Role of Alcohol Drinking in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis
Abstract
:1. Introduction and Alcohol Use: Dual Effects and Mechanisms
2. Dual Roles of Alcohol Intake in Alzheimer’s Disease (AD) Development and Progression
2.1. Evidence from Epidemiological Studies
2.2. Studies in Animal and Cell Culture Models
3. Dual Roles of Alcohol Intake in Parkinson’s Disease (PD) Development and Progression
3.1. Evidence from Epidemiological Studies
3.2. Studies with Animal and Cell Culture Models
4. Dual Roles of Alcohol in Amyotrophic Lateral Sclerosis (ALS) Development and Progression
4.1. Evidence from Epidemiological Studies
4.2. Studies with Animal and Cell Culture Models
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hou, Y.J.; Dan, X.L.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 2016, 539, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Daniele, S.; Giacomelli, C.; Martini, C. Brain ageing and neurodegenerative disease: The role of cellular waste management. Biochem. Pharmacol. 2018, 158, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Patrick, K.L.; Bell, S.L.; Weindel, C.G.; Watson, R.O. Exploring the “Multiple-Hit Hypothesis” of Neurodegenerative Disease: Bacterial Infection Comes up to Bat. Front. Cell. Infect. Microbiol. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Hersi, M.; Irvine, B.; Gupta, P.; Gomes, J.; Birkett, N.; Krewski, D. Risk factors associated with the onset and progression of Alzheimer’s disease: A systematic review of the evidence. Neurotoxicology 2017, 61, 143–187. [Google Scholar] [CrossRef]
- Ball, N.; Teo, W.P.; Chandra, S.; Chapman, J. Parkinson’s Disease and the Environment. Front. Neurol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Chalabi, A.; Hardiman, O. The epidemiology of ALS: A conspiracy of genes, environment and time. Nat. Rev. Neurol. 2013, 9, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Guerri, C.; Pascual, M. Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence. Alcohol 2010, 44, 15–26. [Google Scholar] [CrossRef]
- Luo, C.; Yang, Q.; Liu, Y.; Zhou, S.; Jiang, J.; Reiter, R.J.; Bhattacharya, P.; Cui, Y.; Yang, H.; Ma, H.; et al. The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radic. Biol. Med. 2019, 130, 215–233. [Google Scholar] [CrossRef]
- Kohno, K.; Niihara, H.; Hamano, T.; Takeda, M.; Nakagawa, Y.; Shiwaku, K.; Nabika, T.; Zoller, B.; Li, X.J.; Sundquist, K.; et al. J-curve association between alcohol intake and varicose veins in Japan: The Shimane CoHRE Study. J. Dermatol. 2019, 46, 902–906. [Google Scholar] [CrossRef]
- Planas-Ballve, A.; Grau-Lopez, L.; Morillas, R.M.; Planas, R. Neurological manifestations of excessive alcohol consumption. Gastroenterol. Hepatol. 2017, 40, 709–717. [Google Scholar] [CrossRef]
- Simpson, R.F.; Hermon, C.; Liu, B.; Green, J.; Reeves, G.K.; Beral, V.; Flou, S.; Abbott, S.; Alison, R.; Armstrong, M.; et al. Alcohol drinking patterns and liver cirrhosis risk: Analysis of the prospective UK Million Women Study. Lancet Public Health 2019, 4, E41–E48. [Google Scholar] [CrossRef] [Green Version]
- Amrani, A.; Boubekri, N.; Lassad, S.; Zama, D.; Benayache, F.; Benayache, S. Alcohol Induced Hepato Cardiotoxicity and Oxidative Damage in Rats: The Protective Effect of n-butanol Extract of Green Tea (Camellia sinensis (L.) Kuntze). Cardiovasc. Hematol. Disord. Drug Targets 2017, 17, 18–23. [Google Scholar] [CrossRef]
- Hillemacher, T.; Bachmann, O.; Kahl, K.G.; Frieling, H. Alcohol, microbiome, and their effect on psychiatric disorders. Prog. Neuro Psychopharmacol. 2018, 85, 105–115. [Google Scholar] [CrossRef]
- Lin, H.Y.; Fisher, P.; Harris, D.; Tseng, T.S. Alcohol intake patterns for cancer and non-cancer individuals: A population study. Transl. Cancer Res. 2019, 8, S334–S335. [Google Scholar] [CrossRef]
- Rachdaoui, N.; Sarkar, D.K. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System. Alcohol Res. 2017, 38, 255–276. [Google Scholar]
- Boule, L.A.; Kovacs, E.J. Alcohol, aging, and innate immunity. J. Leukoc. Biol. 2017, 102, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Ascherio, A.; Schwarzschild, M.A. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol. 2016, 15, 1257–1272. [Google Scholar] [CrossRef]
- Kioumourtzoglou, M.A.; Rotem, R.S.; Seals, R.M.; Gredal, O.; Hansen, J.; Weisskopf, M.G. Diabetes Mellitus, Obesity, and Diagnosis of Amyotrophic Lateral Sclerosis: A Population-Based Study. JAMA Neurol. 2015, 72, 905–911. [Google Scholar] [CrossRef] [Green Version]
- Gushcha, V.K.; Lelevich, S.V.; Sheibak, V.M. Neurotransmitter disturbances in some parts of the rat brain and their correction under chronic and intermittent alcohol intoxication. Biomeditsinskaya Khimiya 2019, 65, 21–27. [Google Scholar] [CrossRef]
- Kuntsche, E.; Kuntsche, S.; Thrul, J.; Gmel, G. Binge drinking: Health impact, prevalence, correlates and interventions. Psychol. Health 2017, 32, 976–1017. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Luo, C.; Zhang, X.; Liu, Y.; Wang, Z.; Cacciamani, P.; Shi, J.; Cui, Y.; Wang, C.; Sinha, B.; et al. Tartary buckwheat extract alleviates alcohol-induced acute and chronic liver injuries through the inhibition of oxidative stress and mitochondrial cell death pathway. Am. J. Transl. Res. 2020, 12, 70–89. [Google Scholar]
- Hammoud, N.; Jimenez-Shahed, J. Chronic Neurologic Effects of Alcohol. Clin. Liver Dis. 2019, 23, 141–155. [Google Scholar] [CrossRef]
