Optimization of a High-Throughput 384-Well Plate-Based Screening Platform with Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 15442 Biofilms
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimizing the Working Volume and Initial Bacterial Concentration for 384WP
2.2. Optimizing the Conditions for Resazurin Staining
2.3. Optimizing the Conditions for Crystal Violet Staining
2.4. Biofilm Formation in 384WP in Comparison with 96WP
2.5. Susceptibility of S. aureus Biofilms Formed in 384WP and 96WP to Antibiotics
2.6. Antibacterial Pilot Screening Against S. aureus Biofilms in 384WP and 96WP Platforms
2.7. Screening Campaign Against S. aureus Biofilms in 384WP
3. Materials and Methods
3.1. Bacterial Growth and Biofilm Formation
3.2. Resazurin Staining
3.3. Crystal Violet Staining
3.4. Comparing the CFUs of Biofilms formed in 384WP and 96WP
3.5. Comparing the Antibiotic Susceptibility of S. aureus Biofilms in 384WP and 96WP
3.6. Pilot Screening Against S. aureus Biofilms in 384WP and 96WP
3.7. Screening of a Compound Library against S. aureus
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ATCC | American Type Culture Collection |
CFU | Colony-forming unit |
DMSO | Dimethyl sulfoxide |
HTS | High-throughput screening |
MDPI | Multidisciplinary Digital Publishing Institute |
MIC | Minimum inhibitory concentration |
MoA | Mode of action |
OD | Optical density |
PBS | Phosphate buffered saline |
Rpm | Revolutions per minute |
RT | Room temperature |
S.D. | Standard deviation |
S/N | Signal-to-noise |
TSA | Tryptic soy agar |
TSB | Tryptic soy broth |
96WP | 96-well plate |
384WP | 384-well plate |
Z’ | Z’ factor |
Appendix A
Compound Name | % Inhibition Biofilm Formation | Main Known Function 1 | |
---|---|---|---|
Viability | Biomass | ||
CETYLPYRIDINIUM CHLORIDE | 99 | 95 | anti-infective |
MINOCYCLINE HYDROCHLORIDE | 95 | 92 | antibacterial |
ECONAZOLE NITRATE | 94 | 92 | antifungal |
NOVOBIOCIN SODIUM | 99 | 90 | antibacterial |
MECLOCYCLINE SULFOSALICYLATE | 97 | 93 | antibacterial |
TENIPOSIDE | 97 | 91 | antineoplastic |
AZLOCILLIN SODIUM | 99 | 92 | antibacterial |
AMPHOTERICIN B | 95 | 94 | antifungal |
LOMEFLOXACIN HYDROCHLORIDE | 85 | 86 | antibacterial |
CEFAMANDOLE SODIUM | 99 | 94 | antibacterial |
NAFCILLIN SODIUM | 99 | 92 | antibacterial |
DACTINOMYCIN | 101 | 96 | antineoplastic |
DIRITHROMYCIN | 100 | 94 | antibacterial |
MITOMYCIN C | 83 | 85 | antineoplastic |
RIFAXIMIN | 98 | 88 | antibacterial |
CHLORHEXIDINE | 82 | 86 | antibacterial, disinfectant |
NORFLOXACIN | 99 | 94 | antibacterial |
OFLOXACIN | 95 | 95 | antibacterial |
METHACYCLINE HYDROCHLORIDE | 99 | 94 | antibacterial |
BENZETHONIUM CHLORIDE | 101 | 95 | anti-infective |
CEPHALOTHIN SODIUM | 99 | 88 | antibacterial |
SULCONAZOLE NITRATE | 95 | 92 | antifungal |
GEMIFLOXACIN MESYLATE | 97 | 93 | antibacterial |
THIMEROSAL | 98 | 91 | anti-infective, preservative |
PENICILLIN G POTASSIUM | 96 | 92 | antibacterial |
RIFAMPIN | 101 | 95 | antibacterial |
TRIAMCINOLONE ACETONIDE | 90 | 90 | anti-inflammatory |
HETACILLIN POTASSIUM | 99 | 80 | antibacterial |
CHLORPHENIRAMINE (S) MALEATE | 80 | 84 | antihistaminic |
PENICILLIN V POTASSIUM | 98 | 88 | antibacterial |
CLINDAMYCIN HYDROCHLORIDE | 99 | 97 | antibacterial |
HEXACHLOROPHENE | 95 | 89 | anti-infective |
GENTIAN VIOLET | 100 | 92 | antibacterial, anti-helminthic |
PYRVINIUM PAMOATE | 99 | 94 | anti-helminthic |
MICONAZOLE NITRATE | 88 | 90 | antifungal |
CHLORTETRACYCLINE HYDROCHLORIDE | 96 | 89 | antibacterial, anti-amebic |
DICLOXACILLIN SODIUM | 101 | 96 | antibacterial |
LINCOMYCIN HYDROCHLORIDE | 92 | 89 | antibacterial |
CHLORTHALIDONE | 98 | 86 | diuretic, antihypertensive |
PHYSOSTIGMINE SALICYLATE | 99 | 86 | cholinergic, miotic |
CLOXACILLIN SODIUM | 97 | 87 | antibacterial |
PHENYLMERCURIC ACETATE | 99 | 95 | antifungal |
ERYTHROMYCIN ETHYLSUCCINATE | 99 | 92 | antibacterial |
