Modeling Neurodegenerative Disorders in Drosophila melanogaster
Abstract
:1. Introduction: Drosophila as a Model System for Studies of Human Disease
2. Neurodegenerative Diseases Modeled in Drosophila
2.1. Alzheimer’s Disease
2.2. Lewy Body Dementias: Parkinson’s Disease and Dementia with Lewy Bodies
2.3. Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
2.4. Huntington’s Disease
2.5. Ataxia Telangiectasia (A–T)
2.6. Mitochondrial Gene Mutations and Neurodegeneration
2.7. The Brain Tumor Gene and Neurodegeneration
2.8. Drosophila Traumatic Brain Injury and Neurodegeneration
3. Looking Ahead
Acknowledgments
Conflicts of Interest
Definitions and Abbreviations
Aβ | Amyloid–beta |
AD | Alzheimer’s Disease |
ALS | Amyotrophic Lateral Sclerosis |
APP | Amyloid Precursor Protein |
APPL | Amyloid–beta–like protein |
A–T | Ataxia Telangiectasia |
BACE | Beta–secretase |
Cas9 | CRISPR Associated Protein 9 |
CD2AP | CD2-Associated Protein |
CELF1 | CUGBP Elav-Like Family member 1 |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
CTE | Chronic Traumatic Encephalopathy |
C9ORF72 | Chromosome 9 Open Reading Frame 72 |
DA neurons | Dopaminergic neurons |
DAT | Dopamine transporter |
DCP–1 | Death caspase–1 |
DPR | Dipeptide repeat expansion |
eGFP | Enhanced green fluorescent protein |
EJP | Excitatory junction potential |
FERMT2 | Fermitin family homolog 2 |
FITC | Fluorescein isothiocyanate |
FM1–43 | Fluorescent dye used for the real–time measurement of exocytosis and endocytosis in living cells |
FUS | Fused in Sarcoma |
GBA | Glucosylceramidase beta |
GFP | Green fluorescent protein |
GWAS | Genome–Wide Association Study |
H&E | Hematoxylin and Eosin |
HD | Huntington’s disease |
HPLC | High–performance liquid chromatography |
IFM | Indirect flight muscle |
ITGAM | Integrin alpha M |
ITGA9 | Integrin alpha 9 |
LRRK 2 | Leucine-rich repeat kinase 2 |
MAST4 | Microtubule-associated serine/threonine kinase family member 4 |
MEGF10 | Multiple EGF-like-domains 10 |
mTORC1 | Mammalian target of rapamycin Complex 1 |
NMJ | Neuromuscular junction |
Ommatidia | Clusters of photoreceptors and supporting cells that compose the adult eye |
PARP | Poly(ADP–ribose) polymerase |
PD | Parkinson’s disease |
PER | Period |
PINK1 | PTEN-induced kinase 1 |
pTAU | Phosphorylated Tau |
pTBI | Penetrating Traumatic Brain Injury |
PTPRD | Receptor-type protein tyrosine phosphatase delta |
RFP | Red Fluorescent Protein |
RNA | Ribonucleic acid |
RT–PCR | Reverse transcription PCR |
SEM | Scanning Electron Microscopy |
siRNA | Small interfering RNA |
SNRPRN | Small nuclear ribonucleoprotein polypeptide N |
SOD | Superoxide dismutase |
TBI | Traumatic Brain Injury |
TEM | Transmission Electron Microscopy |
TH | Tyrosine hydroxylase |
TRIM-NHL | Tripartite motif-NCL-1/HT2A/LIN-41 |
TUNEL | Terminal deoxynucleotidyl transferase dUTP nick end labeling |
UAS | Upstream activating sequence |
UBQLN2 | Ubiquilin 2 |
UCH-L1 | Ubiquitin carboxy-terminal hydrolase L1 |
VAPB | Vesicle-associated membrane protein-associated protein B/C |
VCP | Valosin-containing protein |
XYLT1 | Xylosyltransferase 1 |
X–34 | Fluorescent dye used to stain for amyloid depositions |
References
- Venken:, K.J.; Simpson, J.H.; Bellen, H.J. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 2011, 72, 202–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, S.E.; Perrimon, N. Drosophila melanogaster: A simple system for understanding complexity. Dis. Model. Mech. 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M. Drosophila Models for Human Diseases Preface. Adv. Exp. Med. Biol. 2018, 1076, V–Vi. [Google Scholar] [CrossRef]
- Ugur, B.; Chen, K.; Bellen, H.J. Drosophila tools and assays for the study of human diseases. Dis. Model. Mech. 2016, 9, 235–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirth, F. On the origin and evolution of the tripartite brain. Brain. Behav. Evol. 2010, 76, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Bier, E.; Vaessin, H.; Shepherd, S.; Lee, K.; McCall, K.; Barbel, S.; Ackerman, L.; Carretto, R.; Uemura, T.; Grell, E.; et al. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Gen. Dev. 1989, 3, 1273–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.; Rebay, I.; Fleming, R.J.; Scottgale, T.N.; Artavanis-Tsakonas, S. The Notch locus and the genetic circuitry involved in early Drosophila neurogenesis. Gen. Dev. 1990, 4, 464–475. [Google Scholar] [CrossRef] [Green Version]
- Thaker, H.M.; Kankel, D.R. Mosaic analysis gives an estimate of the extent of genomic involvement in the development of the visual system in Drosophila melanogaster. Genetics 1992, 131, 883–894. [Google Scholar]
- Rottgen, G.; Wagner, T.; Hinz, U. A genetic screen for elements of the network that regulates neurogenesis in Drosophila. Mol. Gen. Genet. 1998, 257, 442–451. [Google Scholar] [CrossRef]
- Brody, T.; Stivers, C.; Nagle, J.; Odenwald, W.F. Identification of novel Drosophila neural precursor genes using a differential embryonic head cDNA screen. Mech. Dev. 2002, 113, 41–59. [Google Scholar] [CrossRef]
- Reuter, J.E.; Nardine, T.M.; Penton, A.; Billuart, P.; Scott, E.K.; Usui, T.; Uemura, T.; Luo, L. A mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis. Development 2003, 130, 1203–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laviolette, M.J.; Nunes, P.; Peyre, J.B.; Aigaki, T.; Stewart, B.A. A genetic screen for suppressors of Drosophila NSF2 neuromuscular junction overgrowth. Genetics 2005, 170, 779–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slack, C.; Somers, W.G.; Sousa-Nunes, R.; Chia, W.; Overton, P.M. A mosaic genetic screen for novel mutations affecting Drosophila neuroblast divisions. BMC Genet. 2006, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Schuldiner, O.; Berdnik, D.; Levy, J.M.; Wu, J.S.; Luginbuhl, D.; Gontang, A.C.; Luo, L. piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev. Cell 2008, 14, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Ou, Y.; Chwalla, B.; Landgraf, M.; van Meyel, D.J. Identification of genes influencing dendrite morphogenesis in developing peripheral sensory and central motor neurons. Neural Dev. 2008, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Gu, T.; Pham, T.N.; Zachary, M.J.; Hewes, R.S. Regulatory Mechanisms of Metamorphic Neuronal Remodeling Revealed Through a Genome-Wide Modifier Screen in Drosophila melanogaster. Genetics 2017, 206, 1429–1443. [Google Scholar] [CrossRef] [Green Version]