- Davies, M.J.; Baer, D.J.; Judd, J.T.; Brown, E.D.; Campbell, W.S.; Taylor, P.R. Effects of moderate alcohol intake on fasting insulin and glucose concentrations and insulin sensitivity in postmenopausal women: A randomized controlled trial. JAMA 2002, 287, 2559–2562. [Google Scholar] [CrossRef] [Green Version]
- Booyse, F.M.; Pan, W.S.; Grenett, H.E.; Parks, D.A.; Darley-Usmar, V.M.; Bradley, K.M.; Tabengwa, E.M. Mechanism by which alcohol and wine polyphenols affect coronary heart disease risk. Ann. Epidemiol. 2007, 17, S24–S31. [Google Scholar] [CrossRef]
- Toda, M.; Totoki, T.; Nakamura, C.; Yasuma, T.; Alessandro-Gabazza, C.N.D.; Mifuji-Moroka, R.; Nishihama, K.; Iwasa, M.; Horiki, N.; Gabazza, E.C.; et al. Low dose of alcohol attenuates pro-atherosclerotic activity of thrombin. Atherosclerosis 2017, 265, 215–224. [Google Scholar] [CrossRef]
- Renaud, S.; Delorgeril, M. Wine, Alcohol, Platelets, and the French Paradox for Coronary Heart-Disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]
- Sierksma, A.; van der Gaag, M.S.; Kluft, C.; Hendriks, H.F.J. Moderate alcohol consumption reduces plasma C-reactive protein and fibrinogen levels; a randomized, diet-controlled intervention study. Eur. J. Clin. Nutr. 2002, 56, 1130–1136. [Google Scholar] [CrossRef] [Green Version]
- Quigley, E.M.M. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr. Neurol. Neurosci. 2017, 17, 94. [Google Scholar] [CrossRef]
- Munoz, G.; Urrutia, J.C.; Burgos, C.F.; Silva, V.; Aguilar, F.; Sama, M.; Yeh, H.H.; Opazo, C.; Aguayo, L.G. Low concentrations of ethanol protect against synaptotoxicity induced by Abeta in hippocampal neurons. Neurobiol. Aging 2015, 36, 845–856. [Google Scholar] [CrossRef]
- Collins, M.A.; Neafsey, E.J.; Wang, K.; Achille, N.J.; Mitchell, R.M.; Sivaswamy, S. Moderate ethanol preconditioning of rat brain cultures engenders neuroprotection against dementia-inducing neuroinflammatory proteins: Possible signaling mechanisms. Mol. Neurobiol. 2010, 41, 420–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormeno, D.; Romero, F.; Lopez-Fenner, J.; Avila, A.; Martinez-Torres, A.; Parodi, J. Ethanol reduces amyloid aggregation in vitro and prevents toxicity in cell lines. Arch. Med. Res. 2013, 44, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Belmadani, A.; Kumar, S.; Schipma, M.; Collins, M.A.; Neafsey, E.J. Inhibition of amyloid-beta-induced neurotoxicity and apoptosis by moderate ethanol preconditioning. Neuroreport 2004, 15, 2093–2096. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Yu, M.; Yang, S.; Lou, D.; Zhou, W.; Zheng, L.; Wang, Z.; Cai, F.; Zhou, W.; Li, T.; et al. Ethanol Alters APP Processing and Aggravates Alzheimer-Associated Phenotypes. Mol. Neurobiol. 2018, 55, 5006–5018. [Google Scholar] [CrossRef]
- Hoffman, J.L.; Faccidomo, S.; Kim, M.; Taylor, S.M.; Agoglia, A.E.; May, A.M.; Smith, E.N.; Wong, L.C.; Hodge, C.W. Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer’s disease. Int. Rev. Neurobiol. 2019, 148, 169–230. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, H.; Xie, J. Alcohol intake and risk of Parkinson’s disease: A meta-analysis of observational studies. Mov. Disord. 2014, 29, 819–822. [Google Scholar] [CrossRef]
- Eriksson, A.K.; Lofving, S.; Callaghan, R.C.; Allebeck, P. Alcohol use disorders and risk of Parkinson’s disease: Findings from a Swedish national cohort study 1972–2008. BMC Neurol. 2013, 13, 190. [Google Scholar] [CrossRef] [Green Version]
- Trantham-Davidson, H.; Chandler, L.J. Alcohol-induced alterations in dopamine modulation of prefrontal activity. Alcohol 2015, 49, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Rotermund, C.; Reolon, G.K.; Leixner, S.; Boden, C.; Bilbao, A.; Kahle, P.J. Enhanced motivation to alcohol in transgenic mice expressing human alpha-synuclein. J. Neurochem. 2017, 143, 294–305. [Google Scholar] [CrossRef] [Green Version]
- D’Ovidio, F.; Rooney, J.P.K.; Visser, A.E.; Manera, U.; Beghi, E.; Logroscino, G.; Vermeulen, R.C.H.; Veldink, J.H.; van den Berg, L.H.; Hardiman, O.; et al. Association between alcohol exposure and the risk of amyotrophic lateral sclerosis in the Euro-MOTOR study. J. Neurol. Neurosurg. Psychiatry 2019, 90, 11–19. [Google Scholar] [CrossRef]
- Amodio, R.; Esposito, E.; De Ruvo, C.; Bellavia, V.; Amodio, E.; Carruba, G. Red wine extract prevents neuronal apoptosis in vitro and reduces mortality of transgenic mice. Ann. N. Y. Acad. Sci. 2006, 1089, 88–97. [Google Scholar] [CrossRef]
- Pelkonen, A.; Hiltunen, M.; Kiianmaa, K.; Yavich, L. Stimulated dopamine overflow and alpha-synuclein expression in the nucleus accumbens core distinguish rats bred for differential ethanol preference. J. Neurochem. 2010, 114, 1168–1176. [Google Scholar] [CrossRef]
- WHO. Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Eggink, E.; van Charante, E.P.M.; van Gool, W.A.; Richard, E. A Population Perspective on Prevention of Dementia. J. Clin. Med. 2019, 8, 834. [Google Scholar] [CrossRef] [Green Version]
- Anstey, K.J.; Ee, N.; Eramudugolla, R.; Jagger, C.; Peters, R. A Systematic Review of Meta-Analyses that Evaluate Risk Factors for Dementia to Evaluate the Quantity, Quality, and Global Representativeness of Evidence. J. Alzheimer’s Dis. 2019, 70, S165–S186. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Tan, L.; Wang, H.F.; Jiang, T.; Tan, M.S.; Tan, L.; Zhao, Q.F.; Li, J.Q.; Wang, J.; Yu, J.T. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1299–1306. [Google Scholar] [CrossRef]
- Anstey, K.J.; Mack, H.A.; Cherbuin, N. Alcohol consumption as a risk factor for dementia and cognitive decline: Meta-analysis of prospective studies. Am. J. Geriatr. Psychiatry 2009, 17, 542–555. [Google Scholar] [CrossRef]
