Formation of the Secondary Abscission Zone Induced by the Interaction of Methyl Jasmonate and Auxin in Bryophyllum calycinum: Relevance to Auxin Status and Histology
Abstract
:1. Introduction
2. Results
2.1. Effect of IAA or JA-Me on the Formation of the Secondary Abscission Zone in the Internode Segments of Bryophyllum calycinum
2.2. Histological Analyses of the Formation of the Secondary Abscission Zone Induced by IAA or JA-Me in the Internode Segments of B. calycinum
2.3. Changes in the Levels of Endogenous Plant Hormones in Relation to the Formation of the Secondary Abscission Zone Induced by IAA
2.4. The Effects of the Interaction between JA-Me and IAA on the Formation of the Secondary Abscission Zone in the Internode Segments with or without the Node of B. calycinum
3. Discussion
3.1. The Mode of Action of IAA to Induce the Formation of the Secondary Abscission Zone in the Stem of B. calycinum
3.2. The Effects of the Interaction between JA-Me and IAA on the Formation of the Secondary AbscissionZone in the Stem Segments of B. calycinum
4. Materials and Methods
4.1. Plant Materials and Hormone Treatment
4.2. Histological Observations
4.3. Analyses of Plant Hormones in Relation to the Secondary Abscission Zone Formation Induced by IAA in the Stem Segments of B. calycinum
4.4. Statistical Analysis
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Osborne, D.J. Morphogenetic signals and markers in vitro and in vivo. In Morphogenesis in Plants. Molecular Approaches; Roubelakis-Angelakis, K.A., Thanh Van, K.T., Eds.; NATO ASI Series, Series A: Life Sciences; Springer Science & Business Media: New York, NY, USA, 1993; Volume 253, pp. 1–17. [Google Scholar]
- Van Doorn, W.G.; Stead, A.D. Abscission of flowers and floral parts. J. Exper. Bot. 1997, 48, 821–837. [Google Scholar] [CrossRef]
- Roberts, J.A.; Whitelaw, C.A.; Gonzalez-Carranza, Z.H.; McManus, M.T. Cell separation processes in plants—Models, mechanisms and manipulation. Ann. Bot. 2000, 86, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.E.; Whitelaw, C.A. Signals in abscission. New Phytol. 2001, 151, 323–339. [Google Scholar] [CrossRef]
- Tucker, M.L.; Kim, J. Abscission research: What we know and what we still need to study. Stewart Postharvest Rev. 2015, 2, 1. [Google Scholar]
- Partharkar, O.R.; Walker, J.C. Advances in abscission signaling. J. Exp. Bot. 2018, 69, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Bleecker, A.B.; Patterson, S.E. Last exit: Senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 1997, 9, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.A.; Elliott, K.A.; Gonzalez-Carranza, Z.H. Abscission, dehiscence, and other cell separation processes. Annu. Rev. Plant Biol. 2002, 53, 131–158. [Google Scholar] [CrossRef]
- Patterson, S.E. Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiol. 2001, 126, 494–500. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y.; Nakano, T. Development and regulation of pedicel abscission in tomato. Front. Plant Sci. 2015, 6, 442. [Google Scholar] [CrossRef] [Green Version]
- Meir, S.; Sundaresan, S.; Riov, J.; Agarwal, I.; Philosoph-Hadas, S. Role of auxin depletion in abscission control. Stewart Postharvest Rev. 2015, 2, 1–15. [Google Scholar]
- Curtis, R.W. Abscission-inducing properties of methyl jasmonate, ABA, and ABA-methylester and their interactions with ethephon, AgNO3 and malformin. J. Plant Growth Regul. 1984, 3, 157–168. [Google Scholar] [CrossRef]
- Ueda, J.; Miyamoto, K.; Aoki, M.; Momotani, Y.; Kato, J.; Kamisaka, S. The mode of actions of jasmonic acid and its methyl ester on the growth and the abscission. In Proceedings of the 14th International Conference on Plant Growth Substances, Amsterdam, The Netherlands, 21–26 July 1991; p. 80. [Google Scholar]
- Ueda, J.; Miyamoto, K.; Hashimoto, M. Jasmonates promote abscission in bean petiole explants: Its relationship to the metabolism of cell wall polysaccharides and cellulase activity. J. Plant Growth Regul. 1996, 15, 189–195. [Google Scholar] [CrossRef]
- Saniewski, M.; Węgrzynowicz, E. Methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana. Acta Hortic. 1995, 394, 315–324. [Google Scholar] [CrossRef]
