Evaluation of Salivary Cytokines and Vitamin D Levels in Periodontopathic Patients
Abstract
:1. Introduction
2. Results
2.1. Clinical Findings and Periodontal Parameters
2.2. Salivary Levels of Inflammatory Markers and Vitamin D
2.3. Correlation between Salivary Parameters
2.4. Correlation between Salivary Parameters and Disease Stage
3. Discussion
4. Materials and Methods
4.1. Population
4.2. Clinical Periodontal Parameter Examination
4.3. Saliva Sample Collection
4.4. Vitamin D and Cytokine Measurement
4.5. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PD | Periodontal disease |
HC | Healthy control |
IL | Interleukin |
TNF | Tumor necrosis factor |
IFN | Interferon |
Th | T helper |
TGF | Transforming growth factor |
MMP | Matrix metalloproteinase |
CAL | Clinical attachment loss |
CEJ | Cementoenamel junction |
FMPS | Full-mouth plaque score |
FMBS | Full-mouth bleeding score |
IQR | Interquartile range |
ECM | Extracellular matrix |
NLRPL3 | Nod-like receptor leucine-rich repeat protein 3 |
VDR | Vitamin D receptor |
GCF | Gingival crevicular fluid |
Treg | T regulatory cell |
References
- Gross, A.J.; Paskett, K.T.; Cheever, V.J.; Lipsky, M.S. Periodontitis: A global disease and the primary care provider’s role. Postgrad. Med. J. 2017, 93, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci. (Qassim) 2017, 11, 72–80. [Google Scholar]
- Taylor, J.J. Protein Biomarkers of Periodontitis in Saliva. ISRN Inflamm. 2014, 2014, 593151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Socransky, S.S.; Haffajee, A.D. Evidence of bacterial etiology: A historical perspective. Microbiology and Immunology of Periodontal disease. Periodontology 1994, 5, 7–25. [Google Scholar] [CrossRef]
- Perić, M.; Cavalier, E.; Toma, S.; Lasserre, J.F. Serum vitamin D levels and chronic periodontitis in adult, Caucasian population—A systematic review. J. Periodont. Res. 2018, 53, 645–656. [Google Scholar] [CrossRef]
- Bonnet, C.; Rabbani, R.; Moffatt, M.E.K.; Kelekis-Cholakis, A.; Schroth, R.J. The Relation Between Periodontal Disease and Vitamin D. J. Can. Dent. Assoc. 2019, 85, j4. [Google Scholar]
- Khammissa, R.A.G.; Ballyram, R.; Jadwat, Y.; Fourie, J.; Lemmer, J.; Feller, L. Vitamin D Deficiency as It Relates to Oral Immunity and Chronic Periodontitis. Int. J. Dent. 2018, 2018, 7315797. [Google Scholar] [CrossRef] [Green Version]
- Di Benedetto, A.; Gigante, I.; Colucci, S.; Grano, M. Periodontal disease: Linking the primary inflammation to bone loss. Clin. Dev. Immunol. 2013, 2013, 7. [Google Scholar] [CrossRef] [Green Version]
- Jing, L.; Kim, S.; Sun, L.; Wang, L.; Mildner, E.; Divaris, K.; Jiao, Y.; Offenbacher, S. IL-37- and IL-35/IL-37-Producing Plasma Cells in Chronic Periodontitis. J. Dent. Res. 2019, 1–9. [Google Scholar] [CrossRef]
- Berglundh, T.; Donati, M.; Zitzmann, N. B cells in periodontitis: Friends or enemies? Periodontology 2007, 45, 51–66. [Google Scholar] [CrossRef]
- Batool, H.; Nadeem, A.; Tahir, M.K.R.; Afzal, N. Salivary Levels of IL-6 and IL-17 Could Be an Indicator of Disease Severity in Patients with Calculus Associated Chronic Periodontitis. BioMed. Res. Int. 2018, 2018, 8531961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaza-Guzmán, D.M.; Medina-Piedrahíta, V.M.; Gutiérrez-Henao, C.; Tobón-Arroyave, S.I. Salivary Levels of NLRP3 Inflammasome-Related Proteins as Potential Biomarkers of Periodontal Clinical Status. J. Periodontol. 