- Goel, P.; Khan, M.; Howard, S.; Kim, G.; Kiragasi, B.; Kikuma, K.; Dickman, D. A Screen for Synaptic Growth Mutants Reveals Mechanisms That Stabilize Synaptic Strength. J. Neurosci. 2019, 39, 4051–4065. [Google Scholar] [CrossRef] [Green Version]
- McGurk, L.; Berson, A.; Bonini, N.M. Drosophila as an In Vivo Model for Human Neurodegenerative Disease. Genetics 2015, 201, 377–402. [Google Scholar] [CrossRef] [Green Version]
- Gevedon, O.; Bolus, H.; Lye, S.H.; Schmitz, K.; Fuentes-Gonzalez, J.; Hatchell, K.; Bley, L.; Pienaar, J.; Loewen, C.; Chtarbanova, S. In Vivo Forward Genetic Screen to Identify Novel Neuroprotective Genes in Drosophila melanogaster. J. Vis. Exp. 2019, 149. [Google Scholar] [CrossRef]
- Greeve, I.; Kretzschmar, D.; Tschape, J.A.; Beyn, A.; Brellinger, C.; Schweizer, M.; Nitsch, R.M.; Reifegerste, R. Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. J. Neurosci. 2004, 24, 3899–3906. [Google Scholar] [CrossRef] [Green Version]
- Loewen, C.A.; Ganetzky, B. Mito-Nuclear Interactions Affecting Lifespan and Neurodegeneration in a Drosophila Model of Leigh Syndrome. Genetics 2018, 208, 1535–1552. [Google Scholar] [CrossRef] [Green Version]
- Rimkus, S.A.; Katzenberger, R.J.; Trinh, A.T.; Dodson, G.E.; Tibbetts, R.S.; Wassarman, D.A. Mutations in String/CDC25 inhibit cell cycle re-entry and neurodegeneration in a Drosophila model of Ataxia telangiectasia. Genes Dev. 2008, 22, 1205–1220. [Google Scholar] [CrossRef] [Green Version]
- Babcock, D.T.; Shen, W.; Ganetzky, B. A neuroprotective function of NSF1 sustains autophagy and lysosomal trafficking in Drosophila. Genetics 2015, 199, 511–522. [Google Scholar] [CrossRef] [Green Version]
- Hanson, K.A.; Kim, S.H.; Wassarman, D.A.; Tibbetts, R.S. Ubiquilin modifies TDP-43 toxicity in a Drosophila model of amyotrophic lateral sclerosis (ALS). J. Biol. Chem. 2010, 285, 11068–11072. [Google Scholar] [CrossRef] [Green Version]
- Babcock, D.T.; Ganetzky, B. Transcellular spreading of huntingtin aggregates in the Drosophila brain. Proc. Natl. Acad. Sci. USA 2015, 112, E5427–E5433. [Google Scholar] [CrossRef] [Green Version]
- Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimers Dement. 2018, 14, 367–429. [Google Scholar] [CrossRef]
- Fernandez-Funez, P.; de Mena, L.; Rincon-Limas, D.E. Modeling the complex pathology of Alzheimer’s disease in Drosophila. Exp. Neurol. 2015, 274, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Ramos Bernardes da Silva Filho, S.; Oliveira Barbosa, J.H.; Rondinoni, C.; Dos Santos, A.C.; Garrido Salmon, C.E.; da Costa Lima, N.K.; Ferriolli, E.; Moriguti, J.C. Neuro-degeneration profile of Alzheimer’s patients: A brain morphometry study. Neuroimage Clin. 2017, 15, 15–24. [Google Scholar] [CrossRef]
- Hebert, L.E.; Weuve, J.; Scherr, P.A.; Evans, D.A. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 2013, 80, 1778–1783. [Google Scholar] [CrossRef] [Green Version]
- Heron, M. Deaths: Leading Causes for 2017. Nat. Vital Stat. Rep. 2019, 68. [Google Scholar]
- Szeto, J.Y.; Lewis, S.J. Current Treatment Options for Alzheimer’s Disease and Parkinson’s Disease Dementia. Curr. Neuropharmacol. 2016, 14, 326–338. [Google Scholar] [CrossRef]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015, 11, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- De Strooper, B.; Annaert, W. Proteolytic processing and cell biological functions of the amyloid precursor protein. J. Cell. Sci. 2000, 113 Pt 11, 1857–1870. [Google Scholar]
- O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 2011, 34, 185–204. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.P.; Xie, Y.; Meng, X.Y.; Kang, J.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target Ther. 2019, 4, 29. [Google Scholar] [CrossRef]
- Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 2018, 154, 204–219. [Google Scholar] [CrossRef] [Green Version]
- Lye, S.H.; Chtarbanova, S. Drosophila as a Model to Study Brain Innate Immunity in Health and Disease. Int. J. Mol. Sci. 2018, 19, 3922. [Google Scholar] [CrossRef] [Green Version]
- Ray, A.; Speese, S.D.; Logan, M.A. Glial Draper Rescues Abeta Toxicity in a Drosophila Model of Alzheimer’s Disease. J. Neurosci. 2017, 37, 11881–11893. [Google Scholar] [CrossRef] [Green Version]
- Shulman, J.M.; Imboywa, S.; Giagtzoglou, N.; Powers, M.P.; Hu, Y.; Devenport, D.; Chipendo, P.; Chibnik, L.B.; Diamond, A.; Perrimon, N.; et al. Functional screening in Drosophila identifies Alzheimer’s disease susceptibility genes and implicates Tau-mediated mechanisms. Hum. Mol. Genet. 2014, 23, 870–877. [Google Scholar] [CrossRef] [Green Version]
- Carmine-Simmen, K.; Proctor, T.; Tschape, J.; Poeck, B.; Triphan, T.; Strauss, R.; Kretzschmar, D. Neurotoxic effects induced by the Drosophila amyloid-beta peptide suggest a conserved toxic function. Neurobiol. Dis. 2009, 33, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Finelli, A.; Kelkar, A.; Song, H.J.; Yang, H.; Konsolaki, M. A model for studying Alzheimer’s Abeta42-induced toxicity in Drosophila melanogaster. Mol. Cell. Neurosci. 2004, 26, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Crowther, D.C.; Kinghorn, K.J.; Miranda, E.; Page, R.; Curry, J.A.; Duthie, F.A.; Gubb, D.C.; Lomas, D.A. Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience 2005, 132, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Casas-Tinto, S.; Zhang, Y.; Sanchez-Garcia, J.; Gomez-Velazquez, M.; Rincon-Limas, D.E.; Fernandez-Funez, P. The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Hum. Mol. Genet. 2011, 20, 2144–2160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tare, M.; Modi, R.M.; Nainaparampil, J.J.; Puli, O.R.; Bedi, S.; Fernandez-Funez, P.; Kango-Singh, M.; Singh, A. Activation of JNK signaling mediates amyloid-ss-dependent cell death. PLoS ONE 2011, 6, e24361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luheshi, L.M.; Tartaglia, G.G.; Brorsson, A.C.; Pawar, A.P.; Watson, I.E.; Chiti, F.; Vendruscolo, M.; Lomas, D.A.; Dobson, C.M.; Crowther, D.C. Systematic in vivo analysis of the intrinsic determinants of amyloid Beta pathogenicity. PLoS Biol. 2007, 5, e290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brorsson, A.C.; Bolognesi, B.; Tartaglia, G.G.; Shammas, S.L.; Favrin, G.; Watson, I.; Lomas, D.A.; Chiti, F.; Vendruscolo, M.; Dobson, C.M.; et al. Intrinsic determinants of neurotoxic aggregate formation by the amyloid beta peptide. Biophys. J. 2010, 98, 1677–1684. [Google Scholar] [CrossRef] [Green Version]