- Anttila, T.; Helkala, E.L.; Viitanen, M.; Kareholt, I.; Fratiglioni, L.; Winblad, B.; Soininen, H.; Tuomilehto, J.; Nissinen, A.; Kivipelto, M. Alcohol drinking in middle age and subsequent risk of mild cognitive impairment and dementia in old age: A prospective population based study. BMJ 2004, 329, 539. [Google Scholar] [CrossRef] [Green Version]
- Sabia, S.; Fayosse, A.; Dumurgier, J.; Dugravot, A.; Akbaraly, T.; Britton, A.; Kivimaki, M.; Singh-Manoux, A. Alcohol consumption and risk of dementia: 23 year follow-up of Whitehall II cohort study. BMJ 2018, 362, k2927. [Google Scholar] [CrossRef] [Green Version]
- Haller, S.; Montandon, M.L.; Rodriguez, C.; Herrmann, F.R.; Giannakopoulos, P. Impact of Coffee, Wine, and Chocolate Consumption on Cognitive Outcome and MRI Parameters in Old Age. Nutrients 2018, 10, 1391. [Google Scholar] [CrossRef] [Green Version]
- Stampfer, M.J.; Kang, J.H.; Chen, J.; Cherry, R.; Grodstein, F. Effects of moderate alcohol consumption on cognitive function in women. N. Engl. J. Med. 2005, 352, 245–253. [Google Scholar] [CrossRef]
- Lobo, E.; Dufouil, C.; Marcos, G.; Quetglas, B.; Saz, P.; Guallar, E.; Lobo, A.; Workgroup, Z. Is there an association between low-to-moderate alcohol consumption and risk of cognitive decline? Am. J. Epidemiol. 2010, 172, 708–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toda, A.; Tagata, Y.; Nakada, T.; Komatsu, M.; Shibata, N.; Arai, H. Changes in Mini-Mental State Examination score in Alzheimer’s disease patients after stopping habitual drinking. Psychogeriatrics 2013, 13, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Langballe, E.M.; Ask, H.; Holmen, J.; Stordal, E.; Saltvedt, I.; Selbaek, G.; Fikseaunet, A.; Bergh, S.; Nafstad, P.; Tambs, K. Alcohol consumption and risk of dementia up to 27 years later in a large, population-based sample: The HUNT study, Norway. Eur. J. Epidemiol. 2015, 30, 1049–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyerer, S.; Schaufele, M.; Wiese, B.; Maier, W.; Tebarth, F.; van den Bussche, H.; Pentzek, M.; Bickel, H.; Luppa, M.; Riedel-Heller, S.G.; et al. Current alcohol consumption and its relationship to incident dementia: Results from a 3-year follow-up study among primary care attenders aged 75 years and older. Age Ageing 2011, 40, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Deng, J.; Zhang, M.; Zhou, H.D.; Wang, Y.J. Association between bone mineral density and the risk of Alzheimer’s disease. J. Alzheimer’s Dis. 2011, 24, 101–108. [Google Scholar] [CrossRef]
- Luchsinger, J.A.; Tang, M.X.; Siddiqui, M.; Shea, S.; Mayeux, R. Alcohol intake and risk of dementia. J. Am. Geriatr. Soc. 2004, 52, 540–546. [Google Scholar] [CrossRef]
- Mukamal, K.J.; Kuller, L.H.; Fitzpatrick, A.L.; Longstreth, W.T., Jr.; Mittleman, M.A.; Siscovick, D.S. Prospective study of alcohol consumption and risk of dementia in older adults. JAMA 2003, 289, 1405–1413. [Google Scholar] [CrossRef]
- Lindsay, J.; Laurin, D.; Verreault, R.; Hebert, R.; Helliwell, B.; Hill, G.B.; McDowell, I. Risk factors for Alzheimer’s disease: A prospective analysis from the Canadian Study of Health and Aging. Am. J. Epidemiol. 2002, 156, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Ruitenberg, A.; van Swieten, J.C.; Witteman, J.C.; Mehta, K.M.; van Duijn, C.M.; Hofman, A.; Breteler, M.M. Alcohol consumption and risk of dementia: The RotterdAm. Study. Lancet 2002, 359, 281–286. [Google Scholar] [CrossRef]
- Huang, W.; Qiu, C.; Winblad, B.; Fratiglioni, L. Alcohol consumption and incidence of dementia in a community sample aged 75 years and older. J. Clin. Epidemiol. 2002, 55, 959–964. [Google Scholar] [CrossRef]
- Bate, C.; Williams, A. Ethanol protects cultured neurons against amyloid-beta and alpha-synuclein-induced synapse damage. Neuropharmacology 2011, 61, 1406–1412. [Google Scholar] [CrossRef] [PubMed]
- Marras, C.; Canning, C.G.; Goldman, S.M. Environment, lifestyle, and Parkinson’s disease: Implications for prevention in the next decade. Mov. Disord. 2019, 34, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.M.; Xu, Z.; Tan, L.C.S. Epidemiology of Parkinson’s Disease-East versus West. Mov. Disord. Clin. Pract. 2018, 5, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Narayan, S.; Liew, Z.; Bronstein, J.M.; Ritz, B. Occupational pesticide use and Parkinson’s disease in the Parkinson Environment Gene (PEG) study. Environ. Int. 2017, 107, 266–273. [Google Scholar] [CrossRef]
- Eric Nyam, T.T.; Ho, C.H.; Wang, Y.L.; Lim, S.W.; Wang, J.J.; Chio, C.C.; Kuo, J.R.; Wang, C.C. The Risk of Traumatic Brain Injury Occurring among Patients with Parkinson Disease: A 14-Year Population-Based Study. World Neurosurg. 2018, 113, e328–e335. [Google Scholar] [CrossRef]
- Dalvin, L.A.; Damento, G.M.; Yawn, B.P.; Abbott, B.A.; Hodge, D.O.; Pulido, J.S. Parkinson Disease and Melanoma: Confirming and Reexamining an Association. Mayo Clin. Proc. 2017, 92, 1070–1079. [Google Scholar] [CrossRef]
- Hughes, K.C.; Gao, X.; Kim, I.Y.; Wang, M.; Weisskopf, M.G.; Schwarzschild, M.A.; Ascherio, A. Intake of dairy foods and risk of Parkinson disease. Neurology 2017, 89, 46–52. [Google Scholar] [CrossRef]