2017, 88, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Rao, Z.; Chen, X.; Wu, J.; Xia, M.; Zhang, J.; Wang, B.; Fang, L.; Zhang, H.; Wang, X.; Yang, S.; et al. Vitamin D Receptor Inhibits NLRP3 Activation by Impeding Its BRCC3-Mediated Deubiquitination. Front. Immunol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Abdolsamadi, H.; Vahedi, M.; Fariba, F.; Soltanian, A.R.; Avval, M.Z.; Hosseini, A. Comparative Study of Salivary and Serum Levels of Vitamin D in Patients with a History of High Blood Pressure and Healthy People. J. Mol. Biol. Res. 2018, 8, 101. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Kolte, A.P.; Kolte, R.A.; Chari, S.; Gupta, M.; Pakhmode, R. Evaluation and comparison of serum vitamin D and calcium levels in periodontally healthy, chronic gingivitis and chronic periodontitis in patients with and without diabetes mellitus—A cross-sectional study. Acta Odontol. Scand. 2019, 77, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.H.; Livada, R.; Tipton, D.A. Re-evaluating the role of vitamin D in the periodontium. J. Periodontal Res. 2014, 49, 545–553. [Google Scholar] [CrossRef]
- Cashman, K.D. Vitamin D: Dietary requirements and food fortification as a means of helping achieve adequate vitamin D status. J. Steroid Biochem. Mol. Biol. 2015, 148, 19–26. [Google Scholar] [CrossRef]
- Cannell, J.J.; Grant, W.B.; Holick, M.F. Vitamin D and inflammation. Derm.-Endocrinol. 2014, 6, e983401. [Google Scholar] [CrossRef] [Green Version]
- Jagelavičienė, E.; Vaitkevičienė, I.; Šilingaitė, D.; Šinkūnaitė, E.; Daugėlaitė, G. The Relationship between Vitamin D and Periodontal Pathology. Medicina (Kaunas) 2018, 12, 54. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Meng, H.; Lu, R.; Xu, L.; Zhang, L.; Chen, Z.; Shi, D.; Feng, X.; Tang, X. Initial periodontal therapy reduced systemic and local 25-hydroxy vitamin D(3) and interleukin-1beta in patients with aggressive periodontitis. J. Periodontol. 2010, 81, 260–266. [Google Scholar] [CrossRef]
- Garcia, M.N.; Hildebolt, C.F.; Miley, D.D.; Dixon, D.A.; Couture, R.A.; Spearie, C.L.; Langenwalter, E.M.; Shannon, W.D.; Deych, E.; Mueller, C.; et al. One-year effects of vitamin D and calcium supplementation on chronic periodontitis. J. Periodontol. 2011, 82, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Bahramian, A.; Falsafi, P.; Abbasi, T.; Ghanizadeh, M.; Abedini, M.; Kavoosi, F.; Kouhsoltani, M.; Noorbakhsh, F.; Dabbaghi Tabriz, F.; Rajaeih, S.; et al. Comparing Serum and Salivary Levels of Vitamin D in Patients with Recurrent Aphthous Stomatitis and Healthy Individuals. J. Dent. (Shiraz) 2018, 19, 295–300. [Google Scholar]
- Lima, D.P.; Diniz, D.G.; Moimaz, S.A.; Sumida, D.H.; Okamoto, A.C. Saliva: Reflection of the body. Int. J. Infect. Dis. 2010, 14, e184–e188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reale, M.; Gonzales-Portillo, I.; Borlongan, C.V. Saliva, an easily accessible fluid as diagnostic tool and potent stem cell source for Alzheimer’s Disease: Present and future applications. Brain Res. 2019, 25, 146535. [Google Scholar] [CrossRef] [PubMed]
- Nastri, L.; Guida, L.; Annunziata, M.; Ruggiero, N.; Rizzo, A. Vitamin D modulatory effect on cytokines expression by human gingival fibroblasts and periodontal ligament cells. Minerva Stomatol. 2018, 67, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Nakashyan, V.; Tipton, D.A.; Karydis, A.; Livada, R.; Stein, S.H. Effect of 1,25(OH)2 D3 and 20(OH)D3 on interleukin-1β-stimulated interleukin-6 and -8 production by human gingival fibroblasts. J. Periodontal Res. 2017, 52, 832–841. [Google Scholar] [CrossRef]
- Liu, K.; Meng, H.; Hou, J. Characterization of the autocrine/paracrine function of vitamin D in human gingival fibroblasts and periodontal ligament cells. PLoS ONE 2012, 7, e39878. [Google Scholar] [CrossRef] [Green Version]