- Chiang, H.C.; Iijima, K.; Hakker, I.; Zhong, Y. Distinctive roles of different beta-amyloid 42 aggregates in modulation of synaptic functions. FASEB J. 2009, 23, 1969–1977. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Subramanian, M.; Cho, Y.H.; Kim, G.H.; Lee, E.; Park, J.J. Short-term exposure to dim light at night disrupts rhythmic behaviors and causes neurodegeneration in fly models of tauopathy and Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2018, 495, 1722–1729. [Google Scholar] [CrossRef]
- Liu, B.; Moloney, A.; Meehan, S.; Morris, K.; Thomas, S.E.; Serpell, L.C.; Hider, R.; Marciniak, S.J.; Lomas, D.A.; Crowther, D.C. Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation. J. Biol. Chem. 2011, 286, 4248–4256. [Google Scholar] [CrossRef] [Green Version]
- Hua, H.; Munter, L.; Harmeier, A.; Georgiev, O.; Multhaup, G.; Schaffner, W. Toxicity of Alzheimer’s disease-associated Abeta peptide is ameliorated in a Drosophila model by tight control of zinc and copper availability. Biol. Chem. 2011, 392, 919–926. [Google Scholar] [CrossRef] [Green Version]
- Sanokawa-Akakura, R.; Cao, W.; Allan, K.; Patel, K.; Ganesh, A.; Heiman, G.; Burke, R.; Kemp, F.W.; Bogden, J.D.; Camakaris, J.; et al. Control of Alzheimer’s amyloid beta toxicity by the high molecular weight immunophilin FKBP52 and copper homeostasis in Drosophila. PLoS ONE 2010, 5, e8626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rival, T.; Page, R.M.; Chandraratna, D.S.; Sendall, T.J.; Ryder, E.; Liu, B.; Lewis, H.; Rosahl, T.; Hider, R.; Camargo, L.M.; et al. Fenton chemistry and oxidative stress mediate the toxicity of the beta-amyloid peptide in a Drosophila model of Alzheimer’s disease. Eur. J. Neurosci. 2009, 29, 1335–1347. [Google Scholar] [CrossRef] [Green Version]
- Wolf, G.; Stahl, R.A. CD2-associated protein and glomerular disease. Lancet 2003, 362, 1746–1748. [Google Scholar] [CrossRef]
- Lai-Cheong, J.E.; Parsons, M.; McGrath, J.A. The role of kindlins in cell biology and relevance to human disease. Int. J. Biochem. Cell. Biol. 2010, 42, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Chagnon, M.J.; Uetani, N.; Tremblay, M.L. Functional significance of the LAR receptor protein tyrosine phosphatase family in development and diseases. Biochem. Cell. Biol. 2004, 82, 664–675. [Google Scholar] [CrossRef]
- Sarrazin, S.; Lamanna, W.C.; Esko, J.D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 2011, 3, a004952. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, R.; Vepuri, V.; Mhatre, S.D.; Paddock, B.E.; Miller, S.; Michelson, S.J.; Delvadia, R.; Desai, A.; Vinokur, M.; Melicharek, D.J.; et al. Characterization of a Drosophila Alzheimer’s disease model: Pharmacological rescue of cognitive defects. PLoS ONE 2011, 6, e20799. [Google Scholar] [CrossRef] [Green Version]
- Mhatre, S.D.; Michelson, S.J.; Gomes, J.; Tabb, L.P.; Saunders, A.J.; Marenda, D.R. Development and characterization of an aged onset model of Alzheimer’s disease in Drosophila melanogaster. Exp. Neurol. 2014, 261, 772–781. [Google Scholar] [CrossRef]
- Walter, J.; Kaether, C.; Steiner, H.; Haass, C. The cell biology of Alzheimer’s disease: Uncovering the secrets of secretases. Curr. Opin. Neurobiol. 2001, 11, 585–590. [Google Scholar] [CrossRef]
- Esler, W.P.; Kimberly, W.T.; Ostaszewski, B.L.; Ye, W.; Diehl, T.S.; Selkoe, D.J.; Wolfe, M.S. Activity-dependent isolation of the presenilin- gamma -secretase complex reveals nicastrin and a gamma substrate. Proc. Natl. Acad. Sci. USA 2002, 99, 2720–2725. [Google Scholar] [CrossRef] [Green Version]
- Francis, R.; McGrath, G.; Zhang, J.; Ruddy, D.A.; Sym, M.; Apfeld, J.; Nicoll, M.; Maxwell, M.; Hai, B.; Ellis, M.C.; et al. aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev. Cell 2002, 3, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, H.; Luczkowski, M.; Remelli, M.; Valensin, D. Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases). Coordin. Chem. Rev. 2012, 256, 2129–2141. [Google Scholar] [CrossRef]
- Xu, W.; Tan, L.; Wang, H.F.; Jiang, T.; Tan, M.S.; Tan, L.; Zhao, Q.F.; Li, J.Q.; Wang, J.; Yu, J.T. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J. Neurol. Neurosur. Ps. 2015, 86, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Tully, T.; White, K. Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for Appl gene. Neuron 1992, 9, 595–605. [Google Scholar] [CrossRef]
- Marras, C.; Beck, J.C.; Bower, J.H.; Roberts, E.; Ritz, B.; Ross, G.W.; Abbott, R.D.; Savica, R.; Van Den Eeden, S.K.; Willis, A.W.; et al. Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Dis. 2018, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Galvan, A.; Wichmann, T. Pathophysiology of parkinsonism. Clin. Neurophysiol. 2008, 119, 1459–1474. [Google Scholar] [CrossRef] [Green Version]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Witt, K.; Kalbe, E.; Erasmi, R.; Ebersbach, G. Nonpharmacological treatment procedures for Parkinson’s disease. Nervenarzt 2017, 88, 383–390. [Google Scholar] [CrossRef]
- Clark, I.E.; Dodson, M.W.; Jiang, C.G.; Cao, J.H.; Huh, J.R.; Seol, J.H.; Yoo, S.J.; Hay, B.A.; Guo, M. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006, 441, 1162–1166. [Google Scholar] [CrossRef]
- Feuillette, S.; Miguel, L.; Frebourg, T.; Campion, D.; Lecourtois, M. Drosophila models of human tauopathies indicate that Tau protein toxicity in vivo is mediated by soluble cytosolic phosphorylated forms of the protein. J. Neurochem. 2010, 113, 895–903. [Google Scholar] [CrossRef]
- Lee, S.B.; Kim, W.; Lee, S.; Chung, J. Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochem. Biophys. Res. Commun. 2007, 358, 534–539. [Google Scholar] [CrossRef] [PubMed]
- M’Angale, P.G.; Staveley, B.E. The HtrA2 Drosophila model of Parkinson’s disease is suppressed by the pro-survival Bcl-2 Buffy. Genome 2017, 60, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Maor, G.; Cabasso, O.; Krivoruk, O.; Rodriguez, J.; Steller, H.; Segal, D.; Horowitz, M. The contribution of mutant GBA to the development of Parkinson disease in Drosophila. Hum. Mol. Genet. 2016, 25, 2712–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meulener, M.; Whitworth, A.J.; Armstrong-Gold, C.E.; Rizzu, P.; Heutink, P.; Wes, P.D.; Pallanck, L.J.; Bonini, N.M. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Curr. Biol. 2005, 15, 1572–1577. [Google Scholar] [CrossRef] [Green Version]