- Saniewski, M.; Gajewska, E.; Urbanek, H. Activity of cell wall degrading glycanases in methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana. Acta Agrobot. 1995, 48, 69–74. [Google Scholar] [CrossRef]
- Hartmond, U.; Yuan, R.; Burns, J.K.; Grant, A.; Kender, W.J. Citrus fruit abscission induced by methyl-jasmonate. J. Am. Soc. Hortic. Sci. 2000, 125, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Fidelibus, M.; Cathline, K. Dose and time dependent effects of methyl jasmonate on abscission of grapes. Acta Hortic. 2010, 884, 725–728. [Google Scholar] [CrossRef]
- Webster, B.D.; Leopold, A.C. Stem abscission in Phaseolus vulgaris explants. Bot. Gaz. 1972, 133, 292–298. [Google Scholar] [CrossRef]
- Pierik, R.L.M. Induction of secondary abscission in apple pedicels in vitro. Physiol. Plant. 1977, 39, 271–274. [Google Scholar] [CrossRef]
- Pierik, R.L.M. Hormonal regulation of secondary abscission in pear pedicels in vitro. Physiol. Plant. 1980, 48, 5–8. [Google Scholar] [CrossRef]
- Warren Wilson, P.M.; Warren Wilson, J.; Addicott, F.T.; McKenzie, R.H. Induced abscission sites in internodal explants of Impatiens sultani: A new system for studying positional control. With an appendix: A mathematical model for abscission sites. Ann. Bot. 1986, 57, 511–530. [Google Scholar] [CrossRef]
- Warren Wilson, J.; Warren Wilson, P.M.; Walker, E.S. Abscission sites in nodal explants of Impatiens sultani. Ann. Bot. 1987, 60, 693–704. [Google Scholar] [CrossRef]
- Warren Wilson, J.; Walker, E.S.; Warren Wilson, P.M. The role of basipetal auxin transport in the positional control of abscission sites induced in Impatiens sultani stem explants. Ann. Bot. 1988, 62, 487–495. [Google Scholar] [CrossRef]
- Warren Willson, J.; Palni, L.M.S.; Warren Wilson, P.M. Auxin concentration in nodes and internodes of Impatiens sultani. Ann. Bot. 1999, 83, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T. Shoot-tip abscission and adventitious abscission of internode in mulberry (Morus alba). Physiol. Plant. 1991, 82, 483–489. [Google Scholar] [CrossRef]
- Plummer, J.A.; Vine, J.H.; Mullins, M.G. Regulation of stem abscission and callus growth in shoot explants of sweet orange [Citrus sinensis (L.) Osbeck]. Ann. Bot. 1991, 67, 17–22. [Google Scholar] [CrossRef]
- McManus, M.T.; Thompson, D.S.; Merriman, C.; Lyne, L.; Osborne, D.J. Transdifferentiation of mature cortical cells to functional abscission cell in bean. Plant Physiol. 1998, 116, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Pang, Y.; Zhang, J.; Cao, J.; Yi, S.-Y.; He, X.-Q.; Cui, K.-M. Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv. J. Exp. Bot. 2008, 59, 1341–1351. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M.; Goué, N.; Igarashi, H.; Ohtani, M.; Nakano, Y.; Mortimer, J.C.; Nishikubo, N.; Kubo, M.; Katayama, Y.; Kakegawa, K.; et al. VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiol. 2010, 153, 906–914. [Google Scholar] [CrossRef] [Green Version]
- Reusche, M.; Thole, K.; Janz, D.; Truskina, J.; Rindfleisch, S.; Drübert, C.; Polle, A.; Lipka, V.; Teichmann, T. Verticillium infection triggers VASCULAR-RELATED NAC-DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. Plant Cell 2012, 24, 3823–3837. [Google Scholar] [CrossRef] [Green Version]
- Saniewski, M.; Ueda, J.; Miyamoto, K. Methyl jasmonate induces the formation of secondary abscission zone in stem of Bryophyllum calycinum Salisb. Acta Physiol. Plant. 2000, 22, 17–23. [Google Scholar] [CrossRef]
- Saniewski, M.; Góraj-Koniarska, J.; Gabryszewska, E.; Miyamoto, K.; Ueda, J. Auxin effectively induces the formation of the secondary abscission zone in Bryophyllum calycinum Salisb. (Crassulaceae). Acta Agrobot. 2016, 69, 1660. [Google Scholar] [CrossRef] [Green Version]
- Novák, O.; Hényková, E.; Sairanen, I.; Kowalczyk, M.; Pospišil, T.; Ljung, K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012, 72, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Reinecke, D.M.; Bandurski, R.S. Metabolic conversion of 14C-indole-3-acetic acid to 14C-oxindole-3-acetic acid. Biochem. Biophys. Res. Commun. 1981, 103, 429–433. [Google Scholar] [CrossRef]