- Powers, K.M.; Smith-Weller, T.; Franklin, G.M.; Longstreth, W.T., Jr.; Swanson, P.D.; Checkoway, H. Dietary fats, cholesterol and iron as risk factors for Parkinson’s disease. Parkinsonism Relat. Disord. 2009, 15, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Van der Kolk, N.M.; de Vries, N.M.; Kessels, R.P.C.; Joosten, H.; Zwinderman, A.H.; Post, B.; Bloem, B.R. Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson’s disease: A double-blind, randomised controlled trial. Lancet Neurol. 2019, 18, 998–1008. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.C.; Ahmed, I.; Loriot, M.A.; Mulot, C.; Paul, K.C.; Bronstein, J.M.; Ritz, B.; Elbaz, A. Smoking and Parkinson disease: Evidence for gene-by-smoking interactions. Neurology 2018, 90, e583–e592. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Bidel, S.; Jousilahti, P.; Antikainen, R.; Tuomilehto, J. Coffee and tea consumption and the risk of Parkinson’s disease. Mov. Disord. 2007, 22, 2242–2248. [Google Scholar] [CrossRef] [PubMed]
- Schirinzi, T.; Martella, G.; Imbriani, P.; Di Lazzaro, G.; Franco, D.; Colona, V.L.; Alwardat, M.; Sinibaldi Salimei, P.; Mercuri, N.B.; Pierantozzi, M.; et al. Dietary Vitamin E as a Protective Factor for Parkinson’s Disease: Clinical and Experimental Evidence. Front. Neurol. 2019, 10, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, K.C.; Eberly, S.; Gao, X.; Oakes, D.; Tanner, C.M.; Shoulson, I.; Fahn, S.; Schwarzschild, M.A.; Ascherio, A.; Parkinson Study, G. Mendelian randomization of serum urate and parkinson disease progression. Ann. Neurol. 2014, 76, 862–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, K.; Stowe, R.; Patel, S.; Ives, N.; Breen, K.; Clarke, C.E.; Ben-Shlomo, Y. Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson’s disease: Evidence from observational studies. Cochrane Database Syst. Rev. 2011. [Google Scholar] [CrossRef] [PubMed]
- Paganini-Hill, A. Risk factors for parkinson’s disease: The leisure world cohort study. Neuroepidemiology 2001, 20, 118–124. [Google Scholar] [CrossRef]
- Palacios, N.; Gao, X.; O’Reilly, E.; Schwarzschild, M.; McCullough, M.L.; Mayo, T.; Gapstur, S.M.; Ascherio, A.A. Alcohol and risk of Parkinson’s disease in a large, prospective cohort of men and women. Mov. Disord. 2012, 27, 980–987. [Google Scholar] [CrossRef] [Green Version]
- Paul, K.C.; Chuang, Y.H.; Shih, I.F.; Keener, A.; Bordelon, Y.; Bronstein, J.M.; Ritz, B. The association between lifestyle factors and Parkinson’s disease progression and mortality. Mov. Disord. 2019, 34, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Guo, X.; Park, Y.; Wang, J.; Huang, X.; Hollenbeck, A.; Blair, A.; Chen, H. Alcohol Consumption, Types of Alcohol, and Parkinson’s Disease. PLoS ONE 2013, 8, e66452. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, W.; Miyake, Y.; Tanaka, K.; Sasaki, S.; Kiyohara, C.; Tsuboi, Y.; Yamada, T.; Oeda, T.; Miki, T.; Kawamura, N.; et al. Alcohol drinking and risk of Parkinson’s disease: A case-control study in Japan. BMC Neurol. 2010, 10, 111. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, A.; Pugliese, P.; Nicoletti, G.; Arabia, G.; Annesi, G.; Mari, M.D.; Lamberti, P.; Grasso, L.; Marconi, R.; Epifanio, A.; et al. Voluptuary habits and clinical subtypes of Parkinson’s disease: The FRAGAMP case-control study. Mov. Disord. 2010, 25, 2387–2394. [Google Scholar] [CrossRef] [PubMed]
- Gelb, D.J.; Oliver, E.; Gilman, S. Diagnostic criteria for Parkinson disease. Arch. Neurol. 1999, 56, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Brighina, L.; Schneider, N.K.; Lesnick, T.G.; de Andrade, M.; Cunningham, J.M.; Mrazek, D.; Rocca, W.A.; Maraganore, D.M. Alpha-synuclein, alcohol use disorders, and Parkinson disease: A case-control study. Parkinsonism Relat. Disord. 2009, 15, 430–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bower, J.H.; Maraganore, D.M.; McDonnell, S.K.; Rocca, W.A. Incidence and distribution of parkinsonism in Olmsted County, Minnesota, 1976–1990. Neurology 1999, 52, 1214–1220. [Google Scholar] [CrossRef]
- Tan, L.C.; Koh, W.P.; Yuan, J.M.; Wang, R.; Au, W.L.; Tan, J.H.; Tan, E.K.; Yu, M.C. Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am. J. Epidemiol. 2008, 167, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Dick, F.D.; De Palma, G.; Ahmadi, A.; Scott, N.W.; Prescott, G.J.; Bennett, J.; Semple, S.; Dick, S.; Counsell, C.; Mozzoni, P.; et al. Environmental risk factors for Parkinson’s disease and parkinsonism: The Geoparkinson study. Occup. Environ. Med. 2007, 64, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Wirdefeldt, K.; Gatz, M.; Pawitan, Y.; Pedersen, N.L. Risk and protective factors for Parkinson’s disease: A study in Swedish twins. Ann. Neurol. 2005, 57, 27–33. [Google Scholar] [CrossRef]
- Hernan, M.A.; Logroscino, G.; Rodriguez, L.A. A prospective study of alcoholism and the risk of Parkinson’s disease. J. Neurol. 2004, 251 (Suppl. 7), vii14–vii17. [Google Scholar] [CrossRef]
- Hernan, M.A.; Chen, H.; Schwarzschild, M.A.; Ascherio, A. Alcohol consumption and the incidence of Parkinson’s disease. Ann. Neurol. 2003, 54, 170–175. [Google Scholar] [CrossRef]
- Checkoway, H.; Powers, K.; Smith-Weller, T.; Franklin, G.M.; Longstreth, W.T., Jr.; Swanson, P.D. Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am. J. Epidemiol. 2002, 155, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhuang, W.; Fu, W.; Wang, X.; Lv, E.; Li, F.; Zhou, S.; Rausch, W.D.; Wang, X. The lentiviral-mediated Nurr1 genetic engineering mesenchymal stem cells protect dopaminergic neurons in a rat model of Parkinson’s disease. Am. J. Transl. Res. 2018, 10, 1583–1599. [Google Scholar] [PubMed]