- Molina-Mateo, D.; Fuenzalida-Uribe, N.; Hidalgo, S.; Molina-Fernandez, C.; Abarca, J.; Zarate, R.V.; Escandon, M.; Figueroa, R.; Tevy, M.F.; Campusano, J.M. Characterization of a presymptomatic stage in a Drosophila Parkinson’s disease model: Unveiling dopaminergic compensatory mechanisms. Biochim. Biophys. Acta. Mol. Basis. Dis. 2017, 1863, 2882–2890. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.B.; Lee, S.; Kim, Y.; Song, S.; Kim, S.; Bae, E.; Kim, J.; Shong, M.H.; Kim, J.M.; et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006, 441, 1157–1161. [Google Scholar] [CrossRef]
- Thao, D.T.P. Drosophila Model in the Study Role of UCH-L1, Drosophila melanogaster. In Model for Recent Advances in Genetics and Therapeutics; Perveen, F.K., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Whitworth, A.J.; Theodore, D.A.; Greene, J.C.; Benes, H.; Wes, P.D.; Pallanck, L.J. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2005, 102, 8024–8029. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Nishimura, I.; Imai, Y.; Takahashi, R.; Lu, B. Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 2003, 37, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.F.; Gehrke, S.; Imai, Y.; Huang, Z.N.; Ouyang, Y.; Wang, J.W.; Yang, L.C.; Beal, M.F.; Vogel, H.; Lu, B.W. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused inactivation of Drosophila Pink1 is rescued by by Parkin. Proc. Natl. Acad. Sci. USA 2006, 103, 10793–10798. [Google Scholar] [CrossRef] [Green Version]
- Feany, M.B.; Bender, W.W. A Drosophila model of Parkinson’s disease. Nature 2000, 404, 394–398. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Yu, Y.; Li, X.; Wang, T.; Jiang, H.; Ren, Q.; Jiao, Y.; Sawa, A.; Moran, T.; et al. A Drosophila model for LRRK2-linked parkinsonism. Proc. Natl. Acad. Sci. USA 2008, 105, 2693–2698. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Jackson, G.R. Interactions between Tau and alpha-synuclein augment neurotoxicity in a Drosophila model of Parkinson’s disease. Hum. Mol. Genet. 2014, 23, 3008–3023. [Google Scholar] [CrossRef] [Green Version]
- Coulom, H.; Birman, S. Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J. Neurosci. 2004, 24, 10993–10998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, A.K.; Ratnasekhar, C.; Pragya, P.; Chaouhan, H.S.; Patel, D.K.; Chowdhuri, D.K.; Mudiam, M.K.R. Metabolomic Analysis Provides Insights on Paraquat-Induced Parkinson-Like Symptoms in Drosophila melanogaster. Mol. Neurobiol. 2016, 53, 254–269. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, A.; Bowling, K.; Funderburk, C.; Lawal, H.; Inamdar, A.; Wang, Z.; O’Donnell, J.M. Interaction of genetic and environmental factors in a Drosophila parkinsonism model. J. Neurosci. 2007, 27, 2457–2467. [Google Scholar] [CrossRef]
- Mershin, A.; Pavlopoulos, E.; Fitch, O.; Braden, B.C.; Nanopoulos, D.V.; Skoulakis, E.M.C. Learning and memory deficits upon TAU accumulation in Drosophila mushroom body neurons. Learn. Memory 2004, 11, 277–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, A.H.; Perrimon, N. Targeted Gene-Expression as a Means of Altering Cell Fates and Generating Dominant Phenotypes. Development 1993, 118, 401–415. [Google Scholar]
- Bardai, F.H.; Ordonez, D.G.; Bailey, R.M.; Hamm, M.; Lewis, J.; Feany, M.B. Lrrk promotes tau neurotoxicity through dysregulation of actin and mitochondrial dynamics. PLoS Biol. 2018, 16, e2006265. [Google Scholar] [CrossRef] [Green Version]
- Maitra, U.; Scaglione, M.N.; Chtarbanova, S.; O’Donnell, J.M. Innate immune responses to paraquat exposure in a Drosophila model of Parkinson’s disease. Sci. Rep. 2019, 9, 12714. [Google Scholar] [CrossRef] [Green Version]
- Hunot, S.; Dugas, N.; Faucheux, B.; Hartmann, A.; Tardieu, M.; Debre, P.; Agid, Y.; Dugas, B.; Hirsch, E.C. Fc epsilon RII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J. Neurosci. 1999, 19, 3440–3447. [Google Scholar] [CrossRef] [Green Version]
- Tansey, M.G.; Mccoy, M.K.; Frank-Cannon, T.C. Neuroinflammatory mechanisms in Parkinson’s disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp. Neurol. 2007, 208, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Chtarbanova, S.; Petersen, A.J.; Ganetzky, B. Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Proc. Natl. Acad. Sci. USA 2013, 110, E1752–E1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackenzie, I.R.; Bigio, E.H.; Ince, P.G.; Geser, F.; Neumann, M.; Cairns, N.J.; Kwong, L.K.; Forman, M.S.; Ravits, J.; Stewart, H.; et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann. Neurol. 2007, 61, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Vandal, S.E.; Zheng, X.; Ahmad, S.T. Molecular Genetics of Frontotemporal Dementia Elucidated by Drosophila Models-Defects in Endosomal(-)Lysosomal Pathway. Int. J. Mol. Sci. 2018, 19, 1714. [Google Scholar] [CrossRef] [Green Version]
- Lanson, N.A., Jr.; Maltare, A.; King, H.; Smith, R.; Kim, J.H.; Taylor, J.P.; Lloyd, T.E.; Pandey, U.B. A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum. Mol. Genet. 2011, 20, 2510–2523. [Google Scholar] [CrossRef] [Green Version]
- Wojcik, C.; Yano, M.; DeMartino, G.N. RNA interference of valosin-containing protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasome-dependent proteolysis. J. Cell. Sci. 2004, 117, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Teuling, E.; Ahmed, S.; Haasdijk, E.; Demmers, J.; Steinmetz, M.O.; Akhmanova, A.; Jaarsma, D.; Hoogenraad, C.C. Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates. J. Neurosci. 2007, 27, 9801–9815. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, H.; Han, S.M.; Yang, Y.; Tong, C.; Lin, Y.Q.; Mohan, K.; Haueter, C.; Zoghbi, A.; Harati, Y.; Kwan, J.; et al. The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell 2008, 133, 963–977. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.J.; Anagnostou, G.; Chai, A.; Withers, J.; Morris, A.; Adhikaree, J.; Pennetta, G.; de Belleroche, J.S. Characterization of the Properties of a Novel Mutation in VAPB in Familial Amyotrophic Lateral Sclerosis. J. Biol. Chem. 2010, 285, 40266–40281. [Google Scholar] [CrossRef] [Green Version]
- Han, S.M.; Tsuda, H.; Yang, Y.F.; Vibbert, J.; Cottee, P.; Lee, S.J.; Winek, J.; Haueter, C.; Bellen, H.J.; Miller, M.A. Secreted VAPB/ALS8 Major Sperm Protein Domains Modulate Mitochondrial Localization and Morphology via Growth Cone Guidance Receptors. Dev. Cell 2012, 22, 348–362. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, K.; Pimpale, L.; Ramalingam, B.; Deivasigamani, S.; Kamat, S.S.; Ratnaparkhi, G.S. SOD1 activity threshold and TOR signalling modulate VAP(P58S) aggregation via reactive oxygen species-induced proteasomal degradation in a Drosophila model of amyotrophic lateral sclerosis. Dis. Model. Mech. 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Pennetta, G.; Hiesinger, P.R.; Fabian-Fine, R.; Meinertzhagen, I.A.; Bellen, H.J. Drosophila VAP-33A directs bouton formation at neuromuscular junctions in a dosage-dependent manner. Neuron 2002, 35, 291–306. [Google Scholar] [CrossRef] [Green Version]
