Identification of Key Genes Related to Lung Squamous Cell Carcinoma Using Bioinformatics Analysis
Abstract
:1. Introduction
2. Results
2.1. Identification of DEGs
2.2. PPI Network Analysis of DEGs
2.3. Weighted Gene Correlation Network Analysis of DEGs
2.4. Hub Genes Related to LUSC
2.5. Survival Analysis
(0.180 × OR2W3) + (0.0319 × RALGAPA2)
2.6. Validation of Prognostic Model
3. Discussion
4. Materials and Methods
4.1. Data Collection and Data Processing
4.2. Functional and Pathway Enrichment Analysis
4.3. PPI Network Construction and Analysis of Modules
4.4. Weighted Correlation Network Analysis of DEGs
4.5. Finding Hub Gene and Verification
4.6. Survival Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SCLC | Small Cell Lung Cancer |
NSCLC | Non–Small Cell Lung Cancer |
LUAD | Lung Adenocarcinoma |
LUSC | Lung Squamous Cell Carcinoma |
DEGs | Differentially Expressed Genes |
PPI | Protein–protein interaction |
FC | Fold Change |
GEO | Gene Expression Omnibus |
TCGA | The Cancer Genome Atlas |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
DAVID | Database for Annotation, Visualization and Integrated Discovery |
STRING | Search Tool for The Retrieval of Interaction Genes |
MCODE | Molecular Complex Detection |
WGCNA | Weighted Gene Co–Expression Network Analysis |
GS | Gene Significance |
MM | Module Membership |
OS | Overall Survival |
Gene Abbreviation | |
CCNA2 | Cyclin A2 |
AURKA | Aurora Kinase A |
AURKB | Aurora Kinase B |
FEN1 | Flap endonuclease–1 |
OR2W3 | Olfactory Receptor Family 2 Subfamily W Member 3 |
RALGAPA2 | Ral GTPase activating protein catalytic subunit alpha 2 |
PTGIS | Prostaglandin I2 synthase |
MYEOV | Myeloma overexpressed gene |
LCE3E | Late cornified envelope 3E |
References
- Xu, J.; Shu, Y.; Xu, T.; Zhu, W.; Qiu, T.; Li, J.; Zhang, M.; Xu, J.; Guo, R.; Lu, K.; et al. Microarray expression profiling and bioinformatics analysis of circular rna expression in lung squamous cell carcinoma. Am. J. Transl. Res. 2018, 10, 771–783. [Google Scholar] [PubMed]
- Gao, L.; Guo, Y.N.; Zeng, J.H.; Ma, F.C.; Luo, J.; Zhu, H.W.; Xia, S.; Wei, K.L.; Chen, G. The expression, significance and function of cancer susceptibility candidate 9 in lung squamous cell carcinoma: A bioinformatics and In Vitro investigation. Int. J. Oncol. 2019, 54, 1651–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.J.; Tang, R.X.; He, R.Q.; Li, D.Y.; Liang, L.; Zeng, J.H.; Hu, X.H.; Ma, J.; Li, S.K.; Chen, G. Clinical roles of the aberrantly expressed lncRNAs in lung squamous cell carcinoma: A study based on RNA sequencing and microarray data mining. Oncotarget 2017, 8, 61282–61304. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.H.Y.; Juan, H.F. Quantitative proteomics in lung cancer. J. Biomed. Sci. 2017, 24, 37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Q.; Wang, S. MicroRNAs: A new key in lung cancer. Cancer Chemother. Pharmacol. 2014, 74, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Oberndorfer, F.; Müllauer, L. Molecular pathology of lung cancer: Current status and perspectives. Curr. Opin. Oncol. 2018, 30, 69–76. [Google Scholar] [CrossRef]
- Piperdi, B.; Merla, A.; Perez–Soler, R. Targeting angiogenesis in squamous non–small cell lung cancer. Drugs 2014, 74, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.H.; Zhang, C.; Berry, G.J.; Altman, R.B.; Ré, C.; Rubin, D.L.; Snyder, M. Predicting non–small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 2016, 7, 12474. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.S.; Yang, C.F.; Chang, C.L. Nivolumab plus Carboplatin and Paclitaxel as the First–line Therapy for Advanced Squamous Cell Carcinoma of the Lung with Strong Programmed Death–ligand 1 Expression: A Case Report. Cureus 2019, 11, e5881. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.P.; Sung, Y.C.; Lo, C.Y.; Yen, M.H. Pathological complete response of initially inoperable lung squamous cell carcinoma treated by immunochemotherapy: A case report. Asian J. Surg. 2020, 43, 393–395. [Google Scholar] [CrossRef]
