Comprehensive Analysis of Autophagy-Related Genes in Sweet Orange (Citrus sinensis) Highlights Their Roles in Response to Abiotic Stresses
Abstract
:1. Introduction
2. Results
2.1. Identification of 35 ATGs in the Sweet Orange Genome
2.2. Bioinformatic Characterizations of CsATGs
2.3. Expression Patterns of CsATGs Under Abiotic Stresses
2.4. Overexpression of CsATG18a/b Conferred Osmotic and Salt Tolerance in Arabidopsis
2.5. Overexpression of CsATG18a Conferred Drought Tolerance in Arabidopsis
2.6. Overexpression of CsATG18b Conferred Cold Tolerance in Arabidopsis
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Treatments
4.2. Genome-Wide Identification of ATG Genes in Sweet Orange
4.3. Bioinformatic Analysis of CsATGs
4.4. Total RNA Isolation and Quantitative Real-Time PCR (qRT-PCR) Analysis
4.5. Construction of Transgenic Arabidopsis Expressing 35S-CsATG18a and 35S-CsATG18b
4.6. Phenotypic and Physiological Analysis of Transgenic Arabidopsis Lines
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TOR | target of rapamycin kinase |
PE | phosphatidylethanolamine |
ROS | reactive oxygen species |
PCD | programmed cell death |
UTR | untranslated region |
FC | fold change |
OE | overexpression |
PKc like | protein kinase superfamily |
ATG C | autophagy-related protein C-terminal domain |
ATG N | autophagy-related protein N terminal domain |
Chorein N | N-terminal region of chorein or VPS13 |
Autophagy N | autophagocytosis-associated protein N-terminal domain |
Autophagy C | autophagocytosis-associated protein C-terminal domain |
Autophagy act C | autophagocytosis-associated protein, active-site domain |
Peptidase C54 | peptidase family C54 |
UBQ | ubiquitin homologues |
WD40 Repeats | WD40 repeats |
BCAS3 | breast carcinoma amplified sequence 3 |
PX domain | the phox homology domain, a phosphoinositide binding module |
BAR | the Bin/amphiphysin/Rvs (BAR) domain |
PI3Kc | catalytic domain of phosphoinositide 3-kinase |
PI3Ka | phosphoinositide 3-kinase family, accessory domain |
C2 | C2 domain |
SNARE | soluble N-ethylmaleimide-sensitive-factor attachment protein receptor |
V-SNARE N | vesicle transport v-SNARE protein N-terminus |
V-SNARE C | vesicle transport v-SNARE protein C-terminus |
References
- Il Kwon, S.; Park, O.K. Autophagy in plants. J. Plant Biol. 2008, 51, 313–320. [Google Scholar] [CrossRef]
- Liu, Y.; Bassham, D.C. Autophagy: Pathways for self-eating in plant cells. Annu. Rev. Plant Biol. 2012, 63, 215–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.; Yu, B.; Wang, Y.; Liu, Y. Role of plant autophagy in stress response. Protein Cell 2011, 2, 784–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avila-Ospina, L.; Moison, M.; Yoshimoto, K.; Masclaux-Daubresse, C. Autophagy, plant senescence, and nutrient recycling. J. Exp. Bot. 2014, 65, 3799–3811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohsumi, Y. Molecular dissection of autophagy: Two ubiquitin-like systems. Nat. Rev. Mol. Cell Bio. 2001, 2, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.R.; Vierstra, R.D. Autophagic recycling: Lessons from yeast help define the process in plants. Curr. Opin. Plant Biol. 2005, 8, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.F.; Liu, T.; Ouyang, J.; Wang, R.; Fan, T.; Zhang, M.Y. Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res. 2011, 18, 363–377. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.M.; Zhao, P.; Wang, W.; Zou, J.; Cheng, T.H.; Peng, X.B.; Sun, M.X. A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues. DNA Res. 2015, 22, 245–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.Q.; Chung, T.; Pennington, J.G.; Federico, M.L.; Kaeppler, H.F.; Kaeppler, S.M.; Otegui, M.S.; Vierstra, R.D. Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 2015, 27, 1389–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, Y.F.; Guo, M.; Wang, H.; Lu, J.P.; Liu, J.H.; Zhang, C.; Gong, Z.H.; Lu, M.H. Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Li, W.W.; Chen, M.; Wang, E.H.; Hu, L.Q.; Hawkesford, M.J.; Zhong, L.; Chen, Z.; Xu, Z.S.; Li, L.C.; Zhou, Y.B.; et al. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice. BMC Genomics 2016, 17, 797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.X.; Liu, W.; Hu, W.; Liu, G.Y.; Wu, C.J.; Liu, W.; Zeng, H.Q.; He, C.Z.; Shi, H.T. Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt. Plant Cell Rep. 2017, 36, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, L.F.; Fang, X.; Chen, L.D.; Cui, L.W.; Fang, J.G. Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress. Planta 2018, 247, 1449–1463. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yu, J.Q.; Chen, Z.X. The perplexing role of autophagy in plant innate immune responses. Mol. Plant Pathol. 2014, 15, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Pu, X.; Qin, G.; Zhu, T.; Lin, H. The roles of autophagy in development and stress responses in Arabidopsis thaliana. Apoptosis 2014, 19, 905–921. [Google Scholar] [CrossRef]
- Avin-Wittenberg, T.; Bajdzienko, K.; Wittenberg, G.; Alseekh, S.; Tohge, T.; Bock, R.; Giavalisco, P.; Fernie, A.R. Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation. Plant Cell 2015, 27, 306–322. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Sun, X.; Jia, X.; Wang, N.; Gong, X.Q.; Ma, F.W. Characterization of an autophagy-related gene MdATG8i from apple. Front. Plant Sci. 2016, 7, 720. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Sun, X.; Jia, X.; Ma, F.W. Apple autophagy-related protein MdATG3s afford tolerance to multiple abiotic stresses. Plant Sci. 2017, 256, 53–64. [Google Scholar] [CrossRef]
- Wang, P.; Sun, X.; Wang, N.; Jia, X.; Ma, F.W. Ectopic expression of an autophagy-associated MdATG7b gene from apple alters growth and tolerance to nutrient stress in Arabidopsis thaliana. Plant Cell Tiss. Org. 2017, 128, 9–23. [Google Scholar] [CrossRef]
- Sun, X.; Jia, X.; Huo, L.Q.; Che, R.M.; Gong, X.Q.; Wang, P.; Ma, F.W. MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple. Plant Cell Environ. 2018, 41, 469–480. [Google Scholar] [CrossRef]
- Sun, X.; Wang, P.; Jia, X.; Huo, L.Q.; Che, R.M.; Ma, F.W. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnol. J. 2018, 16, 545–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Liu, G.Y.; Wang, Y.Q.; Wei, Y.X.; Shi, H.T. Overexpression of banana ATG8f modulates drought stress resistance in Arabidopsis. Biomolecules 2019, 9, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.W.; Soulay, F.; Saudemont, B.; Elmayan, T.; Marmagne, A.; Masclaux-Daubresse, C. Overexpression of ATG8 in Arabidopsis stimulates autophagic activity and increases nitrogen remobilization efficiency and grain filling. Plant Cell Physiol. 2019, 60, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Li, W.W.; Chen, M.; Zhong, L.; Liu, J.M.; Xu, Z.S.; Li, L.C.; Zhou, Y.B.; Guo, C.H.; Ma, Y.Z. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis. Biochem. Biophys. Res. Commun. 2015, 468, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M.; Xiong, Y.; Bassham, D.C. Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 2009, 5, 954–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.B.; Cui, D.Z.; Sui, X.X.; Huang, C.; Huang, C.Y.; Fan, Q.Q.; Chu, X.S. Autophagic survival precedes programmed cell death in wheat seedlings exposed to drought stress. Int. J. Mol. Sci. 2019, 20, 5777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Cai, S.Y.; Yin, L.L.; Shi, K.; Xia, X.J.; Zhou, Y.H.; Yu, J.Q.; Zhou, J. Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy. Autophagy 2015, 11, 2033–2047. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.M.; Zhang, P.P.; Zhu, R.H.; Fu, J.; Su, J.; Zheng, J.; Wang, Z.Y.; Wang, D.; Gong, Q.Q. Autophagy is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis. Front. Plant Sci. 2017, 8, 1459. [Google Scholar] [CrossRef] [Green Version]
- Dundar, G.; Shao, Z.H.; Higashitani, N.; Kikuta, M.; Izumi, M.; Higashitani, A. Autophagy mitigates high-temperature injury in pollen development of Arabidopsis thaliana. Dev. Biol. 2019, 456, 190–200. [Google Scholar] [CrossRef]
- Sedaghatmehr, M.; Thirumalaikumar, V.P.; Kamranfar, I.; Marmagne, A.; Masclaux-Daubresse, C.; Balazadeh, S. A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant Cell Environ. 2019, 42, 1054–1064. [Google Scholar] [CrossRef]
- Shinozaki, D.; Merkulova, E.A.; Naya, L.; Horie, T.; Kanno, Y.; Seo, M.; Ohsumi, Y.; Masclaux-Daubresse, C.; Yoshimoto, K. Autophagy increases zinc bioavailability to avoid light-mediated reactive oxygen species production under zinc deficiency. Plant Physiol. 2020, 182, 1284–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, H.; Li, Y.N.; Zhao, F.F.; Pu, X.J.; Wei, L.J.; Lv, X.; Zhu, F.; Lin, H.H. The role of autophagy in alleviating damage of aluminum stress in Arabidopsis thaliana. Plant Growth Regul. 2016, 79, 167–175. [Google Scholar] [CrossRef]
- Guan, B.; Lin, Z.; Liu, D.C.; Li, C.Y.; Zhou, Z.Q.; Mei, F.Z.; Li, J.W.; Deng, X.Y. Effect of waterlogging-induced autophagy on programmed cell death in Arabidopsis roots. Front. Plant Sci. 2019, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, L.L.; Ruan, X.; Chen, D.; Zhu, A.; Chen, C.; Bertrand, D.; Jiao, W.B.; Hao, B.H.; Lyon, M.P.; et al. The draft genome of sweet orange (Citrus sinensis). Nat. Genet. 2013, 45, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Cheong, H.; Nair, U.; Geng, J.F.; Klionsky, D.J. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 2008, 19, 668–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez-Nopala, G.; Salgado-Escobar, A.E.; Cevallos-Porta, D.; Cardenas, L.; Sepulveda-Jimenez, G.; Cassab, G.; Porta, H. Autophagy mediates hydrotropic response in Arabidopsis thaliana roots. Plant Sci. 2018, 272, 1–13. [Google Scholar] [CrossRef]
- Xiong, Y.; Contento, A.L.; Nguyen, P.Q.; Bassham, D.C. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 2007, 143, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Sun, X.; Yue, Z.Y.; Liang, D.; Wang, N.; Ma, F.W. Isolation and characterization of MdATG18 alpha, a WD40-repeat AuTophaGy-related gene responsive to leaf senescence and abiotic stress in Malus. Sci. Hortic. 2014, 165, 51–61. [Google Scholar] [CrossRef]
- Perez-Perez, M.E.; Lemaire, S.D.; Crespo, J.L. Reactive oxygen species and autophagy in plants and algae. Plant Physiol. 2012, 160, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.B.; Wang, F.; Zheng, Z.Y.; Fan, B.F.; Chen, Z.X. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J. 2011, 66, 953–968. [Google Scholar] [CrossRef]