- Moens, T.G.; Mizielinska, S.; Niccoli, T.; Mitchell, J.S.; Thoeng, A.; Ridler, C.E.; Gronke, S.; Esser, J.; Heslegrave, A.; Zetterberg, H.; et al. Sense and antisense RNA are not toxic in Drosophila models of C9orf72-associated ALS/FTD. Acta Neuropathol. 2018, 135, 445–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Poidevin, M.; Li, X.; Li, Y.; Shu, L.; Nelson, D.L.; Li, H.; Hales, C.M.; Gearing, M.; Wingo, T.S.; et al. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc. Natl. Acad. Sci. USA 2013, 110, 7778–7783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burguete, A.S.; Almeida, S.; Gao, F.B.; Kalb, R.; Akins, M.R.; Bonini, N.M. GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function. eLife 2015, 4, e08881. [Google Scholar] [CrossRef] [PubMed]
- Mizielinska, S.; Gronke, S.; Niccoli, T.; Ridler, C.E.; Clayton, E.L.; Devoy, A.; Moens, T.; Norona, F.E.; Woollacott, I.O.C.; Pietrzyk, J.; et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 2014, 345, 1192–1194. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Gui, L.; Zhang, X.; Bulfer, S.L.; Sanghez, V.; Wong, D.E.; Lee, Y.; Lehmann, L.; Lee, J.S.; Shih, P.Y.; et al. Altered cofactor regulation with disease-associated p97/VCP mutations. Proc. Natl. Acad. Sci. USA 2015, 112, E1705–E1714. [Google Scholar] [CrossRef] [Green Version]
- Freibaum, B.D.; Lu, Y.; Lopez-Gonzalez, R.; Kim, N.C.; Almeida, S.; Lee, K.H.; Badders, N.; Valentine, M.; Miller, B.L.; Wong, P.C.; et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 2015, 525, 129–133. [Google Scholar] [CrossRef]
- Tran, H.; Almeida, S.; Moore, J.; Gendron, T.F.; Chalasani, U.; Lu, Y.; Du, X.; Nickerson, J.A.; Petrucelli, L.; Weng, Z.; et al. Differential Toxicity of Nuclear RNA Foci versus Dipeptide Repeat Proteins in a Drosophila Model of C9ORF72 FTD/ALS. Neuron 2015, 87, 1207–1214. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Donnelly, C.J.; Haeusler, A.R.; Grima, J.C.; Machamer, J.B.; Steinwald, P.; Daley, E.L.; Miller, S.J.; Cunningham, K.M.; Vidensky, S.; et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 2015, 525, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.J.; Cheng, C.W.; Shen, C.K. Neuronal function and dysfunction of Drosophila dTDP. PLoS ONE 2011, 6, e20371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voigt, A.; Herholz, D.; Fiesel, F.C.; Kaur, K.; Muller, D.; Karsten, P.; Weber, S.S.; Kahle, P.J.; Marquardt, T.; Schulz, J.B. TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PLoS ONE 2010, 5, e12247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estes, P.S.; Boehringer, A.; Zwick, R.; Tang, J.E.; Grigsby, B.; Zarnescu, D.C. Wild-type and A315T mutant TDP-43 exert differential neurotoxicity in a Drosophila model of ALS. Hum. Mol. Genet. 2011, 20, 2308–2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, J.M.; Barros, T.P.; Meehan, S.; Dobson, C.M.; Luheshi, L.M. The aggregation and neurotoxicity of TDP-43 and its ALS-associated 25 kDa fragment are differentially affected by molecular chaperones in Drosophila. PLoS ONE 2012, 7, e31899. [Google Scholar] [CrossRef] [Green Version]
- Dormann, D.; Madl, T.; Valori, C.F.; Bentmann, E.; Tahirovic, S.; Abou-Ajram, C.; Kremmer, E.; Ansorge, O.; Mackenzie, I.R.; Neumann, M.; et al. Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO J. 2012, 31, 4258–4275. [Google Scholar] [CrossRef] [Green Version]
- Jackel, S.; Summerer, A.K.; Thommes, C.M.; Pan, X.; Voigt, A.; Schulz, J.B.; Rasse, T.M.; Dormann, D.; Haass, C.; Kahle, P.J. Nuclear import factor transportin and arginine methyltransferase 1 modify FUS neurotoxicity in Drosophila. Neurobiol. Dis. 2015, 74, 76–88. [Google Scholar] [CrossRef]
- Scaramuzzino, C.; Monaghan, J.; Milioto, C.; Lanson, N.A., Jr.; Maltare, A.; Aggarwal, T.; Casci, I.; Fackelmayer, F.O.; Pennuto, M.; Pandey, U.B. Protein arginine methyltransferase 1 and 8 interact with FUS to modify its sub-cellular distribution and toxicity in vitro and in vivo. PLoS ONE 2013, 8, e61576. [Google Scholar] [CrossRef] [Green Version]
- Daigle, J.G.; Lanson, N.A., Jr.; Smith, R.B.; Casci, I.; Maltare, A.; Monaghan, J.; Nichols, C.D.; Kryndushkin, D.; Shewmaker, F.; Pandey, U.B. RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum. Mol. Genet. 2013, 22, 1193–1205. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Perez, P.; Lu, Y.; Chian, R.J.; Sapp, P.C.; Tanzi, R.E.; Bertram, L.; McKenna-Yasek, D.; Gao, F.B.; Brown, R.H., Jr. Association of UBQLN1 mutation with Brown-Vialetto-Van Laere syndrome but not typical ALS. Neurobiol. Dis. 2012, 48, 391–398. [Google Scholar] [CrossRef]
- Kim, S.H.; Stiles, S.G.; Feichtmeier, J.M.; Ramesh, N.; Zhan, L.; Scalf, M.A.; Smith, L.M.; Pandey, U.B.; Tibbetts, R.S. Mutation-dependent aggregation and toxicity in a Drosophila model for UBQLN2-associated ALS. Hum. Mol. Genet. 2018, 27, 322–337. [Google Scholar] [CrossRef] [Green Version]
- Chai, A.; Withers, J.; Koh, Y.H.; Parry, K.; Bao, H.; Zhang, B.; Budnik, V.; Pennetta, G. hVAPB, the causative gene of a heterogeneous group of motor neuron diseases in humans, is functionally interchangeable with its Drosophila homologue DVAP-33A at the neuromuscular junction. Hum. Mol. Genet. 2008, 17, 266–280. [Google Scholar] [CrossRef] [Green Version]
- Watson, M.R.; Lagow, R.D.; Xu, K.; Zhang, B.; Bonini, N.M. A drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1. J. Biol. Chem. 2008, 283, 24972–24981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casci, I.; Pandey, U.B. A fruitful endeavor: Modeling ALS in the fruit fly. Brain Res. 2015, 1607, 47–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majounie, E.; Renton, A.E.; Mok, K.; Dopper, E.G.; Waite, A.; Rollinson, S.; Chio, A.; Restagno, G.; Nicolaou, N.; Simon-Sanchez, J.; et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: A cross-sectional study. Lancet Neurol. 2012, 11, 323–330. [Google Scholar] [CrossRef]
- Edbauer, D.; Haass, C. An amyloid-like cascade hypothesis for C9orf72 ALS/FTD. Curr. Opin. Neurobiol. 2016, 36, 99–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearse, M.G.; Todd, P.K. Repeat-associated non-AUG translation and its impact in neurodegenerative disease. Neurotherapeutics 2014, 11, 721–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.B.; Richter, J.D.; Cleveland, D.W. Rethinking Unconventional Translation in Neurodegeneration. Cell 2017, 171, 994–1000. [Google Scholar] [CrossRef]