- Landau, A.M.; Kouassi, E.; Siegrist-Johnstone, R.; Desbarats, J. Proteasome inhibitor model of Parkinson’s disease in mice is confounded by neurotoxicity of the ethanol vehicle. Mov. Disord. 2007, 22, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Ma, C.; Yan, Y.; Yang, Y.; Wang, X.; Rausch, W.D. Ginsenoside Rd and ginsenoside Re offer neuroprotection in a novel model of Parkinson’s disease. Am. J. Neurodegener. Dis. 2016, 5, 52–61. [Google Scholar]
- Chen, D.; Fu, W.; Zhuang, W.; Lv, C.; Li, F.; Wang, X. Therapeutic effects of intranigral transplantation of mesenchymal stem cells in rat models of Parkinson’s disease. J. Neurosci. Res. 2017, 95, 907–917. [Google Scholar] [CrossRef]
- Fu, W.; Zhuang, W.; Zhou, S.; Wang, X. Plant-derived neuroprotective agents in Parkinson’s disease. Am. J. Transl. Res. 2015, 7, 1189–1202. [Google Scholar]
- Fu, W.; Zheng, Z.; Zhuang, W.; Chen, D.; Wang, X.; Sun, X.; Wang, X. Neural metabolite changes in corpus striatum after rat multipotent mesenchymal stem cells transplanted in hemiparkinsonian rats by magnetic resonance spectroscopy. Int. J. Neurosci. 2013, 123, 883–891. [Google Scholar] [CrossRef]
- Drew, P.D.; Johnson, J.W.; Douglas, J.C.; Phelan, K.D.; Kane, C.J. Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol. Clin. Exp. Res. 2015, 39, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.C.; Wang, H.C. Acute parkinsonism in alcohol withdrawal: A case report. Parkinsonism Relat. Disord. 2015, 21, 1385–1386. [Google Scholar] [CrossRef]
- Karkhanis, A.N.; Rose, J.H.; Huggins, K.N.; Konstantopoulos, J.K.; Jones, S.R. Chronic intermittent ethanol exposure reduces presynaptic dopamine neurotransmission in the mouse nucleus accumbens. Drug Alcohol Depend. 2015, 150, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Heit, C.; Dong, H.; Chen, Y.; Thompson, D.C.; Deitrich, R.A.; Vasiliou, V.K. The role of CYP2E1 in alcohol metabolism and sensitivity in the central nervous system. Subcell. Biochem. 2013, 67, 235–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaglini, F.; Viaggi, C.; Piro, V.; Pardini, C.; Gerace, C.; Scarselli, M.; Corsini, G.U. Acetaldehyde and parkinsonism: Role of CYP450 2E1. Front. Behav. Neurosci. 2013, 7, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaut, O.; Schmitt, I.; Wullner, U. Genome-scale methylation analysis of Parkinson’s disease patients’ brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics 2012, 13, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.J.; Aslam, K.; Drendel, H.M.; Asiago, J.M.; Goode, K.M.; Paul, L.N.; Rochet, J.C.; Hazbun, T.R. Hsp31 Is a Stress Response Chaperone That Intervenes in the Protein Misfolding Process. J. Biol. Chem. 2015, 290, 24816–24834. [Google Scholar] [CrossRef] [Green Version]
- Roberts, B.J.; Shoaf, S.E.; Jeong, K.S.; Song, B.J. Induction of CYP2E1 in liver, kidney, brain and intestine during chronic ethanol administration and withdrawal: Evidence that CYP2E1 possesses a rapid phase half-life of 6 hours or less. Biochem. Biophys. Res. Commun. 1994, 205, 1064–1071. [Google Scholar] [CrossRef]
- Hao, C.; Liu, W.; Luan, X.; Li, Y.; Gui, H.; Peng, Y.; Shen, J.; Hu, G.; Yang, J. Aquaporin-4 knockout enhances astrocyte toxicity induced by 1-methyl-4-phenylpyridinium ion and lipopolysaccharide via increasing the expression of cytochrome P4502E1. Toxicol. Lett. 2010, 198, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Janakiraman, U.; Manivasagam, T.; Justin Thenmozhi, A.; Dhanalakshmi, C.; Essa, M.M.; Song, B.J.; Guillemin, G.J. Chronic mild stress augments MPTP induced neurotoxicity in a murine model of Parkinson’s disease. Physiol. Behav. 2017, 173, 132–143. [Google Scholar] [CrossRef]
- Akbar, M.; Essa, M.M.; Daradkeh, G.; Abdelmegeed, M.A.; Choi, Y.; Mahmood, L.; Song, B.J. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res. 2016, 1637, 34–55. [Google Scholar] [CrossRef]
- Yu, L.; Cherng, C.F.; Chen, C. Melatonin in concentrated ethanol and ethanol alone attenuate methamphetamine-induced dopamine depletions in C57BL/6J. mice. J. Neural Transm. 2002, 109, 1477–1490. [Google Scholar] [CrossRef]
- Ali, S.F.; Bondy, S.C. Red wine but not ethanol at low doses can protect against the toxicity of methamphetamine. Brain Res. 2010, 1346, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Pandya, R.S.; Mao, L.L.; Zhou, E.W.; Bowser, R.; Zhu, Z.; Zhu, Y.; Wang, X. Neuroprotection for amyotrophic lateral sclerosis: Role of stem cells, growth factors, and gene therapy. Cent. Nerv. Syst. Agents Med. Chem. 2012, 12, 15–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandya, R.S.; Zhu, H.; Li, W.; Bowser, R.; Friedlander, R.M.; Wang, X. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cell. Mol. Life Sci. 2013, 70, 4729–4745. [Google Scholar] [CrossRef]
- Zhu, Y.; Fotinos, A.; Mao, L.L.; Atassi, N.; Zhou, E.W.; Ahmad, S.; Guan, Y.; Berry, J.D.; Cudkowicz, M.E.; Wang, X. Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov. Today 2015, 20, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Liu, T.; Liu, L.; Yao, X.; Chen, L.; Fan, D.; Zhan, S.; Wang, S. Global variation in prevalence and incidence of amyotrophic lateral sclerosis: A systematic review and meta-analysis. J. Neurol. 2019. [Google Scholar] [CrossRef]