- Paz–Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus chemotherapy for squamous non–small–cell lung cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Uchi, H.; Haratake, N.; Takamori, S.; Toyozawa, R.; Miura, N.; Yamaguchi, M.; Seto, T.; Takenoyama, M. Acute Generalized Exanthematous Pustulosis Caused by the Combination of Pembrolizumab Plus Chemotherapy in a Patient With Squamous–Cell Carcinoma. Clin. Lung Cancer 2019, 1–3. [Google Scholar] [CrossRef]
- Qian, L.; Lin, L.; Du, Y.; Hao, X.; Zhao, Y.; Liu, X. MicroRNA–588 suppresses tumor cell migration and invasion by targeting GRN in lung squamous cell carcinoma. Mol. Med. Rep. 2016, 14, 3021–3028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Y.; Yang, D.; He, J.; Krasna, M.J. Epidemiology of Lung Cancer. Surg. Oncol. Clin. N. Am. 2016, 25, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, S.; Zhao, X.; Wang, Y.; Tian, D.; Jiang, W. MiR–372–3p promotes cell growth and metastasis by targeting FGF9 in lung squamous cell carcinoma. Cancer Med. 2017, 6, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, Y.; Takagi, Y.; Nosaka, K.; Sakabe, T.; Haruki, T.; Araki, K.; Taniguchi, Y.; Shiomi, T.; Nakamura, H.; Umekita, Y. Cytoplasmic expression of maspin predicts unfavourable prognosis in patients with squamous cell carcinoma of the lung. Histopathology 2016, 69, 114–120. [Google Scholar] [CrossRef]
- Guo, F.; Hiroshima, K.; Wu, D.; Satoh, M.; Abulazi, M.; Yoshino, I.; Tomonaga, T.; Nomura, F.; Nakatani, Y. Prohibitin in squamous cell carcinoma of the lung: Its expression and possible clinical significance. Hum. Pathol. 2012, 43, 1282–1288. [Google Scholar] [CrossRef]
- Morrow, J.D.; Zhou, X.; Lao, T.; Jiang, Z.; Demeo, D.L.; Cho, M.H.; Qiu, W.; Cloonan, S.; Pinto–Plata, V.; Celli, B.; et al. Functional interactors of three genome–wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Sci. Rep. 2017, 7, 44232. [Google Scholar] [CrossRef] [Green Version]
- Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [Google Scholar] [CrossRef]
- Lilenbaum, R.C.; Green, M.R. Novel chemotherapeutic agents in the treatment of non–small–cell lung cancer. J. Clin. Oncol. 1993, 11, 1391–1402. [Google Scholar] [CrossRef]
- Carter, S.L.; Eklund, A.C.; Kohane, I.S.; Harris, L.N.; Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 2006, 38, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Hoevenaar, W.H.M.; Janssen, A.; Quirindongo, A.I.; Ma, H.; Klaasen, S.J.; Teixeira, A.; van Gerwen, B.; Lansu, N.; Morsink, F.H.M.; Offerhaus, G.J.A.; et al. Degree and site of chromosomal instability define its oncogenic potential. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- How, C.; Bruce, J.; So, J.; Pintilie, M.; Haibe–Kains, B.; Hui, A.; Clarke, B.A.; Hedley, D.W.; Hill, R.P.; Milosevic, M.; et al. Chromosomal instability as a prognostic marker in cervical cancer. BMC Cancer 2015, 15, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, C.T.; Bendris, N.; Paul, C.; Hamieh, A.; Anouar, Y.; Hahne, M.; Blanchard, J.M.; Lemmers, B. Cyclin A2 modulates EMT via β–catenin and phospholipase C pathways. Carcinogenesis 2015, 36, 914–924. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, Y.; Zhang, C.; Wu, H.; Yang, S. miR–137 inhibits the proliferation of human non–small cell lung cancer cells by targeting SRC3. Oncol. Lett. 2017, 13, 3905–3911. [Google Scholar] [CrossRef] [PubMed]
- Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 2017, 17, 93–115. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Wang, A.; Lin, J.; Wu, L.; Zhang, H.; Yang, X.; Wan, X.; Miao, R.; Sang, X.; Zhao, H. Mps1/TTK: A novel target and biomarker for cancer. J. Drug Target. 2017, 25, 112–118. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, Y.; She, X.; Wang, Z.; Chen, S.; Deng, Z.; Zhang, Y.; Liu, Q.; Liu, Q.; Zhao, C.; et al. SIX3, a tumor suppressor, inhibits astrocytoma tumorigenesis by transcriptional repression of AURKA/B. J. Hematol. Oncol. 2017, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.L.; Zhang, B.J.; Wang, D.T.; Li, X.; Wei, J.L.; Zhao, B.T.; Jin, Y.; Li, Y.L.; Jin, Y.X. Tanshinones suppress AURKA through up–regulation of miR–32 expression in non–small cell lung cancer. Oncotarget 2015, 6, 20111–20120. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Liu, X.; Li, X.; Guan, Y. Integrated Analysis of DNA Methylation and mRNA Expression Profiles Data to Identify Key Genes in Lung Adenocarcinoma. Biomed. Res. Int. 2016, 2016, 4369431. [Google Scholar] [CrossRef] [Green Version]
