psychol. Med. 2009, 39, 403–412. [Google Scholar] [CrossRef]
- Bland, R.C.; Newman, S.C.; Orn, H. Recurrent and nonrecurrent depression: A family study. Arch. Gen. Psychiatry 1986, 43, 1085–1089. [Google Scholar]
- Klein, D.N.; Lewinsohn, P.M.; Seeley, J.R.; Rohde, P. A family study of major depressive disorder in a community sample of adolescents. Arch. Gen. Psychiatry 2001, 58, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Klein, D.N.; Shankman, S.A.; Lewinsohn, P.M.; Rohde, P.; Seeley, J.R. Family study of chronic depression in a community sample of young adults. Am. J. Psychiatry 2004, 161, 646–653. [Google Scholar] [CrossRef]
- Kovacs, M.; Devlin, B.; Pollock, M.; Richards, C.; Mukerji, P. A controlled family history study of childhood-onset depressive disorder. Arch. Gen. Psychiatry 1997, 54, 613–623. [Google Scholar] [CrossRef]
- Palagini, L.; Baglioni, C.; Ciapparelli, A.; Gemignani, A.; Riemann, D. REM sleep dysregulation in depression: State of the art. Sleep Med. Rev. 2013, 17, 377–390. [Google Scholar] [CrossRef]
- Bao, Y.P.; Han, Y.; Ma, J.; Wang, R.J.; Shi, L.; Wang, T.Y.; He, J.; Yue, J.L.; Shi, J.; Tang, X.D.; et al. Cooccurrence and bidirectional prediction of sleep disturbances and depression in older adults: Meta-analysis and systematic review. Neurosci. Biobehav. Rev. 2017, 75, 257–273. [Google Scholar] [CrossRef]
- Asarnow, L.D.; Bei, B.; Krystal, A.; Buysse, D.J.; Thase, M.E.; Edinger, J.D.; Manber, R. Circadian Preference as a Moderator of Depression Outcome Following Cognitive Behavioral Therapy for Insomnia Plus Antidepressant Medications: A Report From the TRIAD Study. J. Clin. Sleep Med. 2019, 15, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, P.F.; Neale, M.C.; Kendler, K.S. Genetic epidemiology of major depression: Review and meta-analysis. Am. J. Psychiatry 2000, 157, 1552–1562. [Google Scholar] [CrossRef]
- Wilson, S.; Vaidyanathan, U.; Miller, M.B.; McGue, M.; Iacono, W.G. Premorbid risk factors for major depressive disorder: Are they associated with early onset and recurrent course? Dev. Psychopathol. 2014, 26, 1477–1493. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.; Berrogain, C.; Concha, J.; Lomba, L.; Garcia, C.B.; Ribate, M.P. Pharmacogenetic studies: A tool to improve antidepressant therapy. Drug Metab. Pers. Ther. 2016, 31, 197–204. [Google Scholar] [CrossRef]
- Rosenblat, J.D.; Lee, Y.; McIntyre, R.S. Does Pharmacogenomic Testing Improve Clinical Outcomes for Major Depressive Disorder? A Systematic Review of Clinical Trials and Cost-Effectiveness Studies. J. Clin. Psychiatry 2017, 78, 720–729. [Google Scholar] [CrossRef]
- Ripke, S.; Wray, N.R.; Lewis, C.M.; Hamilton, S.P.; Weissman, M.M.; Breen, G.; Byrne, E.M.; Blackwood, D.H.; Boomsma, D.I.; Cichon, S.; et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry 2013, 18, 497–511. [Google Scholar] [CrossRef] [Green Version]
- Wray, N.R.; Pergadia, M.L.; Blackwood, D.H.; Penninx, B.W.; Gordon, S.D.; Nyholt, D.R.; Ripke, S.; MacIntyre, D.J.; McGhee, K.A.; Maclean, A.W.; et al. Genome-wide association study of major depressive disorder: New results, meta-analysis, and lessons learned. Mol. Psychiatry 2012, 17, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Lener, M.S.; Iosifescu, D.V. In pursuit of neuroimaging biomarkers to guide treatment selection in major depressive disorder: A review of the literature. Ann. NY Acad. Sci. 2015, 1344, 50–65. [Google Scholar] [CrossRef]