- Reinecke, D.M.; Bandurski, R.S. Oxindole-3-acetic acid, an indole-3-acetic acid catabolite in Zea mays. Plant Physiol. 1983, 71, 211–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig-Müller, J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011, 62, 1757–1773. [Google Scholar] [CrossRef] [Green Version]
- Ljung, K. Auxin metabolism and homeostasis during plant development. Development 2013, 140, 943–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pěnčík, A.; Simonovik, B.; Petersson, S.V.; Henyková, E.; Simon, S.; Greenham, K.; Zhang, Y.; Kowalczyk, M.; Estelle, M.; Zažímalová, E.; et al. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic catabolite 2-oxindole-3-acetic acid. Plant Cell 2013, 25, 3858–3870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, E.M.; Ackelsberg, E.M. Auxin metabolism rates and implications for plant development. Front. Plant Sci. 2015, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Addicott, F.T. Abscission; University of California Press: Berkeley, CA, USA, 1982. [Google Scholar]
- Addicott, F.T.; Lynch, R.S.; Carns, H.R. Auxin gradient theory of abscission regulation. Science 1955, 121, 644–645. [Google Scholar] [CrossRef]
- Jin, X.; Zimmermann, J.; Polle, A.; Fischer, U. Auxin is a long-range signal that acts indenpendently of ethylene signaling on leaf abscission in Populus. Front. Plant Sci. 2015, 6, 634. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.S.; Song, J.T.; Cherong, J.-J.; Lee, Y.-H.; Lee, Y.-W.; Hwang, I.; Lee, J.S.; Chi, Y.D. Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonatte-regulated plant responses. Proc. Natl. Acad. Sci. USA 2001, 98, 4788–4793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, C.; Aikawa, K.; Sugiyama, S.; Nabeta, K.; Masuta, C.; Matsuura, H. Distal transport of exogenously applied jasmonyl-isoleucine with wounding stress. Plant Cell Physiol. 2011, 52, 509–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomogami, S.; Noge, K.; Abe, M.; Agrawal, G.K.; Rakwal, R. Methyl jasmonate is transported to distal leaves via vascular process metabolizing itself into JA-Ile and triggering VOCs emission as defensive metabolites. Plant Signal. Behav. 2012, 7, 1378–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornman, C.H.; Addicott, F.T.; Lyon, J.L.; Smith, O.E. Anatomy of gibberellin-induced stem abscission in cotton. Am. J. Bot. 1968, 55, 369–375. [Google Scholar] [CrossRef]
- Wilmowicz, E.; Kućko, A.; Ostrowski, M.; Panek, K. Inflorescence deficient in abscission-like is an abscission-associated and phytohormone-regulated genes in flower separation of Lupinus luteus. Plant Growth Regul. 2018, 85, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, M.D.; Poschenrieder, C.; Barcelo, J. Pulvinus structure and leaf abscission in cadmium -treated bean plants (Phaseolus vulgaris). Can. J. Bot. 1989, 67, 2756–2764. [Google Scholar] [CrossRef]
- Webster, B.D. A morphogenetic study of leaf abscission in Phaseolus vulgaris. Am. J. Bot. 1970, 157, 443–451. [Google Scholar] [CrossRef]
- Webster, B.D. Ultrastructural studies of leaf abscission in Phaseolus: Ethylene effects on cell walls. Am. J. Bot. 1973, 60, 436–447. [Google Scholar] [CrossRef]
- Maksymiec, W.; Wianowska, D.; Dawidowicz, A.L.; Radkiewicz, S.; Mardarowicz, M.; Krupa, Z. The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J. Plant Physiol. 2005, 162, 1338–1346. [Google Scholar] [CrossRef]
- Alikhani, O.; Abbaspour, H. Effects of methyl jasmonate and cadmium on growth traits, cadmium transport and accumulation, and allene-oxide cyclase gene expression in wheat seedlings. Rev. Agric. Neotrop. 2019, 6, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Saniewski, M.; Ueda, J.; Miyamoto, K. Relationship between jasmonates and auxin in regulation of some physiological processes in higher plants. Acta Physiol. Plant. 2002, 24, 211–220. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Hayashi, K.; Suzuki, T.; Fukai, H.; Prusinska, J.; Meester, C.; Quareshy, S.; Egoshi, S.; Matsuura, H.; Takahashi, K.; et al. Jasmonic acid inhibits auxin-induced lateral rooting independently of the CORONATINE INSENSITIVE1 receptor. Plant Physiol. 2018, 177, 1704–1716. [Google Scholar] [CrossRef] [Green Version]