- Kathera, C.; Zhang, J.; Janardhan, A.; Sun, H.; Ali, W.; Zhou, X.; He, L.; Guo, Z. Interacting partners of FEN1 and its role in the development of anticancer therapeutics. Oncotarget 2017, 8, 27593–27602. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Luo, L.; Zhu, H.; Yang, H.; Zhang, Y.; Wu, H.; Sun, H.; Jiang, F.; Kathera, C.S.; Liu, L.; et al. FEN1 promotes tumor progression and confers cisplatin resistance in non–small–cell lung cancer. Mol. Oncol. 2017, 11, 1302–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz, G.; Leray, I.; Dewaele, A.; Sobilo, J.; Lerondel, S.; Bouet, S.; Grébert, D.; Monnerie, R.; Pajot–Augy, E.; Mir, L.M. Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation. PLoS ONE 2014, 9, e85110. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.T.T.; Toy, P.; McClary, J.A.; Lin, R.J.; Miyamoto, N.G.; Kretschmer, P.J. Cloning and genetic characterization of an evolutionarily conserved human olfactory receptor that is differentially expressed across species. Gene 2001, 278, 41–51. [Google Scholar] [CrossRef]
- Kalbe, B.; Schlimm, M.; Wojcik, S.; Philippou, S.; Maßberg, D.; Jansen, F.; Scholz, P.; Luebbert, H.; Ubrig, B.; Osterloh, S.; et al. Olfactory signaling components and olfactory receptors are expressed in tubule cells of the human kidney. Arch. Biochem. Biophys. 2016, 610, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Plaseski, T.; Noveski, P.; Popeska, Z.; Efremov, G.D.; Plaseska–Karanfilska, D. Association study of single–nucleotide polymorphisms in FASLG, JMJDIA, LOC203413, TEX15, BRDT, OR2W3, INSR, and TAS2R38 genes with male infertility. J. Androl. 2012, 33, 675–683. [Google Scholar] [CrossRef]
- Shi, C.J.; Zhao, Y.; Wang, M.; Tian, R.; Li, X.; Guo, X.J.; Peng, F.; Zhang, H.; Feng, Y.C.; Qin, R.Y. Clinical significance of expression of olfactory receptor family 2 subfamily W member 3 in human pancreatic cancer. World Chin. J. Dig. 2018, 26, 1229–1233. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/gene/57186 (accessed on 10 March 2020).
- Stephen, A.G.; Esposito, D.; Bagni, R.G.; McCormick, F. Dragging ras back in the ring. Cancer Cell 2014, 25, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Li, Y.; Lyon, K.; Camps, J.; Dalton, S.; Ried, T.; Zhao, S. Cancer driver–passenger distinction via sporadic human and dog cancer comparison: A proof–of–principle study with colorectal cancer. Oncogene 2014, 33, 814–822. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.J.; Xu, B.; Xia, W. Hsa–mir–182 downregulates RASA1 and suppresses lung squamous cell carcinoma cell proliferation. Clin. Lab. 2014, 60, 155–159. [Google Scholar]
- Lemaitre, R.N.; Rice, K.; Marciante, K.; Bis, J.C.; Lumley, T.S.; Wiggins, K.L.; Smith, N.L.; Heckbert, S.R.; Psaty, B.M. Variation in eicosanoid genes, non–fatal myocardial infarction and ischemic stroke. Atherosclerosis 2009, 204, e58–e63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiler, H.; Moser, U.; Weiler, C.; Gerok, W. Studies on the effects of aminopterin and methotrexate on the release of prostaglandin PGE2, PGD2, and PGI2 from small intestine in the rat In Vivo. Clinica Chimica Acta 1991, 199, 283–294. [Google Scholar] [CrossRef]
- Minami, Y.; Sasaki, T.; Endo, S.; Shibukawa, K.; Ohsaki, Y. Abstract 371: PGI 2 Analog Enhances Endothelial–Pericyte Interactions and Suppresses Lung Metastasis; American Association for Cancer Research (AACR): Philadelphia, PA, USA, 2013; p. 371. [Google Scholar]
- Fang, L.; Wu, S.; Zhu, X.; Cai, J.; Wu, J.; He, Z.; Liu, L.; Zeng, M.; Song, E.; Li, J.; et al. MYEOV functions as an amplified competing endogenous RNA in promoting metastasis by activating TGF–β pathway in NSCLC. Oncogene 2019, 38, 896–912. [Google Scholar] [CrossRef] [PubMed]
- Janssen, J.W.G.; Cuny, M.; Orsetti, B.; Rodriguez, C.; Vallés, H.; Bartram, C.R.; Schuuring, E.; Theillet, C. MYEOV: A candidate gene for DNA amplification events occurring centromeric to CCND1 in breast cancer. Int. J. Cancer 2002, 102, 608–614. [Google Scholar] [CrossRef]
- The Human Gene Database. Available online: https://www.genecards.org/cgi–bin/carddisp.pl?gene=LCE3E&keywords=LCE3E (accessed on 10 March 2020).