- Niciu, M.J.; Mathews, D.C.; Nugent, A.C.; Ionescu, D.F.; Furey, M.L.; Richards, E.M.; Machado-Vieira, R.; Zarate, C.A., Jr. Developing biomarkers in mood disorders research through the use of rapid-acting antidepressants. Depress. Anxiety 2014, 31, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Budinger, T.F.; Bird, M.D. MRI and MRS of the human brain at magnetic fields of 14T to 20T: Technical feasibility, safety, and neuroscience horizons. NeuroImage 2018, 168, 509–531. [Google Scholar] [CrossRef]
- Fonseka, T.M.; MacQueen, G.M.; Kennedy, S.H. Neuroimaging biomarkers as predictors of treatment outcome in Major Depressive Disorder. J. Affect. Disord. 2018, 233, 21–35. [Google Scholar] [CrossRef]
- Bremner, J.D.; Narayan, M.; Anderson, E.R.; Staib, L.H.; Miller, H.L.; Charney, D.S. Hippocampal volume reduction in major depression. Am. J. Psychiatry 2000, 157, 115–118. [Google Scholar] [CrossRef]
- Jaworska, N.; Yucel, K.; Courtright, A.; MacMaster, F.P.; Sembo, M.; MacQueen, G. Subgenual anterior cingulate cortex and hippocampal volumes in depressed youth: The role of comorbidity and age. J. Affect. Disord. 2016, 190, 726–732. [Google Scholar] [CrossRef]
- MacQueen, G.; Frodl, T. The hippocampus in major depression: Evidence for the convergence of the bench and bedside in psychiatric research? Mol. Psychiatry 2011, 16, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Frodl, T.; Meisenzahl, E.M.; Zetzsche, T.; Hohne, T.; Banac, S.; Schorr, C.; Jager, M.; Leinsinger, G.; Bottlender, R.; Reiser, M.; et al. Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up. J. Clin. Psychiatry 2004, 65, 492–499. [Google Scholar] [CrossRef]
- Frodl, T.; Jäger, M.; Smajistrlova, I.; Born, C.; Bottlender, R.; Palladino, T.; Reiser, M.; Möller, H.J.; Meisenzahl, E.M. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: A 3-year prospective magnetic resonance imaging study. J. Psychiatry Neurosci. 2008, 33, 423–430. [Google Scholar]
- Fu, C.H.; Steiner, H.; Costafreda, S.G. Predictive neural biomarkers of clinical response in depression: A meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol. Dis. 2013, 52, 75–83. [Google Scholar] [CrossRef]
- Fu, C.H.; Costafreda, S.G.; Sankar, A.; Adams, T.M.; Rasenick, M.M.; Liu, P.; Donati, R.; Maglanoc, L.A.; Horton, P.; Marangell, L.B. Multimodal functional and structural neuroimaging investigation of major depressive disorder following treatment with duloxetine. BMC Psychiatry 2015, 15, 82. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, M.H.; McQuoid, D.R.; Levy, R.M.; Payne, M.E.; MacFall, J.R.; Steffens, D.C. Hippocampal volume and antidepressant response in geriatric depression. Int. J. Geriatr. Psychiatry 2002, 17, 519–525. [Google Scholar] [CrossRef]
- MacQueen, G.M.; Yucel, K.; Taylor, V.H.; Macdonald, K.; Joffe, R. Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol. Psychiatry 2008, 64, 880–883. [Google Scholar] [CrossRef]
- Vakili, K.; Pillay, S.S.; Lafer, B.; Fava, M.; Renshaw, P.F.; Bonello-Cintron, C.M.; Yurgelun-Todd, D.A. Hippocampal volume in primary unipolar major depression: A magnetic resonance imaging study. Biol. Psychiatry 2000, 47, 1087–1090. [Google Scholar] [CrossRef]
- Jung, J.; Kang, J.; Won, E.; Nam, K.; Lee, M.S.; Tae, W.S.; Ham, B.J. Impact of lingual gyrus volume on antidepressant response and neurocognitive functions in Major Depressive Disorder: A voxel-based morphometry study. J. Affect. Disord. 2014, 169, 179–187. [Google Scholar] [CrossRef]
- Costafreda, S.G.; Chu, C.; Ashburner, J.; Fu, C.H. Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS ONE 2009, 4, e6353. [Google Scholar] [CrossRef]
- Liu, F.; Guo, W.; Yu, D.; Gao, Q.; Gao, K.; Xue, Z.; Du, H.; Zhang, J.; Tan, C.; Liu, Z.; et al. Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PLoS ONE 2012, 7, e40968. [Google Scholar] [CrossRef]