- Hentrich, M.; Bottcher, C.; Duchting, P.; Cheng, Y.; Zhao, Y.; Berkowitz, O.; Masle, J.; Medina, J.; Pollmann, S. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCC9 gene expression. Plant J. 2013, 74, 626–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, A.C.; Goossens, A. Jasmonate signaling a copycat of auxin signaling? Plant Cell Environ. 2013, 36, 2071–2084. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Liu, H.; Xiong, L. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front. Plant Sci. 2013, 4, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazmino, D.M.; Rodriguez-Serrano, M.; Romero-Puertas, M.C.; Sandalio, L.M. Regulation of epinasty induced by 2,4-dichlorophenoxyaccetic acid in pea and Arabidopsis plants. Plant Biol. 2014, 16, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, L.; Mongelard, G.; Flokova, K.; Pacurar, D.J.; Novak, O.; Staswick, P.; Kowalczyk, M.; Pacurar, B.M.; Demailly, H.; Geiss, G.; et al. Auxin control Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 2012, 24, 2515–2527. [Google Scholar] [CrossRef] [Green Version]
- Hvoslef-Eide, A.K.; Munster, C.M.; Mathiesen, C.A.; Ayeh, K.O.; Melby, T.I.; Rrasolomanana, P.; Lee, Y.-K. Primary and secondary abscission in Pisum sativum and Euphorbia pulcherrima—How do they compare and how do they differ? Front. Plant Sci. 2016, 6, 1204. [Google Scholar] [CrossRef] [Green Version]
- Estornell, L.H.; Gomez, M.D.; Perez-Amador, M.A.; Talon, M.; Tadeo, F.R. Secondary abscission zones: Understanding the molecular mechanisms triggering stylar abscission in citrus. Acta Hortic. 2016, 1119, 65–72. [Google Scholar] [CrossRef]
- Estornell, L.H.; Weioldhagen, M.; Perez-Amador, M.A.; Talon, M.; Tadeo, F.R.; Butenko, M.A. The IDA peptide controls abscission in Arabidopsis and Citrus. Front. Plant Sci. 2015, 6, 1003. [Google Scholar] [CrossRef] [Green Version]
- Dziurka, M.; Janeczko, A.; Gullner, G.; Oklestková, J.; Novák, O.; Saja, D.; Skoczowski, A.; Tóbiász, J.; Barna, B. Local and systemic hormonal responses in pepper leaves during compatible and incompatible pepper-tobamovirus interactions. Plant Physiol. Biochem. 2016, 109, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Płażek, A.; Dubert, F.; Kopeć, P.; Dziurka, M.; Kalandyk, A.; Pastuszak, J.; Wolko, B. Seed hydropriming and smoke water significantly improve low-temperature germination of Lupinus angustifolius L. Int. J. Mol. Sci. 2018, 19, 1–18. [Google Scholar]
- Wiszniewska, A.; Koźmińska, A.; Hanus-Fajerska, E.; Dziurka, K. Insight into mechanism of multiple stresses tolerance in a halophyte Aster tripolium subjected to salinity and heavy metal stress. Ecotox. Environ. Safety 2019, 180, 12–22. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marasek-Ciolakowska, A.; Saniewski, M.; Dziurka, M.; Kowalska, U.; Góraj-Koniarska, J.; Ueda, J.; Miyamoto, K. Formation of the Secondary Abscission Zone Induced by the Interaction of Methyl Jasmonate and Auxin in Bryophyllum calycinum: Relevance to Auxin Status and Histology. Int. J. Mol. Sci. 2020, 21, 2784. https://doi.org/10.3390/ijms21082784
Marasek-Ciolakowska A, Saniewski M, Dziurka M, Kowalska U, Góraj-Koniarska J, Ueda J, Miyamoto K. Formation of the Secondary Abscission Zone Induced by the Interaction of Methyl Jasmonate and Auxin in Bryophyllum calycinum: Relevance to Auxin Status and Histology. International Journal of Molecular Sciences. 2020; 21(8):2784. https://doi.org/10.3390/ijms21082784
Chicago/Turabian StyleMarasek-Ciolakowska, Agnieszka, Marian Saniewski, Michał Dziurka, Urszula Kowalska, Justyna Góraj-Koniarska, Junichi Ueda, and Kensuke Miyamoto. 2020. "Formation of the Secondary Abscission Zone Induced by the Interaction of Methyl Jasmonate and Auxin in Bryophyllum calycinum: Relevance to Auxin Status and Histology" International Journal of Molecular Sciences 21, no. 8: 2784. https://doi.org/10.3390/ijms21082784
APA StyleMarasek-Ciolakowska, A., Saniewski, M., Dziurka, M., Kowalska, U., Góraj-Koniarska, J., Ueda, J., & Miyamoto, K. (2020). Formation of the Secondary Abscission Zone Induced by the Interaction of Methyl Jasmonate and Auxin in Bryophyllum calycinum: Relevance to Auxin Status and Histology. International Journal of Molecular Sciences, 21(8), 2784. https://doi.org/10.3390/ijms21082784