Enhancement of Neurite Outgrowth by Warming Biomaterial Ultrasound Treatment
Abstract
:1. Introduction
2. Results
2.1. Properties of Warming Biomaterial
2.2. Cell Viability of Warming Biomaterial with Ultrasound Combined Treatment
2.3. Warming Biomaterial with Ultrasound Combined Treatment Improves Nerve Outgrowth
2.4. Warming Biomaterial with Ultrasound Combined Treatment Enhances AChE Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Warming Biomaterial Preparation
4.3. Microscopic Observation
4.4. Measurement of Ultrasonic Characteristics of Warming Biomaterial
4.5. Ultrasonic Treatment
4.6. Cell Survival Analysis
4.7. Nerve Outgrowth Analysis
4.8. Analysis AChE Activity
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FDA | Food and Drug Administration |
CE | Conformit Europe |
US | Ultrasound |
AChE | Acetylcholinesterase |
WM | Warming Membrane |
DSC | Differential Scanning Calorimeters |
MAPK | Mitogen-Activated Protein Kinase |
PI3K | Phosphatidylinositol 3-Kinase |
SEM | Scanning eEectron Microscope |
PBS | Phosphate Buffered Saline |
References
- Menorca, R.M.; Fussell, T.S.; Elfar, J.C. Peripheral nerve trauma: Mechanisms of injury and recovery. Hand Clin. 2013, 29, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrząszcz, P.; Derbisz, K.; Suszyński, K.; Miodoński, J.; Trybulski, R.; Lewin-Kowalik, J.; Marcol, W. Application of peripheral nerve conduits in clinical practice: A literature review. Neurol. I Neurochir. Pol. 2018, 52, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Radtke, C. Natural occurring silks and their analogues as materials for nerve conduits. Int. J. Mol. Sci. 2016, 17, 1754. [Google Scholar] [CrossRef] [PubMed]
- Radtke, C.; Kocsis, J.D. Peripheral nerve injuries and transplantation of olfactory ensheathing cells for axonal regeneration and remyelination: Fact or fiction? Int. J. Mol. Sci. 2012, 13, 12911–12924. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Degrugillier, L.; Tremp, M.; Prautsch, K.; Sottaz, L.; Schaefer, D.J.; Madduri, S.; Kalbermatten, D. Nerve repair with fibrin nerve conduit and modified suture placement. Anat. Rec. 2018, 301, 1690–1696. [Google Scholar] [CrossRef] [Green Version]
- McKiernan, S.; Chiarelli, P.; Warren-Forward, H. Diagnostic ultrasound use in physiotherapy, emergency medicine, and anaesthesiology. Radiography 2010, 16, 154–159. [Google Scholar] [CrossRef]
- Le Neindre, A.; Mongodi, S.; Philippart, F.; Bouhemad, B. Thoracic ultrasound: Potential new tool for physiotherapists in respiratory management. A narrative review. J. Crit. Care 2016, 31, 101–109. [Google Scholar] [CrossRef]
- Cheng, H.L.M.; Purcell, C.M.; Bilbao, J.M.; Plewes, D.B. Usefulness of contrast kinetics for predicting and monitoring tissue changes in muscle following thermal therapy in long survival studies. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 2004, 19, 329–341. [Google Scholar] [CrossRef]
- Kudo, T.-A.; Kanetaka, H.; Mochizuki, K.; Tominami, K.; Nunome, S.; Abe, G.; Kosukegawa, H.; Abe, T.; Mori, H.; Mori, K. Induction of neurite outgrowth in PC12 cells treated with temperature-controlled repeated thermal stimulation. PLoS ONE 2015, 10, e0124024. [Google Scholar] [CrossRef] [Green Version]
- Opieliński, K. Ultrasonic parameters of hen’s egg. Mol. Quantum Acoust. 2007, 28, 203–216. [Google Scholar]
- Raju, B.I.; Srinivasan, M.A. High-frequency ultrasonic attenuation and backscatter coefficients of in vivo normal human dermis and subcutaneous fat. Ultrasound Med. Biol. 2001, 27, 1543–1556. [Google Scholar] [CrossRef]
- Claesson, I.; Salomonsson, G. Estimation of varying ultrasonic attenuation. Ultrasound Med. Biol. 1985, 11, 131–145. [Google Scholar] [CrossRef]
- Wear, K.A. Ultrasonic attenuation in human calcaneus from 0.2 to 1.7 MHz. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, K.; Hornowski, T.; Antal, I.; Timko, M.; Józefczak, A. Magneto-ultrasonic heating with nanoparticles. J. Magn. Magn. Mater. 2019, 474, 400–405. [Google Scholar] [CrossRef]
- Kaczmarek, K.; Hornowski, T.; Bielas, R.; Żak, D.; Timko, M.; Józefczak, A. Dependence of ultrasonic and magnetic hyperthermia on the concentration of magnetic nanoparticles. Acta Phys. Pol. A 2018, 133, 716–718. [Google Scholar] [CrossRef]