- Bartlett, E.A.; DeLorenzo, C.; Sharma, P.; Yang, J.; Zhang, M.; Petkova, E.; Weissman, M.; McGrath, P.J.; Fava, M.; Ogden, R.T.; et al. Pretreatment and early-treatment cortical thickness is associated with SSRI treatment response in major depressive disorder. Neuropsychopharmacology 2018, 43, 2221–2230. [Google Scholar] [CrossRef] [Green Version]
- Ten Doesschate, F.; van Eijndhoven, P.; Tendolkar, I.; van Wingen, G.A.; van Waarde, J.A. Pre-treatment amygdala volume predicts electroconvulsive therapy response. Front. Psychiatry 2014, 5, 169. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, F.M.; Schindler, S.; Adamidis, M.; Strauss, M.; Trankner, A.; Trampel, R.; Walter, M.; Hegerl, U.; Turner, R.; Geyer, S.; et al. Habenula volume increases with disease severity in unmedicated major depressive disorder as revealed by 7T MRI. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 107–115. [Google Scholar] [CrossRef]
- Enneking, V.; Leehr, E.J.; Dannlowski, U.; Redlich, R. Brain structural effects of treatments for depression and biomarkers of response: A systematic review of neuroimaging studies. Psychol. Med. 2019, 50, 187–209. [Google Scholar] [CrossRef]
- Serra-Blasco, M.; de Diego-Adelino, J.; Vives-Gilabert, Y.; Trujols, J.; Puigdemont, D.; Carceller-Sindreu, M.; Perez, V.; Alvarez, E.; Portella, M.J. Naturalistic Course of Major Depressive Disorder Predicted by Clinical and Structural Neuroimaging Data: A 5-Year Follow-Up. Depress. Anxiety 2016, 33, 1055–1064. [Google Scholar] [CrossRef]
- Taylor, W.D.; Aizenstein, H.J.; Alexopoulos, G.S. The vascular depression hypothesis: Mechanisms linking vascular disease with depression. Mol. Psychiatry 2013, 18, 963–974. [Google Scholar] [CrossRef] [Green Version]
- Iosifescu, D.V.; Renshaw, P.F.; Lyoo, I.K.; Lee, H.K.; Perlis, R.H.; Papakostas, G.I.; Nierenberg, A.A.; Fava, M. Brain white-matter hyperintensities and treatment outcome in major depressive disorder. Br. J. Psychiatry 2006, 188, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, R.; Jeffries, S.; Jackson, A.; Sutcliffe, C.; Thacker, N.; Scott, M.; Burns, A. Treatment response in late-onset depression: Relationship to neuropsychological, neuroradiological and vascular risk factors. Psychol. Med. 2004, 34, 125–136. [Google Scholar] [CrossRef]
- Simpson, S.W.; Jackson, A.; Baldwin, R.C.; Burns, A. 1997 IPA/Bayer Research Awards in Psychogeriatrics. Subcortical hyperintensities in late-life depression: Acute response to treatment and neuropsychological impairment. Int. Psychogeriatr. 1997, 9, 257–275. [Google Scholar] [CrossRef]
- Khalaf, A.; Edelman, K.; Tudorascu, D.; Andreescu, C.; Reynolds, C.F.; Aizenstein, H. White Matter Hyperintensity Accumulation During Treatment of Late-Life Depression. Neuropsychopharmacology 2015, 40, 3027–3035. [Google Scholar] [CrossRef] [Green Version]
- White, T.; Nelson, M.; Lim, K.O. Diffusion tensor imaging in psychiatric disorders. Top. Magn. Reson. Imaging 2008, 19, 97–109. [Google Scholar] [CrossRef]
- Hoogenboom, W.S.; Perlis, R.H.; Smoller, J.W.; Zeng-Treitler, Q.; Gainer, V.S.; Murphy, S.N.; Churchill, S.E.; Kohane, I.S.; Shenton, M.E.; Iosifescu, D.V. Limbic system white matter microstructure and long-term treatment outcome in major depressive disorder: A diffusion tensor imaging study using legacy data. World J. Biol. Psychiatry 2014, 15, 122–134. [Google Scholar] [CrossRef]
- Taylor, W.D.; Kuchibhatla, M.; Payne, M.E.; Macfall, J.R.; Sheline, Y.I.; Krishnan, K.R.; Doraiswamy, P.M. Frontal white matter anisotropy and antidepressant remission in late-life depression. PLoS ONE 2008, 3, e3267. [Google Scholar] [CrossRef]