- Edgar, R. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [Green Version]
- Song, K.; Li, L.; Zhang, G. Bias and Correction in RNA–seq Data for Marine Species. Mar. Biotechnol. 2017, 19, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Gehan, E.A. A Generalized Wilcoxon Test for Comparing Arbitrarily Singly—Censored Samples. Biometrika 1965, 52, 203. [Google Scholar] [CrossRef]
- Gene Ontology Consortium. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32, D258–D261. [Google Scholar] [CrossRef] [Green Version]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta–Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome—wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Horvath, S. A general framework for weighted gene co–expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005, 4. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Lunn, M.; McNeil, D. Applying Cox Regression to Competing Risks. Biometrics 1995, 51, 524. [Google Scholar] [CrossRef]
- Shahraki, H.R.; Salehi, A.; Zare, N. Survival prognostic factors of male breast cancer in Southern Iran: A LASSO–Cox regression approach. Asian Pac. J. Cancer Prev. 2015, 16, 6773–6777. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Hao, X.S.; Wang, P.; Wang, X.N.; Li, J.W.; Wang, J.C.; Wang, D.C. Multivariate Cox analysis on prognostic factors after surgery for rectal carcinoma. Zhonghua Zhong Liu Za Zhi 2004, 26, 688–691. [Google Scholar]
- Huang, R.; Liao, X.W.; Li, Q. Identification and validation of potential prognostic gene biomarkers for predicting survival in patients with acute myeloid leukemia. OncoTargets Ther. 2017, 10, 5243–5254. [Google Scholar] [CrossRef] [Green Version]
- Schemper, M.; Henderson, R. Predictive accuracy and explained variation in Cox regression. Biometrics 2000, 56, 249–255. [Google Scholar] [CrossRef] [PubMed]
Method | Training Set | Test Set | ||
---|---|---|---|---|
C–index(95%CI) | p | C–index(95%CI) | p | |
Risk score | 0.668(0.611,0.725) | – | 0.642(0.580,0.706) | – |
AJCC stage | 0.527(0.448,0.605) | <0.05 | 0.576(0.496,0.656) | < 0.05 |
CIN25 | 0.545(0.469,0.621) | <0.05 | 0.555(0.486,0.624) | < 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Kong, W.; Huang, Z.; Xie, Z. Identification of Key Genes Related to Lung Squamous Cell Carcinoma Using Bioinformatics Analysis. Int. J. Mol. Sci. 2020, 21, 2994. https://doi.org/10.3390/ijms21082994
Gao M, Kong W, Huang Z, Xie Z. Identification of Key Genes Related to Lung Squamous Cell Carcinoma Using Bioinformatics Analysis. International Journal of Molecular Sciences. 2020; 21(8):2994. https://doi.org/10.3390/ijms21082994
Chicago/Turabian StyleGao, Miaomiao, Weikaixin Kong, Zhuo Huang, and Zhengwei Xie. 2020. "Identification of Key Genes Related to Lung Squamous Cell Carcinoma Using Bioinformatics Analysis" International Journal of Molecular Sciences 21, no. 8: 2994. https://doi.org/10.3390/ijms21082994
APA StyleGao, M., Kong, W., Huang, Z., & Xie, Z. (2020). Identification of Key Genes Related to Lung Squamous Cell Carcinoma Using Bioinformatics Analysis. International Journal of Molecular Sciences, 21(8), 2994. https://doi.org/10.3390/ijms21082994