- Beik, J.; Abed, Z.; Ghadimi-Daresajini, A.; Nourbakhsh, M.; Shakeri-Zadeh, A.; Ghasemi, M.S.; Shiran, M.B. Measurements of nanoparticle-enhanced heating from 1 MHz ultrasound in solution and in mice bearing CT26 colon tumors. J. Therm. Biol. 2016, 62, 84–89. [Google Scholar] [CrossRef]
- Kaczmarek, K.; Hornowski, T.; Kubovcikova, M.; Timko, M.; Koralewski, M.; Józefczak, A. Heating induced by therapeutic ultrasound in the presence of magnetic nanoparticles. Acs Appl. Mater. Interfaces 2018, 10, 11554–11564. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, Y.; Xu, L.; Chen, J.; Jiang, W.; Nie, X. Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend. Compos. Sci. Technol. 2016, 129, 160–165. [Google Scholar] [CrossRef]
- Józefczak, A.; Kaczmarek, K.; Hornowski, T.; Kubovčíková, M.; Rozynek, Z.; Timko, M.; Skumiel, A. Magnetic nanoparticles for enhancing the effectiveness of ultrasonic hyperthermia. Appl. Phys. Lett. 2016, 108, 263701. [Google Scholar] [CrossRef]
- Cherepanov, P.V.; Kollath, A.; Andreeva, D.V. Up to which temperature ultrasound can heat the particle? Ultrason. Sonochem. 2015, 26, 9–14. [Google Scholar] [CrossRef]
- Kaczmarek, K.; Hornowski, T.; Dobosz, B.; Józefczak, A. Influence of magnetic nanoparticles on the focused ultrasound hyperthermia. Materials 2018, 11, 1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassiri, D.; Nicholas, D.; Hill, C. Attenuation of ultrasound in skeletal muscle. Ultrasonics 1979, 17, 230–232. [Google Scholar] [CrossRef]
- Guittet, C.; Ossant, F.; Remenieras, J.-P.; Pourcelot, L.; Berson, M. High-frequency estimation of the ultrasonic attenuation coefficient slope obtained in human skin: Simulation and in vivo results. Ultrasound Med. Biol. 1999, 25, 421–429. [Google Scholar] [CrossRef]
- Pinton, G.; Aubry, J.F.; Bossy, E.; Muller, M.; Pernot, M.; Tanter, M. Attenuation, scattering, and absorption of ultrasound in the skull bone. Med. Phys. 2012, 39, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Read, D.E.; Herbert, K.R.; Gorman, A.M. Heat shock enhances NGF-induced neurite elongation which is not mediated by Hsp25 in PC12 cells. Brain Res. 2008, 1221, 14–23. [Google Scholar] [CrossRef]
- Kano, Y.; Nakagiri, S.; Nohno, T.; Hiragami, F.; Kawamura, K.; Kadota, M.; Numata, K.; Koike, Y.; Furuta, T. Heat shock induces neurite outgrowth in PC12m3 cells via the p38 mitogen-activated protein kinase pathway. Brain Res. 2004, 1026, 302–306. [Google Scholar] [CrossRef]
- Biernat, J.; Wu, Y.-Z.; Timm, T.; Zheng-Fischhöfer, Q.; Mandelkow, E.; Meijer, L.; Mandelkow, E.-M. Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol. Biol. Cell 2002, 13, 4013–4028. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Feng, P.; Zhu, X.; He, S.; Duan, J.; Zhou, D. Long non-coding RNA Malat1 promotes neurite outgrowth through activation of ERK/MAPK signalling pathway in N2a cells. J. Cell. Mol. Med. 2016, 20, 2102–2110. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhong, W.; Wan, J.M.; Alfred, C. Ultrasound can modulate neuronal development: Impact on neurite growth and cell body morphology. Ultrasound Med. Biol. 2013, 39, 915–925. [Google Scholar] [CrossRef]
Sample | Attenuation (dB/cm·MHz) |
---|---|
Warming Biomaterial | 739.99 ± 3.56 |
PCL | 100.84 ± 0.87 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-C.; Su, C.-M.; Chen, G.-S.; Lai, C.-C.; Chen, C.-Y.; Lin, K.M.-C.; Lin, F.-H.; Dong, G.-C. Enhancement of Neurite Outgrowth by Warming Biomaterial Ultrasound Treatment. Int. J. Mol. Sci. 2020, 21, 2236. https://doi.org/10.3390/ijms21062236
Chen J-C, Su C-M, Chen G-S, Lai C-C, Chen C-Y, Lin KM-C, Lin F-H, Dong G-C. Enhancement of Neurite Outgrowth by Warming Biomaterial Ultrasound Treatment. International Journal of Molecular Sciences. 2020; 21(6):2236. https://doi.org/10.3390/ijms21062236
Chicago/Turabian StyleChen, Jung-Chih, Chao-Ming Su, Gin-Shin Chen, Chin-Chun Lai, Ching-Yun Chen, Kurt Ming-Chao Lin, Feng-Huei Lin, and Guo-Chung Dong. 2020. "Enhancement of Neurite Outgrowth by Warming Biomaterial Ultrasound Treatment" International Journal of Molecular Sciences 21, no. 6: 2236. https://doi.org/10.3390/ijms21062236
APA StyleChen, J. -C., Su, C. -M., Chen, G. -S., Lai, C. -C., Chen, C. -Y., Lin, K. M. -C., Lin, F. -H., & Dong, G. -C. (2020). Enhancement of Neurite Outgrowth by Warming Biomaterial Ultrasound Treatment. International Journal of Molecular Sciences, 21(6), 2236. https://doi.org/10.3390/ijms21062236