- Taylor, W.D.; Macfall, J.R.; Boyd, B.; Payne, M.E.; Sheline, Y.I.; Krishnan, R.R.; Murali Doraiswamy, P. One-year change in anterior cingulate cortex white matter microstructure: Relationship with late-life depression outcomes. Am. J. Geriatr. Psychiatry 2011, 19, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.F.; Zwiers, M.P.; Fitzgerald, D.A.; van Eijndhoven, P.; Becker, E.S.; Rinck, M.; Fernandez, G.; Speckens, A.E.; Tendolkar, I. Fronto-limbic microstructure and structural connectivity in remission from major depression. Psychiatry Res. 2012, 204, 40–48. [Google Scholar] [CrossRef]
- Vasavada, M.M.; Leaver, A.M.; Espinoza, R.T.; Joshi, S.H.; Njau, S.N.; Woods, R.P.; Narr, K.L. Structural connectivity and response to ketamine therapy in major depression: A preliminary study. J. Affect. Disord. 2016, 190, 836–841. [Google Scholar] [CrossRef] [Green Version]
- Korgaonkar, M.S.; Williams, L.M.; Song, Y.J.; Usherwood, T.; Grieve, S.M. Diffusion tensor imaging predictors of treatment outcomes in major depressive disorder. Br. J. Psychiatry J. Ment. Sci. 2014, 205, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Lyden, H.; Espinoza, R.T.; Pirnia, T.; Clark, K.; Joshi, S.H.; Leaver, A.M.; Woods, R.P.; Narr, K.L. Electroconvulsive therapy mediates neuroplasticity of white matter microstructure in major depression. Transl. Psychiatry 2014, 4, e380. [Google Scholar] [CrossRef] [Green Version]
- Grieve, S.M.; Korgaonkar, M.S.; Gordon, E.; Williams, L.M.; Rush, A.J. Prediction of nonremission to antidepressant therapy using diffusion tensor imaging. J. Clin. Psychiatry 2016, 77, e436–e443. [Google Scholar] [CrossRef]
- Pillai, R.L.I.; Huang, C.; LaBella, A.; Zhang, M.; Yang, J.; Trivedi, M.; Weissman, M.; McGrath, P.; Fava, M.; Kurian, B.; et al. Examining raphe-amygdala structural connectivity as a biological predictor of SSRI response. J. Affect. Disord. 2019, 256, 8–16. [Google Scholar] [CrossRef]
- Malhi, G.S.; Lagopoulos, J. Making sense of neuroimaging in psychiatry. Acta Psychiatr. Scand. 2008, 117, 100–117. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, G.S.; Hoptman, M.J.; Kanellopoulos, D.; Murphy, C.F.; Lim, K.O.; Gunning, F.M. Functional connectivity in the cognitive control network and the default mode network in late-life depression. J. Affect. Disord. 2012, 139, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Andreescu, C.; Tudorascu, D.L.; Butters, M.A.; Tamburo, E.; Patel, M.; Price, J.; Karp, J.F.; Reynolds, C.F.; Aizenstein, H. Resting state functional connectivity and treatment response in late-life depression. Psychiatry Res. Neuroimaging 2013, 214, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Cullen, K.R.; Klimes-Dougan, B.; Vu, D.P.; Westlund Schreiner, M.; Mueller, B.A.; Eberly, L.E.; Camchong, J.; Westervelt, A.; Lim, K.O. Neural Correlates of Antidepressant Treatment Response in Adolescents with Major Depressive Disorder. J. Child Adolesc. Psychopharmacol. 2016, 26, 705–712. [Google Scholar] [CrossRef] [Green Version]
- Dichter, G.S.; Gibbs, D.; Smoski, M.J. A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J. Affect. Disord. 2015, 172, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Langenecker, S.A.; Kennedy, S.E.; Guidotti, L.M.; Briceno, E.M.; Own, L.S.; Hooven, T.; Young, E.A.; Akil, H.; Noll, D.C.; Zubieta, J.K. Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder. Biol. Psychiatry 2007, 62, 1272–1280. [Google Scholar] [CrossRef] [Green Version]
- Gyurak, A.; Patenaude, B.; Korgaonkar, M.S.; Grieve, S.M.; Williams, L.M.; Etkin, A. Frontoparietal Activation During Response Inhibition Predicts Remission to Antidepressants in Patients With Major Depression. Biol. Psychiatry 2016, 79, 274–281. [Google Scholar] [CrossRef]