- Hill, N.T.; Zhang, J.; Leonard, M.K.; Lee, M.; Shamma, H.N.; Kadakia, M. 1α, 25-Dihydroxyvitamin D3 and the vitamin D receptor regulates ΔNp63α levels and keratinocyte proliferation. Cell Death Dis. 2015, 6, 1781–1792. [Google Scholar] [CrossRef] [Green Version]
- Anbarcioglu, E.; Kirtiloglu, T.; Öztürk, A.; Kolbakir, F.; Acıkgöz, G.; Colak, R. Vitamin D deficiency in patients with aggressive periodontitis. Oral Dis. 2019, 25, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Öztekin, A.; Öztekin, C. Vitamin D levels in patients with recurrent aphthous stomatitis. BMC Oral Health 2018, 18, 186. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, H.; Xu, L.; Zhang, L.; Shi, D.; Feng, X.; Lu, R.; Chen, Z. Vitamin D-Binding Protein Levels in Plasma and Gingival Crevicular Fluid of Patients with Generalized Aggressive Periodontitis. Int. J. Endocrinol. 2014, 2014, 783575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liukkonen, J.; Gürsoy, U.K.; Pussinen, P.J.; Suominen, A.L.; Könönen, E. Salivary Concentrations of Interleukin (IL)-1β, IL-17A, and IL-23 Vary in Relation to Periodontal Status. J. Periodontol. 2016, 87, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Niwa, T.; Yamakoshi, Y.; Yamazaki, H.; Karakida, T.; Chiba, R.; Hu, J.C.; Nagano, T.; Yamamoto, R.; Simmer, J.P.; Margolis, H.C.; et al. The dynamics of TGF-β in dental pulp, odontoblasts and dentin. Sci. Rep. 2018, 8, 4450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mincione, G.; Tarantelli, C.; Vianale, G.; Di Marcantonio, M.C.; Cotellese, R.; Francomano, F.; Di Nicola, M.; Costantini, E.; Cichella, A.; Muraro, R. Mutual regulation of TGF-β1, TβRII and ErbB receptors expression in human thyroid carcinomas. Exp. Cell Res. 2014, 327, 24–36. [Google Scholar] [CrossRef]
- Astuti, L.A.; Hatta, M.; Oktawati, S.; Natzir, R.; Dwiyanti, R. Change of TGF-β1 Gene Expression and TGF-β1 Protein Level in Gingival Crevicular Fluid and Identification of Plaque Bacteria in a Patient with Recurrent Localized Gingival Enlargement before and after Gingivectomy. Case Rep. Dent. 2018, 2018, 3670583. [Google Scholar] [CrossRef] [Green Version]
- Babel, N.; Cherepnev, G.; Babel, D.; Tropmann, A.; Hammer, M.; Volk, H.D.; Reinke, P. Analysis of tumor necrosis factor-α, transforming growth factor-β, interleukin- 10, IL-6, and interferon-γ gene polymorphisms in patients with chronic periodontitis. J. Periodontol. 2006, 77, 1978–1983. [Google Scholar] [CrossRef]
- Raj, S.C.; Panda, S.M.; Dash, M.; Patnaik, K.; Mohanty, D.; Katti, N.; Mahapatra, A.; Mishra, D.; Praharaj, K. Association of Human Interleukin-35 Level in Gingival Crevicular Fluid and Serum in Periodontal Health, Disease, and after Nonsurgical Therapy: A Comparative Study. Contemp. Clin. Dent. 2018, 9, 293–297. [Google Scholar] [CrossRef]
- Li, X.; Mai, J.; Virtue, A.; Yin, Y.; Gong, R.; Sha, X.; Gutchigian, S.; Frisch, A.; Hodge, I.; Jiang, X.; et al. IL-35 is a novel responsive anti-inflammatory cytokine—A new system of categorizing anti-inflammatory cytokines. PLoS ONE 2012, 7, e33628. [Google Scholar] [CrossRef] [Green Version]
- Kalburgi, N.B.; Muley, A.; Shivaprasad, B.M.; Koregol, A.C. Expression profile of IL-35 mRNA in gingiva of chronic periodontitis and aggressive periodontitis patients: A semiquantitative RT-PCR study. Dis. Markers 2013, 35, 819–823. [Google Scholar] [CrossRef]
- Costantini, E.; Sinjari, B.; D’Angelo, C.; Murmura, G.; Reale, M.; Caputi, S. Human Gingival Fibroblasts Exposed to Extremely Low-Frequency Electromagnetic Fields: In Vitro Model of Wound-Healing Improvement. Int. J. Mol. Sci. 2019, 20, 2108. [Google Scholar] [CrossRef] [Green Version]