FURAZOLIDONE | 97 | 94 | antibacterial |
TRIMETHOPRIM | 85 | 85 | antibacterial |
FUSIDIC ACID | 95 | 92 | antibacterial |
VANCOMYCIN HYDROCHLORIDE | 95 | 96 | antibacterial |
PHENETHICILLIN POTASSIUM | 100 | 85 | antibacterial |
ROXITHROMYCIN | 99 | 94 | antibacterial |
MOXIFLOXACIN HYDROCHLORIDE | 90 | 84 | antibacterial |
CEFTIBUTEN | 100 | 93 | antibacterial |
BACAMPICILLIN HYDROCHLORIDE | 100 | 98 | antibacterial |
TYLOSIN TARTRATE | 99 | 96 | antibacterial |
RETINYL PALMITATE | 100 | 95 | provitamin |
FLOXURIDINE | 100 | 86 | antineoplastic |
CEFDINIR | 101 | 98 | antibacterial |
SARAFLOXACIN HYDROCHLORIDE | 93 | 84 | antibacterial |
TRICLOSAN | 101 | 94 | anti-infective |
TELITHROMYCIN | 100 | 88 | antibacterial |
NICLOSAMIDE | 87 | 81 | anthelmintic, teniacide |
LEVOFLOXACIN | 97 | 89 | antibacterial |
CIPROFLOXACIN | 97 | 93 | antibacterial, fungicide |
TICARCILLIN DISODIUM | 101 | 100 | antibacterial |
TILMICOSIN | 101 | 101 | antibacterial |
GATIFLOXACIN | 93 | 99 | antibacterial |
METHYLBENZETHONIUM CHLORIDE | 99 | 91 | anti-infective |
AZITHROMYCIN | 100 | 97 | antibacterial |
MUPIROCIN | 100 | 97 | antibacterial |
PEFLOXACINE MESYLATE | 99 | 95 | antibacterial |
TEICOPLANIN | 99 | 94 | antibacterial |
ERYTHROMYCIN STEARATE | 97 | 93 | antibacterial |
CETRIMONIUM BROMIDE | 95 | 90 | anti-infective |
CLORGILINE HYDROCHLORIDE | 99 | 87 | antidepressant |
CELASTROL | 100 | 96 | antineoplastic |
FLORFENICOL | 97 | 85 | antibacterial |
AGELASINE | 100 | 96 | antineoplastic |
CARMOFUR | 90 | 89 | antineoplastic |
References
- Olson, M.E.; Ceri, H.; Morck, D.W.; Buret, A.G.; Read, R.R. Biofilm bacteria: Formation and comparative susceptibility to antibiotics. Can. J. Vet. Res. Rev. Can. De. Rech. Vet. 2002, 66, 86–92. [Google Scholar]
- Anwar, H.; Dasgupta, M.K.; Costerton, J.W. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob. Agents Chemother. 1990, 34, 2043–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2, 114–122. [Google Scholar] [CrossRef]
- Roberts, A.E.; Kragh, K.N.; Bjarnsholt, T.; Diggle, S.P. The Limitations of In Vitro Experimentation in Understanding Biofilms and Chronic Infection. J. Mol. Biol. 2015, 427, 3646–3661. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [Green Version]
- Mah, T.F.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- Stewart, P.S.; Franklin, M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 2008, 6, 199–210. [Google Scholar] [CrossRef]
- Zimmerli, W.; Moser, C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. Fems Immunol. Med. Microbiol. 2012, 65, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No eskape! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Spellberg, B.; Guidos, R.; Gilbert, D.; Bradley, J.; Boucher, H.W.; Scheld, W.M.; Bartlett, J.G.; Edwards, J., Jr. The epidemic of antibiotic-resistant infections: A call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis. 2008, 46, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Mantravadi, P.K.; Kalesh, K.A.; Dobson, R.C.J.; Hudson, A.O.; Parthasarathy, A. The Quest for Novel Antimicrobial Compounds: Emerging Trends in Research, Development, and Technologies. Antibiotics 2019, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeters, E.; Nelis, H.J.; Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 2008, 72, 157–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandberg, M.; Maattanen, A.; Peltonen, J.; Vuorela, P.M.; Fallarero, A. Automating a 96-well microtitre plate model for Staphylococcus aureus biofilms: An approach to screening of natural antimicrobial compounds. Int. J. Antimicrob. Agents 2008, 32, 233–240. [Google Scholar] [CrossRef]
- Sandberg, M.E.; Schellmann, D.; Brunhofer, G.; Erker, T.; Busygin, I.; Leino, R.; Vuorela, P.M.; Fallarero, A. Pros and cons of using resazurin staining for quantification of viable Staphylococcus aureus biofilms in a screening assay. J. Microbiol. Methods 2009, 78, 104–106. [Google Scholar] [CrossRef]