- Lee, Y.B.; Chen, H.J.; Peres, J.N.; Gomez-Deza, J.; Attig, J.; Stalekar, M.; Troakes, C.; Nishimura, A.L.; Scotter, E.L.; Vance, C.; et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 2013, 5, 1178–1186. [Google Scholar] [CrossRef] [Green Version]
- Ohki, Y.; Wenninger-Weinzierl, A.; Hruscha, A.; Asakawa, K.; Kawakami, K.; Haass, C.; Edbauer, D.; Schmid, B. Glycine-alanine dipeptide repeat protein contributes to toxicity in a zebrafish model of C9orf72 associated neurodegeneration. Mol. Neurodegener. 2017, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Goodman, L.D.; Prudencio, M.; Kramer, N.J.; Martinez-Ramirez, L.F.; Srinivasan, A.R.; Lan, M.; Parisi, M.J.; Zhu, Y.; Chew, J.; Cook, C.N.; et al. Toxic expanded GGGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nat. Neurosci. 2019, 22, 863–874. [Google Scholar] [CrossRef]
- Goodman, L.D.; Prudencio, M.; Srinivasan, A.R.; Rifai, O.M.; Lee, V.M.; Petrucelli, L.; Bonini, N.M. eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropathol. Commun. 2019, 7, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuva-Aydemir, Y.; Almeida, S.; Krishnan, G.; Gendron, T.F.; Gao, F.B. Transcription elongation factor AFF2/FMR2 regulates expression of expanded GGGGCC repeat-containing C9ORF72 allele in ALS/FTD. Nat. Commun. 2019, 10, 5466. [Google Scholar] [CrossRef]
- Couly, S.; Khalil, B.; Viguier, V.; Roussel, J.; Maurice, T.; Lievens, J.C. Sigma-1 receptor is a key genetic modulator in amyotrophic lateral sclerosis. Hum. Mol. Genet. 2020, 29, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Berson, A.; Goodman, L.D.; Sartoris, A.N.; Otte, C.G.; Aykit, J.A.; Lee, V.M.; Trojanowski, J.Q.; Bonini, N.M. Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies. Acta Neuropathol. Commun. 2019, 7, 65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, Y.; Liang, W.; Wang, T.; Wang, S.; Wang, X.; Wang, Y.; Jiang, H.; Feng, H. Neuroprotection by urate on the mutant hSOD1-related cellular and Drosophila models of amyotrophic lateral sclerosis: Implication for GSH synthesis via activating Akt/GSK3beta/Nrf2/GCLC pathways. Brain Res. Bull. 2019, 146, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, M.E.; Ambrose, C.M.; Duyao, M.P.; Myers, R.H.; Lin, C.; Srinidhi, L.; Barnes, G.; Taylor, S.A.; James, M.; Groot, N.; et al. A Novel Gene Containing a Trinucleotide Repeat That Is Expanded and Unstable on Huntingtons-Disease Chromosomes. Cell 1993, 72, 971–983. [Google Scholar] [CrossRef]
- Rubinsztein, D.C.; Leggo, J.; Coles, R.; Almqvist, E.; Biancalana, V.; Cassiman, J.J.; Chotai, K.; Connarty, M.; Crauford, D.; Curtis, A.; et al. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am. J. Hum. Genet. 1996, 59, 16–22. [Google Scholar]
- Roos, R.A. Huntington’s disease: A clinical review. Orphanet J. Rare Dis. 2010, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Pringsheim, T.; Wiltshire, K.; Day, L.; Dykeman, J.; Steeves, T.; Jette, N. The incidence and prevalence of Huntington’s disease: A systematic review and meta-analysis. Mov. Disord. 2012, 27, 1083–1091. [Google Scholar] [CrossRef]
- Rosas-Arellano, A.; Estrada-Mondragon, A.; Pina, R.; Mantellero, C.A.; Castro, M.A. The Tiny Drosophila Melanogaster for the Biggest Answers in Huntington’s Disease. Int. J. Mol. Sci 2018, 19, 2398. [Google Scholar] [CrossRef] [Green Version]
- Krench, M.; Littleton, J.T. Modeling Huntington disease in Drosophila: Insights into axonal transport defects and modifiers of toxicity. Fly (Austin) 2013, 7, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, E.; Cha, G.H.; Verstreken, P.; Ly, C.V.; Hughes, R.E.; Bellen, H.J.; Botas, J. Suppression of neurodegeneration and increased neurotransmission caused by expanded full-length huntingtin accumulating in the cytoplasm. Neuron 2008, 57, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffan, J.S.; Bodai, L.; Pallos, J.; Poelman, M.; McCampbell, A.; Apostol, B.L.; Kazantsev, A.; Schmidt, E.; Zhu, Y.Z.; Greenwald, M.; et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001, 413, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Kula-Eversole, E.; Iwanaszko, M.; Hutchison, A.L.; Dinner, A.; Allada, R. Circadian Clocks Function in Concert with Heat Shock Organizing Protein to Modulate Mutant Huntingtin Aggregation and Toxicity. Cell Rep. 2019, 27, 59–70. [Google Scholar] [CrossRef]
- Joshi, A.S.; Singh, V.; Gahane, A.; Thakur, A.K. Biodegradable Nanoparticles Containing Mechanism Based Peptide Inhibitors Reduce Polyglutamine Aggregation in Cell Models and Alleviate Motor Symptoms in a Drosophila Model of Huntington’s Disease. ACS Chem. Neurosci. 2019, 10, 1603–1614. [Google Scholar] [CrossRef]
- Karpuj, M.V.; Becher, M.W.; Springer, J.E.; Chabas, D.; Youssef, S.; Pedotti, R.; Mitchell, D.; Steinman, L. Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat. Med. 2002, 8, 143–149. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, C.; Tao, X.; Brazill, J.M.; Park, J.; Diaz-Perez, Z.; Zhai, R.G. Nmnat restores neuronal integrity by neutralizing mutant Huntingtin aggregate-induced progressive toxicity. Proc. Natl. Acad. Sci. USA 2019, 116, 19165–19175. [Google Scholar] [CrossRef] [Green Version]
- Leng, Y.; Musiek, E.S.; Hu, K.; Cappuccio, F.P.; Yaffe, K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019, 18, 307–318. [Google Scholar] [CrossRef]
- Hood, S.; Amir, S. Neurodegeneration and the Circadian Clock. Front. Aging Neurosci. 2017, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Apostol, B.L.; Kazantsev, A.; Raffioni, S.; Illes, K.; Pallos, J.; Bodai, L.; Slepko, N.; Bear, J.E.; Gertler, F.B.; Hersch, S.; et al. A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila. Proc. Natl. Acad. Sci. USA 2003, 100, 5950–5955. [Google Scholar] [CrossRef] [Green Version]
- Kazantsev, A.; Walker, H.A.; Slepko, N.; Bear, J.E.; Preisinger, E.; Steffan, J.S.; Zhu, Y.Z.; Gertler, F.B.; Housman, D.E.; Marsh, J.L.; et al. A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat. Genet. 2002, 30, 367–376. [Google Scholar] [CrossRef]
- Kazemi-Esfarjani, P.; Benzer, S. Genetic suppression of polyglutamine toxicity in Drosophila. Science 2000, 287, 1837–1840. [Google Scholar] [CrossRef] [Green Version]