- Patruno, A.; Ferrone, A.; Costantini, E.; Franceschelli, S.; Pesce, M.; Speranza, L.; Amerio, P.; D’Angelo, C.; Felaco, M.; Grilli, A.; et al. Extremely low-frequency electromagnetic fields accelerates wound healing modulating MMP-9 and inflammatory cytokines. Cell Prolif. 2018, 51, e12432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäkëla, M.; Salo, T.; Uitto, V.J.; Larjava, H. Matrix metalloproteinases (MMP-2 and MMP-9) of the oral cavity: Cellular origin and relationship to periodontal status. J. Dent. Res. 1994, 73, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Cavalla, F.; Hernández-Ríos, P.; Sorsa, T.; Biguetti, C.; Hernández, M. Matrix Metalloproteinases as Regulators of Periodontal Inflammation. Int. J. Mol. Sci. 2017, 18, 440. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Li, Y.Y.; Zhang, H.Y.; Wang, F.; He, H.L.; Yao, J.C.; Liu, L.; Li, S.S. Role of matrix metalloproteinase-9 in transforming growth factor-β1-induced epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Onco Targets Ther. 2017, 10, 2837–2847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niwa, T.; Williamson, S.Y.; Munro, C.; Pickler, R.; Grap, M.; Elswick, R.K. Comparison of Biomarkers in Blood and Saliva in Healthy Adults. Nurs. Res. Pract. 2012, 2012, 246178. [Google Scholar] [CrossRef]
- Sahibzada, H.A.; Khurshid, Z.; Khan, R.S.; Naseem, M.; Siddique, K.M.; Mali, M.; Zafar, M.S. Salivary IL-8, IL-6 and TNF-α as Potential Diagnostic Biomarkers for Oral Cancer. Diagnostics 2017, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Lyakh, L.A.; Sanford, M.; Chekol, S.; Young, H.A.; Roberts, A.B. TGF-β and Vitamin D3 Utilize Distinct Pathways to Suppress IL-12 Production and Modulate Rapid Differentiation of Human Monocytes into CD83+ Dendritic Cells. J. Immunol. 2005, 174, 2061–2070. [Google Scholar] [CrossRef] [Green Version]
- Consiglio, M.; Destefanis, M.; Morena, D.; Foglizzo, V.; Forneris, M.; Pescarmona, G.; Silvagno, F. The vitamin D receptor inhibits the respiratory chain, contributing to the metabolic switch that is essential for cancer cell proliferation. PLoS ONE 2014, 9, e115816. [Google Scholar] [CrossRef] [Green Version]
- Zerr, P.; Vollath, S.; Palumbo-Zerr, K.; Tomcik, M.; Huang, J.; Distler, A.; Beyer, C.; Dees, C.; Gela, K.; Distler, O.; et al. Vitamin D receptor regulates TGF-β signalling in systemic sclerosis. Ann. Rheum. Dis. 2015, 74, e20. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Liu, D.; Lin, X. IL-35 may maintain homeostasis of the immune microenvironment in periodontitis. Exp. Ther. Med. 2017, 14, 5605–5610. [Google Scholar] [CrossRef]
- Oh, C.; Kim, H.J.; Kim, H.M. Vitamin D maintains E-cadherin intercellular junctions by downregulating MMP-9 production in human gingival keratinocytes treated by TNF-α. J. Periodontal Implant Sci. 2019, 49, 270–286. [Google Scholar] [CrossRef] [PubMed]
- Rai, B.; Kaur, J.; Jain, R.; Saudi, A. Levels of gingival crevicular metalloproteinases-8 and -9 in periodontitis. Dent. J. 2010, 22, 129–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mus, A.M.; van Hamburg, J.P.; Asmawidjaja, P.; Hazes, J.M.W.; van Leeuwen, H.; Boon, L.; Colin, E.; Lubberts, E. Vitamin D suppresses Th17 cytokines via down regulation of RORgammat and NFATC2 and by differential regulation of GATA3. Arthritis Rheum 2010, 62 (Suppl. 10), 38. [Google Scholar]
- Hendrik, H.D.; Raubenheimer, E.J. Vitamin D Nuclear Receptor and Periodontal Disease: A Review. J. Interdiscipl. Med. Dent. Sci. 2015, 3, 2. [Google Scholar]