- Nowicka, N.; Juranek, J.; Juranek, J.K.; Wojtkiewicz, J. Risk Factors and Emerging Therapies in Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2019, 20, 2616. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, E.; Factor-Litvak, P.; Santella, R.M.; Mitsumoto, H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic. Biol. Med. 2013, 65, 509–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature. Curr. Opin. Neurol. 2019, 32, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Bede, P.; Elamin, M.; Byrne, S.; Hardiman, O. Sexual dimorphism in ALS: Exploring gender-specific neuroimaging signatures. Amyotroph. Lateral Scler. Front. Degener. 2014, 15, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Visser, A.E.; D’Ovidio, F.; Vlaanderen, J.; Portengen, L.; Beghi, E.; Chio, A.; Logroscino, G.; Hardiman, O.; Pupillo, E.; et al. Effect modification of the association between total cigarette smoking and ALS risk by intensity, duration and time-since-quitting: Euro-MOTOR. J. Neurol. Neurosurg. Psychiatry 2019. [Google Scholar] [CrossRef]
- Seals, R.M.; Hansen, J.; Gredal, O.; Weisskopf, M.G. Physical Trauma and Amyotrophic Lateral Sclerosis: A Population-Based Study Using Danish National Registries. Am. J. Epidemiol. 2016, 183, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Tsitkanou, S.; Della Gatta, P.; Foletta, V.; Russell, A. The Role of Exercise as a Non-pharmacological Therapeutic Approach for Amyotrophic Lateral Sclerosis: Beneficial or Detrimental? Front. Neurol. 2019, 10, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinceti, M.; Violi, F.; Tzatzarakis, M.; Mandrioli, J.; Malagoli, C.; Hatch, E.E.; Fini, N.; Fasano, A.; Rakitskii, V.N.; Kalantzi, O.I.; et al. Pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in cerebrospinal fluid of amyotrophic lateral sclerosis patients: A case-control study. Environ. Res. 2017, 155, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Cavaleri, F. Review of Amyotrophic Lateral Sclerosis, Parkinson’s and Alzheimer’s diseases helps further define pathology of the novel paradigm for Alzheimer’s with heavy metals as primary disease cause. Med. Hypotheses 2015, 85, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Logroscino, G.; Traynor, B.J.; Hardiman, O.; Chio, A.; Mitchell, D.; Swingler, R.J.; Millul, A.; Benn, E.; Beghi, E. Incidence of amyotrophic lateral sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry 2010, 81, 385–390. [Google Scholar] [CrossRef]
- Meng, E.; Yu, S.; Dou, J.; Jin, W.; Cai, X.; Mao, Y.; Zhu, D.; Yang, R. Association between alcohol consumption and amyotrophic lateral sclerosis: A meta-analysis of five observational studies. Neurol. Sci. 2016, 37, 1203–1208. [Google Scholar] [CrossRef]
- De Jong, S.W.; Huisman, M.H.; Sutedja, N.A.; van der Kooi, A.J.; de Visser, M.; Schelhaas, H.J.; Fischer, K.; Veldink, J.H.; van den Berg, L.H. Smoking, alcohol consumption, and the risk of amyotrophic lateral sclerosis: A population-based study. Am. J. Epidemiol. 2012, 176, 233–239. [Google Scholar] [CrossRef]
- Huisman, M.H.; Seelen, M.; van Doormaal, P.T.; de Jong, S.W.; de Vries, J.H.; van der Kooi, A.J.; de Visser, M.; Schelhaas, H.J.; van den Berg, L.H.; Veldink, J.H. Effect of Presymptomatic Body Mass Index and Consumption of Fat and Alcohol on Amyotrophic Lateral Sclerosis. JAMA Neurol. 2015, 72, 1155–1162. [Google Scholar] [CrossRef]
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2000, 1, 293–299. [Google Scholar] [CrossRef]
- Ji, J.; Sundquist, J.; Sundquist, K. Association of alcohol use disorders with amyotrophic lateral sclerosis: A Swedish national cohort study. Eur. J. Neurol. 2016, 23, 270–275. [Google Scholar] [CrossRef]
- Okamoto, K.; Kihira, T.; Kondo, T.; Kobashi, G.; Washio, M.; Sasaki, S.; Yokoyama, T.; Miyake, Y.; Sakamoto, N.; Inaba, Y.; et al. Lifestyle factors and risk of amyotrophic lateral sclerosis: A case-control study in Japan. Ann. Epidemiol. 2009, 19, 359–364. [Google Scholar] [CrossRef]
- Nelson, L.M.; McGuire, V.; Longstreth, W.T., Jr.; Matkin, C. Population-based case-control study of amyotrophic lateral sclerosis in western Washington State. I. Cigarette smoking and alcohol consumption. Am. J. Epidemiol. 2000, 151, 156–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamel, F.; Umbach, D.M.; Munsat, T.L.; Shefner, J.M.; Sandler, D.P. Association of cigarette smoking with amyotrophic lateral sclerosis. Neuroepidemiology 1999, 18, 194–202. [Google Scholar] [CrossRef] [PubMed]
- De Giorgio, F.; Maduro, C.; Fisher, E.M.C.; Acevedo-Arozena, A. Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis. Dis. Model. Mech. 2019, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Wang, Q.; Wang, Q.; Liu, H.; Zhou, F.; Zhang, Y.; Yuan, M.; Zhao, C.; Guan, Y.; Wang, X. DDX3 binding with CK1epsilon was closely related to motor neuron degeneration of ALS by affecting neurite outgrowth. Am. J. Transl. Res. 2017, 9, 4627–4639. [Google Scholar] [PubMed]
- Rao, P.S.; Sari, Y. Glutamate transporter 1: Target for the treatment of alcohol dependence. Curr. Med. Chem. 2012, 19, 5148–5156. [Google Scholar] [CrossRef] [PubMed]
AD | PD | ALS | |
---|---|---|---|
Increased risk, ↑ robust evidence | Pesticides, elevated blood pressure, elevated total cholesterol levels, current smoking, head injury, APOE4 gene family history, aging | Pesticides, aging | Smoking, pesticides, family history, aging, gender |
Increased risk, ↑ weak evidence | BMI, diabetes mellitus, alcohol (excessive), poor diet, depression | Consumption of dairy products, history of melanoma, traumatic brain injury, high iron intake, chronic anemia, alcohol | Head trauma, low premorbid BMI, workers or farmers, heavy metals, BMAA, previous viral infection, electrical magnetic fields, strenuous physical activity |
Reduced risk, ↓ robust evidence | Alcohol (moderate), physical exercise, cognitive activity, educational attainment | Smoking, caffeine consumption, higher serum urate concentrations [18] | |