- Fu, X.Z.; Tong, Y.H.; Zhou, X.; Ling, L.L.; Chun, C.P.; Cao, L.; Zeng, M.; Peng, L.Z. Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity. Gene 2017, 629, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Tyagi, A.K.; Sharma, A.K. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol. Genet. Genomics 2011, 285, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. Clustal-W-improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.Y.; Zhu, Q.H.; Chen, X.; Luo, J.C. GSDS: A gene structure display server. Yi Chuan 2007, 29, 1023–1026. [Google Scholar] [CrossRef]
- Wang, Y.P.; Tang, H.B.; DeBarry, J.D.; Tan, X.; Li, J.P.; Wang, X.Y.; Lee, T.H.; Jin, H.Z.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic. Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [Green Version]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Fu, X.Z.; Peng, T.; Huang, X.S.; Fan, Q.J.; Liu, J.H. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol. 2010, 30, 914–922. [Google Scholar] [CrossRef]
Gene | Arabidopsis ID | Gene | Citrus ID | Identity to Arabidopsis | ORF (bp) | Protein (aa) | Predicted Localization 1 | Predicted Function 2 |
---|---|---|---|---|---|---|---|---|
ATG1/13 kinase complex | Initiation of autophagy | |||||||
AtATG1a | At1g49180 | CsATG1a | Cs1g05170 | 56.3% | 894 | 297 | Cytoplasmic | Serine/threonine-protein kinase |
AtATG1b | At2g37840 | CsATG1b | orange1.1t03071 | 66.5% | 2157 | 718 | Nuclear | Serine/threonine-protein kinase |
AtATG1c | At3g53930 | NA | NA | NA | NA | NA | NA | NA |
AtATG1d | At3g61960 | CsATG1d | orange1.1t00581 | 59.1% | 2079 | 692 | Cytoplasmic | Serine/threonine-protein kinase |
AtATG13a | At3g18770 | CsATG13 | Cs1g05100 | 61.7% | 3222 | 1073 | Cytoplasmic | Autophagocytosis-associated protein |
AtATG13b | AT3G49590 | NA | NA | NA | NA | NA | NA | NA |
AtATG20 | At5g06140 | CsATG20 | Cs6g14260 | 83.3% | 1212 | 403 | Mitochondrial | Sorting nexin 2-like protein |
AtTOR | At1g50030 | CsTOR | Cs8g03630 | 83.6% | 7095 | 2364 | Cytoplasmic | Phosphoinositide 3-kinase |
PI3K complex | Autophagosome formation | |||||||
AtVPS15 | At4g29380 | CsVPS15 | Cs4g15580 | 73.7% | 4662 | 1553 | Cytoplasmic | Serine/threonine-protein kinase |
AtVPS34 | At1g60490 | CsVPS34 | Cs7g08800 | 83.8% | 2469 | 822 | Cytoplasmic | Phosphoinositide 3-kinase |
AtATG6 | At3g61710 | CsATG6 | orange1.1t00487 | 77.4% | 1551 | 516 | Cytoplasmic | Autophagy protein Apg6 |
ATG9/2/18 complex | Membrane recruitment to autophagosome | |||||||
AtATG2 | At3g19190 | CsATG2 | Cs8g05820 | 51.6% | 5985 | 1994 | Plasma membrane | Autophagy-related protein 2 |
AtATG9 | At2g31260 | CsATG9 | Cs5g29970 | 69.9% | 2625 | 874 | Vacuolar | Autophagy protein Apg9 |
AtATG18a | At3g62770 | CsATG18a | Cs5g32770 | 76.5% | 1221 | 406 | Cytoplasmic | WD-40 repeat containing protein |
AtATG18b | At4g30510 | CsATG18b | Cs4g02320 | 74.2% | 1095 | 364 | Mitochondrial | WD-40 repeat containing protein |
AtATG18c | At2g40810 | CsATG18c | Cs7g29360 | 75.6% | 1248 | 415 | Mitochondrial | WD-40 repeat containing protein |
AtATG18d | At3g56440 | NA | NA | NA | NA | NA | NA | NA |
AtATG18e | At5g05150 | CsATG18e | Cs3g14170 | 47.6% | 1083 | 360 | Cytoplasmic | WD-40 repeat containing protein |
AtATG18f | At5g54730 | CsATG18f | Cs4g11290 | 48.7% | 2340 | 779 | Plasma membrane | Breast carcinoma amplified sequence 3 |
AtATG18g | At1g03380 | CsATG18g | Cs5g32120 | 57.5% | 2985 | 994 | Plasma membrane | Breast carcinoma amplified sequence 3 |
AtATG18h | At1g54710 | CsATG18h | Cs5g34870 | 62.0% | 3021 | 1006 | Mitochondrial | Breast carcinoma amplified sequence 3 |
Ubiquitin-like ATG8 and PE conjugation pathway | Conjugation of ATG8 to PE | |||||||
AtATG3 | At5g61500 | CsATG3 | Cs9g15060 | 82.1% | 960 | 319 | Cytoplasmic | Autophagocytosis-associated protein 3 |