- Fitzgerald, P.B.; Sritharan, A.; Daskalakis, Z.J.; de Castella, A.R.; Kulkarni, J.; Egan, G. A functional magnetic resonance imaging study of the effects of low frequency right prefrontal transcranial magnetic stimulation in depression. J. Clin. Psychopharmacol. 2007, 27, 488–492. [Google Scholar] [CrossRef]
- Miller, J.M.; Schneck, N.; Siegle, G.J.; Chen, Y.; Ogden, R.T.; Kikuchi, T.; Oquendo, M.A.; Mann, J.J.; Parsey, R.V. fMRI response to negative words and SSRI treatment outcome in major depressive disorder: A preliminary study. Psychiatry Res. 2013, 214, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Ruhe, H.G.; Booij, J.; Veltman, D.J.; Michel, M.C.; Schene, A.H. Successful pharmacologic treatment of major depressive disorder attenuates amygdala activation to negative facial expressions: A functional magnetic resonance imaging study. J. Clin. Psychiatry 2012, 73, 451–459. [Google Scholar] [CrossRef]
- Frodl, T.; Scheuerecker, J.; Schoepf, V.; Linn, J.; Koutsouleris, N.; Bokde, A.L.; Hampel, H.; Moller, H.J.; Bruckmann, H.; Wiesmann, M.; et al. Different effects of mirtazapine and venlafaxine on brain activation: An open randomized controlled fMRI study. J. Clin. Psychiatry 2011, 72, 448–457. [Google Scholar] [CrossRef]
- Williams, L.M.; Korgaonkar, M.S.; Song, Y.C.; Paton, R.; Eagles, S.; Goldstein-Piekarski, A.; Grieve, S.M.; Harris, A.W.; Usherwood, T.; Etkin, A. Amygdala Reactivity to Emotional Faces in the Prediction of General and Medication-Specific Responses to Antidepressant Treatment in the Randomized iSPOT-D Trial. Neuropsychopharmacology 2015, 40, 2398–2408. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, T.; Fournier, J.C.; Stiffler, R.; Chase, H.W.; Almeida, J.R.; Aslam, H.; Deckersbach, T.; Cooper, C.; Toups, M.S.; Carmody, T.; et al. Reward related ventral striatal activity and differential response to sertraline versus placebo in depressed individuals. Mol. Psychiatry 2019. [Google Scholar] [CrossRef]
- Arikan, M.K.; Metin, B.; Tarhan, N. EEG gamma synchronization is associated with response to paroxetine treatment. J. Affect. Disord. 2018, 235, 114–116. [Google Scholar] [CrossRef]
- Yamamoto, T.; Sugaya, N.; Siegle, G.J.; Kumano, H.; Shimada, H.; Machado, S.; Murillo-Rodriguez, E.; Rocha, N.B.; Nardi, A.E.; Takamura, M.; et al. Altered Gamma-Band Activity as a Potential Biomarker for the Recurrence of Major Depressive Disorder. Front. Psychiatry 2018, 9, 691. [Google Scholar] [CrossRef]
- Schmidt, F.M.; Sander, C.; Dietz, M.E.; Nowak, C.; Schroder, T.; Mergl, R.; Schonknecht, P.; Himmerich, H.; Hegerl, U. Brain arousal regulation as response predictor for antidepressant therapy in major depression. Sci. Rep. 2017, 7, 45187. [Google Scholar] [CrossRef]
- Arns, M.; Etkin, A.; Hegerl, U.; Williams, L.M.; DeBattista, C.; Palmer, D.M.; Fitzgerald, P.B.; Harris, A.; deBeuss, R.; Gordon, E. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: Implications for treatment outcome? Eur. Neuropsychopharmacol. 2015, 25, 1190–1200. [Google Scholar] [CrossRef]
- Jaworska, N.; de la Salle, S.; Ibrahim, M.H.; Blier, P.; Knott, V. Leveraging Machine Learning Approaches for Predicting Antidepressant Treatment Response Using Electroencephalography (EEG) and Clinical Data. Front. Psychiatry 2018, 9, 768. [Google Scholar] [CrossRef] [Green Version]
- Farde, L. The advantage of using positron emission tomography in drug research. Trends Neurosci. 1996, 19, 211–214. [Google Scholar] [CrossRef]
- Lu, F.-M.; Yuan, Z. PET/SPECT molecular imaging in clinical neuroscience: Recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 2015, 5, 433–447. [Google Scholar] [CrossRef]