- Choy, K.R.; Watters, D.J. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev. Dyn. 2018, 247, 33–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, A.J.; Rimkus, S.A.; Wassarman, D.A. ATM kinase inhibition in glial cells activates the innate immune response and causes neurodegeneration in Drosophila. Proc. Natl. Acad. Sci. USA 2012, 109, E656–E664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, A.J.; Katzenberger, R.J.; Wassarman, D.A. The innate immune response transcription factor relish is necessary for neurodegeneration in a Drosophila model of ataxia-telangiectasia. Genetics 2013, 194, 133–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kounatidis, I.; Chtarbanova, S.; Cao, Y.; Hayne, M.; Jayanth, D.; Ganetzky, B.; Ligoxygakis, P. NF-kappaB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration. Cell Rep. 2017, 19, 836–848. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.K.; Spurrier, J.; Kuzina, I.; Giniger, E. Hyperactive Innate Immunity Causes Degeneration of Dopamine Neurons upon Altering Activity of Cdk5. Cell Rep. 2019, 26, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Rimkus, S.A.; Wassarman, D.A. A pharmacological screen for compounds that rescue the developmental lethality of a Drosophila ATM mutant. PLoS ONE 2018, 13, e0190821. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.C.; Chan, D.C. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum. Mol. Genet. 2009, 18, R169–R176. [Google Scholar] [CrossRef]
- Laughlin, S.B.; de Ruyter van Steveninck, R.R.; Anderson, J.C. The metabolic cost of neural information. Nat. Neurosci. 1998, 1, 36–41. [Google Scholar] [CrossRef]
- Yoon, W.H.; Sandoval, H.; Nagarkar-Jaiswal, S.; Jaiswal, M.; Yamamoto, S.; Haelterman, N.A.; Putluri, N.; Putluri, V.; Sreekumar, A.; Tos, T.; et al. Loss of Nardilysin, a Mitochondrial Co-chaperone for alpha-Ketoglutarate Dehydrogenase, Promotes mTORC1 Activation and Neurodegeneration. Neuron 2017, 93, 115–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, S.; Jaiswal, M.; Charng, W.L.; Gambin, T.; Karaca, E.; Mirzaa, G.; Wiszniewski, W.; Sandoval, H.; Haelterman, N.A.; Xiong, B.; et al. A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 2014, 159, 200–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lake, N.J.; Compton, A.G.; Rahman, S.; Thorburn, D.R. Leigh syndrome: One disorder, more than 75 monogenic causes. Ann. Neurol 2016, 79, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Hegde, V.R.; Vogel, R.; Feany, M.B. Glia are critical for the neuropathology of complex I deficiency in Drosophila. Hum. Mol. Genet. 2014, 23, 4686–4692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loewen, C.; Boekhoff-Falk, G.; Ganetzky, B.; Chtarbanova, S. A Novel Mutation in Brain Tumor Causes Both Neural Over-Proliferation and Neurodegeneration in Adult Drosophila. G3 (Bethesda) 2018, 8, 3331–3346. [Google Scholar] [CrossRef] [PubMed]
- Schonrock, N.; Humphreys, D.T.; Preiss, T.; Gotz, J. Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-beta. J. Mol. Neurosci. 2012, 46, 324–335. [Google Scholar] [CrossRef]
- Ylikallio, E.; Poyhonen, R.; Zimon, M.; De Vriendt, E.; Hilander, T.; Paetau, A.; Jordanova, A.; Lonnqvist, T.; Tyynismaa, H. Deficiency of the E3 ubiquitin ligase TRIM2 in early-onset axonal neuropathy. Hum. Mol. Genet. 2013, 22, 2975–2983. [Google Scholar] [CrossRef] [Green Version]
- Boulay, J.L.; Stiefel, U.; Taylor, E.; Dolder, B.; Merlo, A.; Hirth, F. Loss of heterozygosity of TRIM3 in malignant gliomas. BMC Cancer 2009, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.Y.; Chang, S.N.; Hsiao, T.H.; Huang, B.T.; Lin, C.H.; Yang, P.C. Association Between Parkinson Disease and Risk of Cancer in Taiwan. JAMA Oncol. 2015, 1, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Ye, R.; Shen, T.; Jiang, Y.; Xu, L.J.; Si, X.L.; Zhang, B.R. The Relationship between Parkinson Disease and Brain Tumor: A Meta-Analysis. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Morris, L.G.T.; Veeriah, S.; Chan, T.A. Genetic determinants at the interface of cancer and neurodegenerative disease. Oncogene 2010, 29, 3453–3464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzenberger, R.J.; Loewen, C.A.; Wassarman, D.R.; Petersen, A.J.; Ganetzky, B.; Wassarman, D.A. A Drosophila model of closed head traumatic brain injury. Proc. Natl. Acad. Sci. USA 2013, 110, E4152–E4159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzenberger, R.J.; Ganetzky, B.; Wassarman, D.A. Age and Diet Affect Genetically Separable Secondary Injuries that Cause Acute Mortality Following Traumatic Brain Injury in Drosophila. G3 (Bethesda) 2016, 6, 4151–4166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzenberger, R.J.; Chtarbanova, S.; Rimkus, S.A.; Fischer, J.A.; Kaur, G.; Seppala, J.M.; Swanson, L.C.; Zajac, J.E.; Ganetzky, B.; Wassarman, D.A. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction. eLife 2015, 4, e04790. [Google Scholar] [CrossRef]
- Mackay, T.F.; Richards, S.; Stone, E.A.; Barbadilla, A.; Ayroles, J.F.; Zhu, D.; Casillas, S.; Han, Y.; Magwire, M.M.; Cridland, J.M.; et al. The Drosophila melanogaster Genetic Reference Panel. Nature 2012, 482, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Barekat, A.; Gonzalez, A.; Mauntz, R.E.; Kotzebue, R.W.; Molina, B.; El-Mecharrafie, N.; Conner, C.J.; Garza, S.; Melkani, G.C.; Joiner, W.J.; et al. Using Drosophila as an integrated model to study mild repetitive traumatic brain injury. Sci. Rep. 2016, 6, 25252. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Gurdziel, K.; Liu, J.; Qu, W.; Nuga, O.O.; Burl, R.B.; Huttemann, M.; Pique-Regi, R.; Ruden, D.M. Smooth, an hnRNP-L Homolog, Might Decrease Mitochondrial Metabolism by Post-Transcriptional Regulation of Isocitrate Dehydrogenase (Idh) and Other Metabolic Genes in the Sub-Acute Phase of Traumatic Brain Injury. Front. Genet. 2017, 8, 175. [Google Scholar] [CrossRef]
- Anderson, E.N.; Gochenaur, L.; Singh, A.; Grant, R.; Patel, K.; Watkins, S.; Wu, J.Y.; Pandey, U.B. Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD models. Hum. Mol. Genet. 2018, 27, 1366–1381. [Google Scholar] [CrossRef] [Green Version]
- Lateef, S.; Holman, A.; Carpenter, J.; James, J. Can Therapeutic Hypothermia Diminish the Impact of Traumatic Brain Injury in Drosophila melanogaster? J. Exp. Neurosci. 2019, 13, 1179069518824852. [Google Scholar] [CrossRef]
- Putnam, L.J.; Willes, A.M.; Kalata, B.E.; Disher, N.D.; Brusich, D.J. Expansion of a fly TBI model to four levels of injury severity reveals synergistic effects of repetitive injury for moderate injury conditions. Fly (Austin) 2019, 13, 1–11. [Google Scholar] [CrossRef]