- Donne, J.; Dewilde, S. The Challenging World of Biofilm Physiology. Adv. Microb. Physiol. 2015, 67, 235–292. [Google Scholar] [CrossRef]
- Manner, S.; Goeres, D.M.; Skogman, M.; Vuorela, P.; Fallarero, A. Prevention of Staphylococcus aureus biofilm formation by antibiotics in 96-Microtiter Well Plates and Drip Flow Reactors: Critical factors influencing outcomes. Sci. Rep. 2017, 7, 43854. [Google Scholar] [CrossRef] [Green Version]
- Tote, K.; Vanden Berghe, D.; Maes, L.; Cos, P. A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Lett. Appl. Microbiol. 2008, 46, 249–254. [Google Scholar] [CrossRef]
- Rajamani, S.; Sandy, R.; Kota, K.; Lundh, L.; Gomba, G.; Recabo, K.; Duplantier, A.; Panchal, R.G. Robust biofilm assay for quantification and high throughput screening applications. J. Microbiol. Methods 2019, 159, 179–185. [Google Scholar] [CrossRef]
- Stepanovic, S.; Vukovic, D.; Dakic, I.; Savic, B.; Svabic-Vlahovic, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
- Burton, E.; Yakandawala, N.; LoVetri, K.; Madhyastha, M.S. A microplate spectrofluorometric assay for bacterial biofilms. J. Ind. Microbiol. Biotechnol. 2007, 34, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, P.; Rosenberg, U.; Schneider, J.; Mauerhofer, S.; Maniura-Weber, K.; Ren, Q. Is biofilm removal properly assessed? Comparison of different quantification methods in a 96-well plate system. Appl. Microbiol. Biotechnol. 2016, 100, 4135–4145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitts, B.; Hamilton, M.A.; Zelver, N.; Stewart, P.S. A microtiter-plate screening method for biofilm disinfection and removal. J. Microbiol. Methods 2003, 54, 269–276. [Google Scholar] [CrossRef]
- Skogman, M.E.; Vuorela, P.M.; Fallarero, A. Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms. J. Antibiot. 2012, 65, 453–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Yan, Z.; Xu, J. Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 2003, 149, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J. High-throughput assessment of bacterial growth inhibition by optical density measurements. Curr. Protoc. Chem. Biol. 2011, 3. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Dobritsa, S.V.; Crouch, M.L.; Rabenstein, J.; Lee, J.X.; Dhakshinamoorthy, S. Establishment and validation of a 384-well antibacterial assay amenable for high-throughput screening and combination testing. J. Microbiol. Methods 2015, 118, 173–175. [Google Scholar] [CrossRef]
- Kim, H.J.; Jang, S. Optimization of a resazurin-based microplate assay for large-scale compound screenings against Klebsiella pneumoniae. 3 Biotech 2018, 8, 3. [Google Scholar] [CrossRef]
- Foerster, S.; Gustafsson, T.N.; Rita Brochado, A.; Desilvestro, V.; Typas, A.; Unemo, M. The first wide-scale drug repurposing screen using the Prestwick Chemical Library (1200 bioactive molecules) against Neisseria gonorrhoeae identifies high in vitro activity of auranofin and many additional drugs. Apmis. Acta Pathol. Microbiol. Immunol. Scand. 2019. [Google Scholar] [CrossRef]
- Gavrish, E.; Shrestha, B.; Chen, C.; Lister, I.; North, E.J.; Yang, L.; Lee, R.E.; Han, A.; Williams, B.; Charnuska, D.; et al. In vitro and in vivo activities of HPi1, a selective antimicrobial against Helicobacter pylori. Antimicrob. Agents Chemother. 2014, 58, 3255–3260. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Kim, N.; Shum, D.; Huddar, S.; Park, C.M.; Jang, S. Identification of Antipneumococcal Molecules Effective Against Different Streptococcus pneumoniae Serotypes Using a Resazurin-Based High-Throughput Screen. Assay Drug Dev. Technol. 