- Milak, M.S.; Parsey, R.V.; Lee, L.; Oquendo, M.A.; Olvet, D.M.; Eipper, F.; Malone, K.; Mann, J.J. Pretreatment regional brain glucose uptake in the midbrain on PET may predict remission from a major depressive episode after three months of treatment. Psychiatry Res. 2009, 173, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Mayberg, H.S.; Brannan, S.K.; Tekell, J.L.; Silva, J.A.; Mahurin, R.K.; McGinnis, S.; Jerabek, P.A. Regional metabolic effects of fluoxetine in major depression: Serial changes and relationship to clinical response. Biol. Psychiatry 2000, 48, 830–843. [Google Scholar] [CrossRef]
- Baeken, C.; De Raedt, R.; Van Hove, C.; Clerinx, P.; De Mey, J.; Bossuyt, A. HF-rTMS treatment in medication-resistant melancholic depression: Results from 18FDG-PET brain imaging. CNS Spectr. 2009, 14, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Konarski, J.Z.; Kennedy, S.H.; Segal, Z.V.; Lau, M.A.; Bieling, P.J.; McIntyre, R.S.; Mayberg, H.S. Predictors of nonresponse to cognitive behavioural therapy or venlafaxine using glucose metabolism in major depressive disorder. J. Psychiatry Neurosci. JPN 2009, 34, 175–180. [Google Scholar]
- McGrath, C.L.; Kelley, M.E.; Holtzheimer, P.E.; Dunlop, B.W.; Craighead, W.E.; Franco, A.R.; Craddock, R.C.; Mayberg, H.S. Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry 2013, 70, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Goldapple, K.; Segal, Z.; Garson, C.; Lau, M.; Bieling, P.; Kennedy, S.; Mayberg, H. Modulation of cortical-limbic pathways in major depression: Treatment-specific effects of cognitive behavior therapy. Arch. Gen. Psychiatry 2004, 61, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Yeh, Y.-W.; Ho, P.-S.; Kuo, S.-C.; Chen, C.-Y.; Liang, C.-S.; Yen, C.-H.; Huang, C.-C.; Ma, K.-H.; Shiue, C.-Y.; Huang, W.-S.; et al. Disproportionate reduction of serotonin transporter may predict the response and adherence to antidepressants in patients with major depressive disorder: A positron emission tomography study with 4-[18F]-ADAM. Int. J. Neuropsychopharmacol. 2015, 18. [Google Scholar] [CrossRef] [Green Version]
- Esterlis, I.; DellaGioia, N.; Pietrzak, R.H.; Matuskey, D.; Nabulsi, N.; Abdallah, C.G.; Yang, J.; Pittenger, C.; Sanacora, G.; Krystal, J.H.; et al. Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: An [(11)C]ABP688 and PET imaging study in depression. Mol. Psychiatry 2018, 23, 824–832. [Google Scholar] [CrossRef] [Green Version]
- Pecina, M.; Sikora, M.; Avery, E.T.; Heffernan, J.; Pecina, S.; Mickey, B.J.; Zubieta, J.K. Striatal dopamine D2/3 receptor-mediated neurotransmission in major depression: Implications for anhedonia, anxiety and treatment response. Eur. Neuropsychopharmacol. 2017, 27, 977–986. [Google Scholar] [CrossRef]
- Hanada, H.; Imanaga, J.; Yoshiiwa, A.; Yoshikawa, T.; Tanaka, Y.; Tsuru, J.; Inoue, A.; Ishitobi, Y.; Okamoto, S.; Kanehisa, M.; et al. The value of ethyl cysteinate dimer single photon emission computed tomography in predicting antidepressant treatment response in patients with major depression. Int. J. Geriatr. Psychiatry 2013, 28, 756–765. [Google Scholar] [CrossRef]
- Amsterdam, J.D.; Newberg, A.B.; Newman, C.F.; Shults, J.; Wintering, N.; Soeller, I. Change over time in brain serotonin transporter binding in major depression: Effects of therapy measured with [(123) I]-ADAM SPECT. J. Neuroimaging 2013, 23, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Milo, T.J.; Kaufman, G.E.; Barnes, W.E.; Konopka, L.M.; Crayton, J.W.; Ringelstein, J.G.; Shirazi, P.H. Changes in regional cerebral blood flow after electroconvulsive therapy for depression. J. ECT 2001, 17, 15–21. [Google Scholar] [CrossRef]