Reduced risk, ↓ weak evidence | Mediterranean diet, coffee, non-steroidal anti-inflammatory drugs | Physical activity, ibuprofen and other common medications, tea, Vitamin E | Vitamin E, high blood pressure, longer duration of education, alcohol, reading, retirement, hyperglycemia [19] |
Reference, Year | Study Population | Study Design | No. of Subjects(Cases/Controls) | Diagnosis Criteria | Adjusted Confounders | Alcohol Exposure | OR (95%CI) |
---|---|---|---|---|---|---|---|
Langballe et al., 2015 [54] | Population-based | Cohort | 595/40,435 | ICD-10 | Age, sex, years of education, hypertension, obesity, smoking, and symptoms of depression | Abstainers; Drinking 0 times, not abstainers; Drinking 5 or more times; Unknown | 1.09 (0.80–1.48) 1.20 (0.96–1.51) 1.47 (1.00–2.16) 1.73 (1.17–2.55) |
Weyerer et al. 2011 [55] | Prospective longitudinal study | Cohort | 111/3202 | DSM-III-R, DSM-IV and ICD-10 | Age, gender, education, living situation, IADL impairment, somatic co-morbidity, depression, APOE4, MCI and smoking | Abstinent; Not abstinent; Wine (only); Beer (only); Mixed (wine, beer and other alcoholic beverages) | 1 (referent group) 0.58 (0.38–0.89) 0.76 (0.46–1.23) 0.60 (0.30–1.21) 0.14 (0.03–0.56) |
Zhou et al., 2011 [56] | Population-based | Cohort | 172/3170 | DSM-IV Criteria | Age, BMI, education, APOE4, vascular risk Factors | Occasional drinking; Monthly drinking; Weekly drinking; Daily drinking | 1 1.03 (0.83–1.35) 1.31 (0.69–1.43) 2.25 (1.43–3.97) |
Luchsinger et al., 2004 [57] | Cohort of elderly persons | Cohort | 199/2126 | DSM-IV Criteria | Age, gender, education, APOE4, Heart disease | None; Light to moderate Beer Liquor Wine | 1 1.33 (0.91–1.96) 1.15 (0.77–1.71) 0.59 (0.38–0.91) |
Mukamal et al. 2003 [58] | Cohort Community-based | Case- control | 373/373 | DSM-IV Criteria | Age, sex, race, APOE4, education, income, marital status, estrogen replacement treatment, smoking, DM-2, BMI, total cholesterol level, atrial fibrillation, heart disease, stroke, TIA, physical activity | Less than 1 drink/week; 1–6 drinks/week; 7–13 drinks/week; 14 or more drinks/week | 0.65 (0.41–1.02) 0.46 (0.27–0.77) 0.69 (0.37–1.31) 1.22 (0.60–2.49) |
Lindsay et al. 2002 [59] | Nationwide, population-based | Cohort | 194/3894 | DSM-IV Criteria | Age, sex, education, family history of dementia, APOE4, arthritis, NSAIDs, wine consumption, coffee consumption, regular physical activity | At least weekly consumption of Beer; Wine; Spirits; Alcohol (any type) | 0.84 (0.51–1.41) 0.49 (0.28–0.88) 0.78 (0.52–1.19) 0.68 (0.47–1.00) |
Ruitenberg et al., 2002 [60] | Population-based | Cohort | 146/7983 | DSM-III-R Criteria | Age, sex, BMI, SBP, diabetes, smoking, and education. | <1 drink per week; ≥1 drink per week but <1 per day; 1–3 drinks per day; ≥4 drinks per day | 0.91 (0.58–1.44) 0.91 (0.58–1.44) 0.72 (0.43–1.20) 1.17 (0.35–3.55) |
Huang et al., 2002 [61] | Community-based dementia- free cohort | Cohort | 84/402 | DSM-III-R criteria | Age, gender, education, smoking, institutionali-zation | Nondrinker; Light-to-moderate drinker | 1 0.5 (0.3–0.7) |
Reference, Year | Study Population | Study Design | No. of Subjects (Cases/ Controls) | Diagnosis Criteria and Case Ascertainment | Adjusted Confounders | Alcohol Exposure | OR (95%CI) |
---|---|---|---|---|---|---|---|
Liu et al., 2013 [80] | NIH-AARP Diet and Health Study | Cohort | 1113/306,895 | PD clinic, medical records | Age, gender, race, education, marital status, smoking, caffeine intake, general health status, physical activity | Beer (drinks/day) 0 <1 1–1.99 ≥2 Wine <1 1–1.99 ≥2 liquor <1 1–1.99 ≥2 | 1 0.79 (0.68–0.92) 0.73 (0.50–1.07) 0.86 (0.60–1.21) 1.07 (0.92–1.25) 0.74 (0.53–1.02) 1.31 (0.89–1.94) 1.06 (0.91–1.23) 1.22 (0.94–1.58) 1.35 (1.02–1.80) |
Palacios et al., 2012 [78] | The Cancer Prevention Study II Nutrition Cohort | Cohort | 605/132,403 | PD clinic, treating physicians and medical record review | Age, smoking, coffee intake, caloric intake, dairy intake, use of ibuprofen, physical activity and baseline body mass index pesticide exposure, education | Men 0 <9.9 g/day 10–19.9 20–29.9 >30 Women <9.9 g/day 10–19.9 20–29.9 >30 | 1 1.36 (1.06–1.74) 1.48 (1.09–2.01) 1.15 (0.69–1.90) 1.29 (0.90–1.86) 0.95 (0.68–1.31) 0.95 (0.57–1.60) 1.67 (1.06–2.64) 0.77 (0.41–1.45) |
Fukushima et al., 2010 [81] | 11 collaborating hospitals in Japan | Case- control | 214/327 | The UK PD Society Brain Bank clinical diagnostic criteria | Sex, age, region of residence, smoking, education, BMI, alcohol flushing status, presence of medication history for hypertension, hypercholesterolemia, diabetes, caffeine intake, cholesterol, vitamin E, vitamin B6, iron, and dietary glycemic index | 0 <6 days per week ≥6 days per week Amount per day (ethanol, g) 0.1–65.9 ≥66.0 Amount per week (ethanol, g) 0.1–219.3 ≥219.4 | 1 1.29 (0.78–2.13) 0.96 (0.50–1.81) 1.07 (0.64–1.80) 1.46 (0.79–2.71) 0.98 (0.58–1.65) 1.79 (0.95–3.39) |
Nicoletti et al., 2010 [82] | Five Movement Disorder centers in Central-Southern Italy | Case- control | 492/459 | The diagnostic criteria proposed by Gelb et al. in 1999 [83] | Age, sex, family history, place of residence coffee consumption (ever/never) and smoking (ever/never) | Wine (Glasses/day) None (reference) 1–2 3+ Years of wine drinking 1–45 years 46+ years | 1 0.68 (0.47–0.97) 0.45 (0.28–0.74) 0.83 (0.55–1.23) 0.45 (0.29–0.68) |