AtATG4a | At2g44140 | NA | NA | NA | NA | NA | NA | NA |
AtATG4b | At3g59950 | CsATG4 | Cs5g20640 | 60.8% | 1332 | 443 | Cytoplasmic | Peptidase family C54 |
AtATG7 | At5g45900 | CsATG7 | Cs2g04910 | 71.9% | 2148 | 715 | Cytoplasmic | Autophagy protein Apg7 |
AtATG8a | At4g21980 | CsATG8a | Cs2g03030 | 88.2% | 363 | 120 | Cytoplasmic | Autophagy protein Apg8 |
AtATG8b | AT4G04620 | NA | NA | NA | NA | NA | NA | NA |
AtATG8c | At1g62040 | CsATG8c | Cs4g10210 | 90.8% | 363 | 120 | Cytoplasmic | Autophagy protein Apg8 |
AtATG8d | At2g05630 | CsATG8d | Cs2g21350 | 90.8% | 360 | 119 | Mitochondrial | Autophagy protein Apg8 |
AtATG8f | At4g16520 | CsATG8f | Cs5g08990 | 90.9% | 369 | 122 | Cytoplasmic | Autophagy protein Apg8 |
AtATG8g | At3g60640 | CsATG8g | orange1.1t00201 | 84.6% | 354 | 117 | Mitochondrial | Autophagy protein Apg8 |
AtATG8h | At3g06420 | NA | NA | NA | NA | NA | NA | NA |
AtATG8i | At3g15580 | CsATG8i | orange1.1t01753 | 79.1% | 378 | 125 | Mitochondrial | Autophagy protein Apg8 |
Ubiquitin-like ATG12 and ATG5 conjugation pathway | Conjugation of ATG12, ATG5, and ATG16 | |||||||
AtATG5 | At5g17290 | CsATG5 | Cs9g11540 | 70.2% | 1233 | 410 | Cytoplasmic | Autophagy protein Apg5 |
AtATG7 | At5g45900 | CsATG7 | Cs2g04910 | 71.9% | 2148 | 715 | Cytoplasmic | Autophagy protein Apg7 |
AtATG10 | At3g07525 | CsATG10 | Cs2g18190 | 56.1% | 693 | 230 | Plasma membrane | Autophagocytosis-associated protein |
AtATG12a | At1g54210 | CsATG12 | Cs1g17600 | 81.1% | 315 | 104 | Cytoplasmic | Autophagocytosis-associated protein |
AtATG12b | At3g13970 | NA | NA | NA | NA | NA | NA | NA |
AtATG16 | At5g50230 | CsATG16 | Cs5g06560 | 74.1% | 1533 | 510 | Cytoplasmic | WD-40 repeat containing protein |
SNARE | Fusion of autophagososme with the vacuole | |||||||
AtVTI12 | At1g26670 | CsVTI12a | orange1.1t04711 | 70.1% | 666 | 221 | Golgi | Vesicle transport v-SNARE protein |
CsVTI12b | Cs7g03410 | 72.7% | 519 | 172 | Golgi | Vesicle transport v-SNARE protein | ||
CsVTI12c | Cs6g21610 | 68.3% | 666 | 221 | Golgi | Vesicle transport v-SNARE protein | ||
CsVTI12d | orange1.1t00788 | 71.7% | 522 | 173 | Golgi | Vesicle transport v-SNARE protein |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.-Z.; Zhou, X.; Xu, Y.-Y.; Hui, Q.-L.; Chun, C.-P.; Ling, L.-L.; Peng, L.-Z. Comprehensive Analysis of Autophagy-Related Genes in Sweet Orange (Citrus sinensis) Highlights Their Roles in Response to Abiotic Stresses. Int. J. Mol. Sci. 2020, 21, 2699. https://doi.org/10.3390/ijms21082699
Fu X-Z, Zhou X, Xu Y-Y, Hui Q-L, Chun C-P, Ling L-L, Peng L-Z. Comprehensive Analysis of Autophagy-Related Genes in Sweet Orange (Citrus sinensis) Highlights Their Roles in Response to Abiotic Stresses. International Journal of Molecular Sciences. 2020; 21(8):2699. https://doi.org/10.3390/ijms21082699
Chicago/Turabian StyleFu, Xing-Zheng, Xue Zhou, Yuan-Yuan Xu, Qiu-Ling Hui, Chang-Pin Chun, Li-Li Ling, and Liang-Zhi Peng. 2020. "Comprehensive Analysis of Autophagy-Related Genes in Sweet Orange (Citrus sinensis) Highlights Their Roles in Response to Abiotic Stresses" International Journal of Molecular Sciences 21, no. 8: 2699. https://doi.org/10.3390/ijms21082699
APA StyleFu, X. -Z., Zhou, X., Xu, Y. -Y., Hui, Q. -L., Chun, C. -P., Ling, L. -L., & Peng, L. -Z. (2020). Comprehensive Analysis of Autophagy-Related Genes in Sweet Orange (Citrus sinensis) Highlights Their Roles in Response to Abiotic Stresses. International Journal of Molecular Sciences, 21(8), 2699. https://doi.org/10.3390/ijms21082699