- Kito, S.; Hasegawa, T.; Koga, Y. Cerebral blood flow ratio of the dorsolateral prefrontal cortex to the ventromedial prefrontal cortex as a potential predictor of treatment response to transcranial magnetic stimulation in depression. Brain Stimul. 2012, 5, 547–553. [Google Scholar] [CrossRef]
- Jha, S.; Chadda, R.K.; Kumar, N.; Bal, C.S. Brain SPECT guided repetitive transcranial magnetic stimulation (rTMS) in treatment resistant major depressive disorder. Asian J. Psychiatry 2016, 21, 1–6. [Google Scholar] [CrossRef]
- Luborzewski, A.; Schubert, F.; Seifert, F.; Danker-Hopfe, H.; Brakemeier, E.L.; Schlattmann, P.; Anghelescu, I.; Colla, M.; Bajbouj, M. Metabolic alterations in the dorsolateral prefrontal cortex after treatment with high-frequency repetitive transcranial magnetic stimulation in patients with unipolar major depression. J. Psychiatr. Res. 2007, 41, 606–615. [Google Scholar] [CrossRef]
- Dubin, M.J.; Mao, X.; Banerjee, S.; Goodman, Z.; Lapidus, K.A.; Kang, G.; Liston, C.; Shungu, D.C. Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy. J. Psychiatry Neurosci. JPN 2016, 41, E37–E45. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Zhang, L.; Li, L.; Liu, P.; Gao, J.; Liu, X.; Zou, J.; Zhang, Y.; Liu, J.; Zhang, Z.; et al. High-frequency rTMS treatment increases left prefrontal myo-inositol in young patients with treatment-resistant depression. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2010, 34, 1189–1195. [Google Scholar] [CrossRef]
- Eschweiler, G.W.; Wegerer, C.; Schlotter, W.; Spandl, C.; Stevens, A.; Bartels, M.; Buchkremer, G. Left prefrontal activation predicts therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression. Psychiatry Res. 2000, 99, 161–172. [Google Scholar] [CrossRef]
- Yamagata, B.; Yamanaka, K.; Takei, Y.; Hotta, S.; Hirano, J.; Tabuchi, H.; Mimura, M. Brain functional alterations observed 4-weekly in major depressive disorder following antidepressant treatment. J. Affect. Disord. 2019, 252, 25–31. [Google Scholar] [CrossRef]
- Tomioka, H.; Yamagata, B.; Kawasaki, S.; Pu, S.; Iwanami, A.; Hirano, J.; Nakagome, K.; Mimura, M. A longitudinal functional neuroimaging study in medication-naive depression after antidepressant treatment. PLoS ONE 2015, 10, e0120828. [Google Scholar] [CrossRef] [Green Version]
- Thompson, P.M.; Stein, J.L.; Medland, S.E.; Hibar, D.P.; Vasquez, A.A.; Renteria, M.E.; Toro, R.; Jahanshad, N.; Schumann, G.; Franke, B.; et al. The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 2014, 8, 153–182. [Google Scholar] [CrossRef] [Green Version]
- Ramasubbu, R.; Burgess, A.; Gaxiola-Valdez, I.; Cortese, F.; Clark, D.; Kemp, A.; Goodyear, B.; Macqueen, G.; Bech-Hansen, N.T.; Foster, J.; et al. Amygdala responses to quetiapine XR and citalopram treatment in major depression: The role of 5-HTTLPR-S/Lg polymorphisms. Hum. Psychopharmacol. 2016, 31, 144–155. [Google Scholar] [CrossRef]
- Domschke, K.; Dannlowski, U.; Ohrmann, P.; Lawford, B.; Bauer, J.; Kugel, H.; Heindel, W.; Young, R.; Morris, P.; Arolt, V.; et al. Cannabinoid receptor 1 (CNR1) gene: Impact on antidepressant treatment response and emotion processing in major depression. Eur. Neuropsychopharmacol. 2008, 18, 751–759. [Google Scholar] [CrossRef]
- Cardoner, N.; Soria, V.; Gratacos, M.; Hernandez-Ribas, R.; Pujol, J.; Lopez-Sola, M.; Deus, J.; Urretavizcaya, M.; Estivill, X.; Menchon, J.M.; et al. Val66Met BDNF genotypes in melancholic depression: Effects on brain structure and treatment outcome. Depress. Anxiety 2013, 30, 225–233. [Google Scholar] [CrossRef]