Brighina et al., 2009 [84] | Mayo Clinic in Rochester | Case- control | 893/893 | Incidence and distribution of parkinsonism in Olmsted County [85] | Age and sex, education, smoking, and coffee use | Overall (ever vs. never) Beer Wine Liquor | 0.88 (0.68–1.12) 0.96 (0.75–1.23) 1.19 (0.95–1.50) 0.83 (0.67–1.02) |
Tan et al., 2008 [86] | Singapore Chinese Health Study; prospective cohort | Cohort | 157/63,257 | Advisory Council of the US National Institute of Neurological Disorders and Stroke [83] | Age, year of interview, gender, dialect group, education, smoking, tea, coffee, total caffeine intake | Non- or less-than- weekly drinkers At least weekly drinkers | 1 0.60 (0.31–1.16) |
Dick et al., 2007 [87] | Five European countries | Case- control | 767/1989 | United Kingdom Parkinson’s Disease Society Brain Bank clinical diagnostic criteria [88] | Age, sex, country, ever used tobacco, ever been knocked unconscious and family history | Ever consumed beer, wine or spirits regularly | 0.92 (0.74–1.15) |
Wirdefeld et al., 2005 [89] | Cohort (the Swedish Twin Registry) | Co- twin control compa-rison case- control | 476/2380 | ICD, IDR and CDR | Age, gender, smoking, coffee intake, education, area of living | No alcohol 0–5gm/day 6–15gm/day 16–30gm/day >30gm/day | 1 0.72 (0.52–0.99) 1.05 (0.74–1.50) 0.94 (0.52–1.71) 0.66 (0.34–1.29) |
Hernán et al., 2004 [90] | The General Practice Research Database (GPRD) | Case- control | 1019/10,123 | PD clinic, medical records | Age, gender, start date | >500mL/week >0–5 units/week >5–15 >15–30 >30–50 > 50 | 1.09 (0.67–1.78) 1.10 (0.91–1.33) 1.10 (0.89–1.36) 1.27 (0.96–1.68) 0.57 (0.28–1.18) 1.46 (0.69–3.01) |
Hernán et al., 2003 [91] | Nurses’ Health Study, Health ProfessionalsFollow-up Study | Cohort | 415/13689 | Medical records, NDI | Age, smoking, caffeine intake | 0 >0 to <5 gm/day 5 to <15 gm/day 15 to <30 gm/day ≥30 gm/day | 1 1.0 (0.8–1.3) 1.0 (0.8–1.4) 1.1 (0.8–1.6) 0.7 (0.5–1.2) |
Checkoway et al. 2002 [92] | Western Washington State | Case- control | 210/347 | PD clinic, medical records, database | Age, ethnicity, education, and gender | Drinks/week 0 1–2 3–9 ≥10 | 1 1.1 (0.7–1.8) 1.1 (0.6–1.7) 0.8 (0.4–1.4) |
Paganini- Hill et al., 2001 [77] | Leisure World Laguna Hills, Southern California | Case- control | 395/2320 | PD clinic | Age, gender, birthdate, vital status | 2+ alcoholic drinks/day | 0.77 (0.58–1.03) |
Reference, Year | Study Population | Study Design | No. of Subjects Cases/Controls) | Diagnosis Riteria and Case Ascertainment | Adjusted Confounders | Alcohol Exposure | Or (95% ci) |
---|---|---|---|---|---|---|---|
D’Ovidio et al., 2019 [40] | Population-based, Euro-MOTOR study | Case– control | 1557/2922 | Revised El Escorial Criteria [129], ALS clinic and registry | Sex, age, cohort, education, leisure time physical activity, smoking, heart problems, hypertension, stroke, cholesterol and diabetes | Ever exposed to alcohol Ever exposed to red wine | 0.93 (0.75–1.15) 0.99 (0.84–1.16) |
Ji et al., 2016 [130] | National cohort in Sweden | Cohort | 7965/420,489 | ICD, registry | Age at diagnosis, sex, education, birth country and period at diagnosis | Overall Male Female | 0.54 (0.45–0.63) 0.52 (0.43–0.63) 0.60 (0.39–0.88) |
Huisman et al., 2015 [128] | Population-based, Netherlands | Case- control | 674/2093 | Revised El Escorial criteria | Age, sex, educational level, BMI, smoking, lifetime physical activity; total energy intake | Higher intake of alcohol | 0.91 (0.84–0.99) |
Sonja et al., 2012 [127] | Population-based in the Netherlands | Case- control | 494/1599 | Revised El Escorial Criteria, questionnaire | Age, gender, smoking status, educational level, and alcohol consumption | Never drinker Former drinker Current drinker | 1 0.67 (0.40–1.13) 0.52 (0.40–0.75) |
Okamoto et al., 2009 [131] | Six medical centers in the Tokai area | Case- control | 183/366 | El Escorial World Federation of neurology criteria [129] | Age, sex, smoking, bone fracture, vigorous physical activity, stress, Intake of green–yellow vegetables | Nondrinker Current drinker | 1 1.1 (0.7–1.5) |
Nelson et al., 2000 [132] | Population-based, western Washington State | Case- control | 161/321 | Medical Examiner | Age, gender, race, smoking status, education | Nondrinker Drinker, ≤2 drinks/day >2 drinks/day | 1 0.8 (0.5–1.2) 0.7 (0.3–1.4) |
Kamel et al., 1999 [133] | Population-based study in New England | Case- control | 109/256 | Medical examiner or laboratory supported | Age, sex, region and education, smoking status | Ever used alcohol Drinks per month 5 years ago 0 1–30 >30 | 1.1 (0.4–3.2) 1 0.9 (0.5–1.8) 1.4 (0.7–3.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; Yang, Q.; B Joshi, R.; Liu, Y.; Akbar, M.; Song, B.-J.; Zhou, S.; Wang, X. Role of Alcohol Drinking in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2020, 21, 2316. https://doi.org/10.3390/ijms21072316
Peng B, Yang Q, B Joshi R, Liu Y, Akbar M, Song B-J, Zhou S, Wang X. Role of Alcohol Drinking in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences. 2020; 21(7):2316. https://doi.org/10.3390/ijms21072316
Chicago/Turabian StylePeng, Bin, Qiang Yang, Rachna B Joshi, Yuancai Liu, Mohammed Akbar, Byoung-Joon Song, Shuanhu Zhou, and Xin Wang. 2020. "Role of Alcohol Drinking in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis" International Journal of Molecular Sciences 21, no. 7: 2316. https://doi.org/10.3390/ijms21072316
APA StylePeng, B., Yang, Q., B Joshi, R., Liu, Y., Akbar, M., Song, B. -J., Zhou, S., & Wang, X. (2020). Role of Alcohol Drinking in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 21(7), 2316. https://doi.org/10.3390/ijms21072316