- Meghil, M.M.; Hutchens, L.; Raed, A.; Multani, N.A.; Rajendran, M.; Zhu, H.; Looney, S.; Elashiry, M.; Arce, R.M.; Peacock, M.E.; et al. The influence of vitamin D supplementation on local and systemic inflammatory markers in periodontitis patients: A pilot study. Oral Dis. 2019, 25, 1403–1413. [Google Scholar] [CrossRef]
- Barros, S.P.; Williams, R.; Offenbacher, S.; Morelli, T. Gingival crevicular fluid as a source of biomarkers for periodontitis. Periodontology 2016, 70, 53–64. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Periodontol. 2018, 89 (Suppl. 1), S159–S172. [Google Scholar] [CrossRef] [Green Version]
Parameters | Disease Stage | ||
---|---|---|---|
II (n = 7) | III (n = 9) | IV (n = 5) | |
Maximum probing depth (mm) | 5 (4–5) | 7 (6–9) | 7 (6–7) |
CAL 12-21 (mm) | 4 (3–4) | 5 (5–5) | 7 (5–7) |
CAL 31–41 (mm) | 4 (3–4) | 5 (3.5–5) | 7 (6–8) |
CAL 36 (mm) | 4 (3–4) | 6 (5–7) | 6 (6–8) |
CAL 46 (mm) | 4 (3–4) | 6 (5–7) | 6 (5–6) |
CAL 26 (mm) | 3 (3–4) | 5 (5–6) | 6 (6–6) |
CAL 16 (mm) | 4 (3–4) | 5 (5–5) | 5 (5–7) |
FMBS (%) | 41 (39–49) | 48 (43–55) | 48 (41–60) |
FMpS (%) | 36 (34–39) | 48 (39–52) | 53 (40–64) |
Radiographic_bone_loss (%) | 31 (28–32) | 65 (44–70) | 80 (75–83) |
HC Median (IQR) | PD Median (IQR) | p-Value | |
---|---|---|---|
TGFβ (pg/mL) | 34.8 (30.7–55.2) | 156.9 (130.4–231.8) | <0.001 |
IL-35 (pg/mL) | 43.5 (36.1–49.9) | 98.37 (62.5–306.8) | <0.001 |
IL-17A (pg/mL) | 8.3 (4.3–11.1) | 21.3 (12.3–28.3) | <0.001 |
MMP9 (ng/mL) | 198.0 (152.1–352.1) | 388.9 (189.4–709.6) | 0.209 |
25(OH)D3 (ng/mL) | 4.6 (3.1–8) | 3.7 (2.0–5.3) | 0.207 |
25(OH)D3 | TGFβ | IL-35 | IL-17A | |||||
---|---|---|---|---|---|---|---|---|
PD | HC | PD | HC | PD | HC | PD | HC | |
TGFβ (pg/mL) | −0.71 * | −0.63 * | ||||||
IL-35 (pg/mL) | −0.73 * | −0.24 | 0.71 * | −0.23 | ||||
IL-17A (pg/mL) | −0.71 * | −0.60 * | 0.70 * | 0.65 * | 0.68 | −0.12 | ||
MMP9(ng/mL) | −0.10 | −0.38 | 0.46 | 0.81 ** | 0.23 | −0.37 | −0.15 | 0.47 |
PD (n = 21) | HC (n = 21) | p-Value | |
---|---|---|---|
Age (years), mean ± SD | 56.9 ± 5.4 | 54.3 ± 5.0 | 0.113 |
Gender, n (%) | 1.000 | ||
Male | 7 (33) | 7 (33) | |
Female | 14 (67) | 14 (67) | |
Hormonal status in female, n (%) | 0.648 | ||
Fertile | 2 (14) | 4 (29) | |
Menopause | 12 (86) | 10 (71) | |
BMI (Kg/m2), mean ± SD | 22.3 ± 2.6 | 24.5 ± 4.2 | 0.055 |
Current smoker, n (%) | 2 (9) | 3 (14) | 0.999 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costantini, E.; Sinjari, B.; Piscopo, F.; Porreca, A.; Reale, M.; Caputi, S.; Murmura, G. Evaluation of Salivary Cytokines and Vitamin D Levels in Periodontopathic Patients. Int. J. Mol. Sci. 2020, 21, 2669. https://doi.org/10.3390/ijms21082669
Costantini E, Sinjari B, Piscopo F, Porreca A, Reale M, Caputi S, Murmura G. Evaluation of Salivary Cytokines and Vitamin D Levels in Periodontopathic Patients. International Journal of Molecular Sciences. 2020; 21(8):2669. https://doi.org/10.3390/ijms21082669
Chicago/Turabian StyleCostantini, Erica, Bruna Sinjari, Francesca Piscopo, Annamaria Porreca, Marcella Reale, Sergio Caputi, and Giovanna Murmura. 2020. "Evaluation of Salivary Cytokines and Vitamin D Levels in Periodontopathic Patients" International Journal of Molecular Sciences 21, no. 8: 2669. https://doi.org/10.3390/ijms21082669
APA StyleCostantini, E., Sinjari, B., Piscopo, F., Porreca, A., Reale, M., Caputi, S., & Murmura, G. (2020). Evaluation of Salivary Cytokines and Vitamin D Levels in Periodontopathic Patients. International Journal of Molecular Sciences, 21(8), 2669. https://doi.org/10.3390/ijms21082669