- Alexopoulos, G.S.; Glatt, C.E.; Hoptman, M.J.; Kanellopoulos, D.; Murphy, C.F.; Kelly, R.E., Jr.; Morimoto, S.S.; Lim, K.O.; Gunning, F.M. BDNF val66met polymorphism, white matter abnormalities and remission of geriatric depression. J. Affect. Disord. 2010, 125, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Tatham, E.L.; Hall, G.B.; Clark, D.; Foster, J.; Ramasubbu, R. The 5-HTTLPR and BDNF polymorphisms moderate the association between uncinate fasciculus connectivity and antidepressants treatment response in major depression. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 135–147. [Google Scholar] [CrossRef]
- Pei, C.; Sun, Y.; Zhu, J.; Wang, X.; Zhang, Y.; Zhang, S.; Yao, Z.; Lu, Q. Ensemble Learning for Early-Response Prediction of Antidepressant Treatment in Major Depressive Disorder. J. Magn. Reson. Imaging 2019. [Google Scholar] [CrossRef]
- Kim, Y.K.; Na, K.S. Application of machine learning classification for structural brain MRI in mood disorders: Critical review from a clinical perspective. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2018, 80, 71–80. [Google Scholar] [CrossRef]
- Mwangi, B.; Ebmeier, K.P.; Matthews, K.; Steele, J.D. Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain 2012, 135, 1508–1521. [Google Scholar] [CrossRef] [Green Version]
- Serpa, M.H.; Ou, Y.; Schaufelberger, M.S.; Doshi, J.; Ferreira, L.K.; Machado-Vieira, R.; Menezes, P.R.; Scazufca, M.; Davatzikos, C.; Busatto, G.F.; et al. Neuroanatomical classification in a population-based sample of psychotic major depression and bipolar I disorder with 1 year of diagnostic stability. BioMed Res. Int. 2014, 2014, 706157. [Google Scholar] [CrossRef]
- Sacchet, M.D.; Prasad, G.; Foland-Ross, L.C.; Thompson, P.M.; Gotlib, I.H. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory. Front. Psychiatry 2015, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Gong, Q.; Wu, Q.; Scarpazza, C.; Lui, S.; Jia, Z.; Marquand, A.; Huang, X.; McGuire, P.; Mechelli, A. Prognostic prediction of therapeutic response in depression using high-field MR imaging. NeuroImage 2011, 55, 1497–1503. [Google Scholar] [CrossRef]
- Johnston, B.A.; Steele, J.D.; Tolomeo, S.; Christmas, D.; Matthews, K. Structural MRI-Based Predictions in Patients with Treatment-Refractory Depression (TRD). PLoS ONE 2015, 10, e0132958. [Google Scholar] [CrossRef] [Green Version]
- Lam, R.W.; Milev, R.; Rotzinger, S.; Andreazza, A.C.; Blier, P.; Brenner, C.; Daskalakis, Z.J.; Dharsee, M.; Downar, J.; Evans, K.R.; et al. Discovering biomarkers for antidepressant response: Protocol from the Canadian biomarker integration network in depression (CAN-BIND) and clinical characteristics of the first patient cohort. BMC Psychiatry 2016, 16, 105. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.-G.; Cho, S.-E. Neuroimaging Biomarkers for Predicting Treatment Response and Recurrence of Major Depressive Disorder. Int. J. Mol. Sci. 2020, 21, 2148. https://doi.org/10.3390/ijms21062148
Kang S-G, Cho S-E. Neuroimaging Biomarkers for Predicting Treatment Response and Recurrence of Major Depressive Disorder. International Journal of Molecular Sciences. 2020; 21(6):2148. https://doi.org/10.3390/ijms21062148
Chicago/Turabian StyleKang, Seung-Gul, and Seo-Eun Cho. 2020. "Neuroimaging Biomarkers for Predicting Treatment Response and Recurrence of Major Depressive Disorder" International Journal of Molecular Sciences 21, no. 6: 2148. https://doi.org/10.3390/ijms21062148
APA StyleKang, S. -G., & Cho, S. -E. (2020). Neuroimaging Biomarkers for Predicting Treatment Response and Recurrence of Major Depressive Disorder. International Journal of Molecular Sciences, 21(6), 2148. https://doi.org/10.3390/ijms21062148