2017, 15, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Mak, P.A.; Santos, G.F.; Masterman, K.A.; Janes, J.; Wacknov, B.; Vienken, K.; Giuliani, M.; Herman, A.E.; Cooke, M.; Mbow, M.L.; et al. Development of an automated, high-throughput bactericidal assay that measures cellular respiration as a survival readout for Neisseria meningitidis. Clin. Vaccine Immunol. 2011, 18, 1252–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, G.; Cheng, A.T.; Peach, K.C.; Bray, W.M.; Bernan, V.S.; Yildiz, F.H.; Linington, R.G. Image-based 384-well high-throughput screening method for the discovery of skyllamycins A to C as biofilm inhibitors and inducers of biofilm detachment in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2014, 58, 1092–1099. [Google Scholar] [CrossRef] [Green Version]
- LaFleur, M.D.; Lucumi, E.; Napper, A.D.; Diamond, S.L.; Lewis, K. Novel high-throughput screen against Candida albicans identifies antifungal potentiators and agents effective against biofilms. J. Antimicrob. Chem. 2011, 66, 820–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panmanee, W.; Taylor, D.; Shea, C.J.; Tang, H.; Nelson, S.; Seibel, W.; Papoian, R.; Kramer, R.; Hassett, D.J.; Lamkin, T.J. High-throughput screening for small-molecule inhibitors of Staphylococcus epidermidis RP62a biofilms. J. Biomol. Screen. 2013, 18, 820–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.H.; Chung, T.D.; Oldenburg, K.R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen. 1999, 4, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Iversen, P.W.; Eastwood, B.J.; Sittampalam, G.S.; Cox, K.L. A comparison of assay performance measures in screening assays: Signal window, Z’ factor, and assay variability ratio. J. Biomol. Screen. 2006, 11, 247–252. [Google Scholar] [CrossRef]
- Merten, C.A. Screening Europe 2010: An update about the latest technologies and applications in high-throughput screening. Expert Rev. Mol. Diagn. 2010, 10, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Junker, L.M.; Clardy, J. High-throughput screens for small-molecule inhibitors of Pseudomonas aeruginosa biofilm development. Antimicrob. Agents Chemother. 2007, 51, 3582–3590. [Google Scholar] [CrossRef] [Green Version]
- Tote, K.; Berghe, D.V.; Deschacht, M.; de Wit, K.; Maes, L.; Cos, P. Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Int. J. Antimicrob. Agents 2009, 33, 525–531. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef] [PubMed]
- Pantanella, F.; Valenti, P.; Natalizi, T.; Passeri, D.; Berlutti, F. Analytical techniques to study microbial biofilm on abiotic surfaces: Pros and cons of the main techniques currently in use. Ann. Ig. Med. Prev. E Comunita 2013, 25, 31–42. [Google Scholar] [CrossRef]
- Qiu, W.; Ren, B.; Dai, H.; Zhang, L.; Zhang, Q.; Zhou, X.; Li, Y. Clotrimazole and econazole inhibit Streptococcus mutans biofilm and virulence in vitro. Arch. Oral. Biol. 2017, 73, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Nenoff, P.; Koch, D.; Kruger, C.; Drechsel, C.; Mayser, P. New insights on the antibacterial efficacy of miconazole in vitro. Mycoses 2017, 60, 552–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venegas, B.; Gonzalez-Damian, J.; Celis, H.; Ortega-Blake, I. Amphotericin B channels in the bacterial membrane: Role of sterol and temperature. Biophys. J. 2003, 85, 2323–2332. [Google Scholar] [CrossRef] [Green Version]
- Huff, A.C.; Kreuzer, K.N. Evidence for a common mechanism of action for antitumor and antibacterial agents that inhibit type II DNA topoisomerases. J. Biol. Chem. 1990, 265, 20496–20505. [Google Scholar]
- Kwan, B.W.; Chowdhury, N.; Wood, T.K. Combatting bacterial infections by killing persister cells with mitomycin C. Environ. Microbiol. 2015, 17, 4406–4414. [Google Scholar] [CrossRef]
- Yeo, W.S.; Arya, R.; Kim, K.K.; Jeong, H.; Cho, K.H.; Bae, T. The FDA-approved anti-cancer drugs, streptozotocin and floxuridine, reduce the virulence of Staphylococcus aureus. Sci. Rep. 2018, 8, 2521. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.G.; Lee, S.Y.; Lee, S.M.; Lim, K.H.; Ha, E.J.; Eom, Y.B. Activity of novel inhibitors of Staphylococcus aureus biofilms. Folia Microbiol. 2017, 62, 157–167. [Google Scholar] [CrossRef]
- Vik, A.; Hedner, E.; Charnock, C.; Samuelsen, O.; Larsson, R.; Gundersen, L.L.; Bohlin, L. (+)-agelasine D: Improved synthesis and evaluation of antibacterial and cytotoxic activities. J. Nat. Prod. 2006, 69, 381–386. [Google Scholar] [CrossRef]
- Torres, N.S.; Abercrombie, J.J.; Srinivasan, A.; Lopez-Ribot, J.L.; Ramasubramanian, A.K.; Leung, K.P. Screening a Commercial Library of Pharmacologically Active Small Molecules against Staphylococcus aureus Biofilms. Antimicrob. Agents Chemother. 2016, 60, 5663–5672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, H.; Yee, R.; Cui, P.; Tian, L.; Zhang, S.; Shi, W.; Sullivan, D.; Zhu, B.; Zhang, W.; Zhang, Y. Identification of Agents Active against Methicillin-Resistant Staphylococcus aureus USA300 from a Clinical Compound Library. Pathogens 2017, 6, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, Q.Y.; Tan, Y.Y.; Goh, V.C.; Lee, D.J.; Ng, F.M.; Ong, E.H.; Hill, J.; Chia, C.S. An FDA-Drug Library Screen for Compounds with Bioactivities against Meticillin-Resistant Staphylococcus aureus (MRSA). Antibiotics 2015, 4, 424–434. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Pachon-Ibanez, M.E.; Cebrero-Cangueiro, T.; Chen, H.; Sanchez-Cespedes, J.; Zhou, J. Discovery of niclosamide and its O-alkylamino-tethered derivatives as potent antibacterial agents against carbapenemase-producing and/or colistin resistant Enterobacteriaceae isolates. Bioorganic Med. Chem. Lett. 2019, 29, 1399–1402. [Google Scholar] [CrossRef] [PubMed]
- Gwisai, T.; Hollingsworth, N.R.; Cowles, S.; Tharmalingam, N.; Mylonakis, E.; Fuchs, B.B.; Shukla, A. Repurposing niclosamide as a versatile antimicrobial surface coating against device-associated, hospital-acquired bacterial infections. Biomed. Mater 2017, 12, 045010. [Google Scholar] [CrossRef] [PubMed]
- Manner, S.; Vahermo, M.; Skogman, M.E.; Krogerus, S.; Vuorela, P.M.; Yli-Kauhaluoma, J.; Fallarero, A.; Moreira, V.M. New derivatives of dehydroabietic acid target planktonic and biofilm bacteria in Staphylococcus aureus and effectively disrupt bacterial membrane integrity. Eur. J. Med. Chem. 2015, 102, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Bollini, S.; Herbst, J.J.; Gaughan, G.T.; Verdoorn, T.A.; Ditta, J.; Dubowchik, G.M.; Vinitsky, A. High-throughput fluorescence polarization method for identification of FKBP12 ligands. J. Biomol. Screen. 2002, 7, 526–530. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilbert-Girard, S.; Savijoki, K.; Yli-Kauhaluoma, J.; Fallarero, A. Optimization of a High-Throughput 384-Well Plate-Based Screening Platform with Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 15442 Biofilms. Int. J. Mol. Sci. 2020, 21, 3034. https://doi.org/10.3390/ijms21093034
Gilbert-Girard S, Savijoki K, Yli-Kauhaluoma J, Fallarero A. Optimization of a High-Throughput 384-Well Plate-Based Screening Platform with Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 15442 Biofilms. International Journal of Molecular Sciences. 2020; 21(9):3034. https://doi.org/10.3390/ijms21093034
Chicago/Turabian StyleGilbert-Girard, Shella, Kirsi Savijoki, Jari Yli-Kauhaluoma, and Adyary Fallarero. 2020. "Optimization of a High-Throughput 384-Well Plate-Based Screening Platform with Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 15442 Biofilms" International Journal of Molecular Sciences 21, no. 9: 3034. https://doi.org/10.3390/ijms21093034
APA StyleGilbert-Girard, S., Savijoki, K., Yli-Kauhaluoma, J., & Fallarero, A. (2020). Optimization of a High-Throughput 384-Well Plate-Based Screening Platform with Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 15442 Biofilms. International Journal of Molecular Sciences, 21(9), 3034. https://doi.org/10.3390/ijms21093034