- Lee, D.C.; Vali, K.; Baldwin, S.R.; Divino, J.N.; Feliciano, J.L.; Fequiere, J.R.; Fernandez, M.A.; Frageau, J.C.; Longo, F.K.; Madhoun, S.S.; et al. Dietary Supplementation With the Ketogenic Diet Metabolite Beta-Hydroxybutyrate Ameliorates Post-TBI Aggression in Young-Adult Male Drosophila. Front. Neurosci. 2019, 13, 1140. [Google Scholar] [CrossRef] [PubMed]
- Sanuki, R.; Tanaka, T.; Suzuki, F.; Ibaraki, K.; Takano, T. Normal aging hyperactivates innate immunity and reduces the medical efficacy of minocycline in brain injury. Brain Behav. Immun. 2019, 80, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.A.; Olufs, Z.P.G.; Katzenberger, R.J.; Wassarman, D.A.; Perouansky, M. Anesthetics Influence Mortality in a Drosophila Model of Blunt Trauma With Traumatic Brain Injury. Anesth. Analg. 2018, 126, 1979–1986. [Google Scholar] [CrossRef] [PubMed]
- Ghannad-Rezaie, M.; Wang, X.; Mishra, B.; Collins, C.; Chronis, N. Microfluidic chips for in vivo imaging of cellular responses to neural injury in Drosophila larvae. PLoS ONE 2012, 7, e29869. [Google Scholar] [CrossRef]
- Mishra, B.; Ghannad-Rezaie, M.; Li, J.X.; Wang, X.; Hao, Y.; Ye, B.; Chronis, N.; Collins, C.A. Using Microfluidics Chips for Live Imaging and Study of Injury Responses in Drosophila Larvae. JoVE J. Vis. Exp. 2014, 84, e50998. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Wang, X.; Ewanek, R.; Bhat, P.; Diantonio, A.; Collins, C.A. Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. J. Cell Biol. 2010, 191, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Stone, M.C.; Nguyen, M.M.; Tao, J.; Allender, D.L.; Rolls, M.M. Global Up-Regulation of Microtubule Dynamics and Polarity Reversal during Regeneration of an Axon from a Dendrite. Mol. Biol. Cell 2010, 21, 767–777. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.Q.; Ori-McKenney, K.M.; Zheng, Y.; Han, C.; Jan, L.Y.; Jan, Y.N. Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the Akt pathway involving Pten and microRNA bantam. Gene Dev. 2012, 26, 1612–1625. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Li, F.; Guttipatti, P.; Song, Y.Q. A Drosophila In Vivo Injury Model for Studying Neuroregeneration in the Peripheral and Central Nervous System. JoVE J. Vis. Exp. 2018, 135, e57557. [Google Scholar] [CrossRef]
- Stone, M.C.; Albertson, R.M.; Chen, L.; Rolls, M.M. Dendrite Injury Triggers DLK-Independent Regeneration. Cell Rep. 2014, 6, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Lakonishok, M.; Gelfand, V.I. Kinesin-1-powered microtubule sliding initiates axonal regeneration in Drosophila cultured neurons. Mol. Biol. Cell 2015, 26, 1296–1307. [Google Scholar] [CrossRef]
- Lee, T.; Marticke, S.; Sung, C.; Robinow, S.; Luo, L. Cell-autonomous requirement of the USP/EcR-B ecdysone receptor for mushroom body neuronal remodeling in Drosophila. Neuron 2000, 28, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Watts, R.J.; Hoopfer, E.D.; Luo, L. Axon pruning during Drosophila metamorphosis: Evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 2003, 38, 871–885. [Google Scholar] [CrossRef] [Green Version]
- Awasaki, T.; Ito, K. Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr. Biol. 2004, 14, 668–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoopfer, E.D.; McLaughlin, T.; Watts, R.J.; Schuldiner, O.; O’Leary, D.D.; Luo, L. Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 2006, 50, 883–895. [Google Scholar] [CrossRef] [Green Version]
- Yaniv, S.P.; Issman-Zecharya, N.; Oren-Suissa, M.; Podbilewicz, B.; Schuldiner, O. Axon Regrowth during Development and Regeneration Following Injury Share Molecular Mechanisms. Curr. Biol. 2012, 22, 1774–1782. [Google Scholar] [CrossRef] [Green Version]
- Prithviraj, R.; Trunova, S.; Giniger, E. Ex vivo culturing of whole, developing Drosophila brains. J. Vis. Exp. 2012, 65, e4270. [Google Scholar] [CrossRef]
- Ayaz, D.; Leyssen, M.; Koch, M.; Yan, J.K.; Srahna, M.; Sheeba, V.; Fogle, K.J.; Holmes, T.C.; Hassan, B.A. Axonal injury and regeneration in the adult brain of Drosophila. J. Neurosci. 2008, 28, 6010–6021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, J.M.; Beach, M.G.; Porpiglia, E.; Sheehan, A.E.; Watts, R.J.; Freeman, M.R. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 2006, 50, 869–881. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.Y.; MacDonald, J.M.; Neukomm, L.J.; Sheehan, A.E.; Bradshaw, R.; Logan, M.A.; Freeman, M.R. Axon degeneration induces glial responses through Draper-TRAF4-JNK signalling. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Bonini, N.M. Axon degeneration and regeneration: Insights from Drosophila models of nerve injury. Annu. Rev. Cell Dev. Biol. 2012, 28, 575–597. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.; Parisi, M.; Bonini, N.M. Axon Injury and Regeneration in the Adult Drosophila. Sci. Rep.-Uk 2014, 4, 6199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neukomm, L.J.; Burdett, T.C.; Gonzalez, M.A.; Zuchner, S.; Freeman, M.R. Rapid in vivo forward genetic approach for identifying axon death genes in Drosophila. Proc. Natl. Acad. Sci. USA 2014, 111, 9965–9970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, E.; Fernandez-Marrero, Y.; Meyer, P.; Rhiner, C. Brain regeneration in Drosophila involves comparison of neuronal fitness. Curr. Biol. 2015, 25, 955–963. [Google Scholar] [CrossRef] [Green Version]
- Leyssen, M.; Ayaz, D.; Hebert, S.S.; Reeve, S.; De Strooper, B.; Hassan, B.A. Amyloid precursor protein promotes post-developmental neurite arborization in the Drosophila brain. EMBO J. 2005, 24, 2944–2955. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Hernandez, I.; Rhiner, C.; Moreno, E. Adult neurogenesis in Drosophila. Cell Rep. 2013, 3, 1857–1865. [Google Scholar] [CrossRef] [Green Version]
Alzheimer’s Disease | |||
---|---|---|---|
Drosophila Model | Developmental Stage | Assay Used for Neuropathology | References |
Drosophila orthologs of human genes | |||
Pan–neuronal and photoreceptor–specific expression of Drosophila dBACE and APPL to produce dAβ | Adult | Toluidine blue histological staining for retinal degeneration, Thioflavin S staining for amyloid deposits, immunohistochemistry using anti–dAβ, fast phototaxis assay, TEM for fibrillary aggregates formation and degeneration | [40] |
APPL null mutants | Adult | Histology for brain morphology, fast phototaxis assay, olfactory acuity assay, shock reactivity assay, odor conditioning assay, optomotor assay | [64] |
Overexpression of human transgenes | |||
Pan–neuronal and photoreceptor–specific expression of Aβ40 and Aβ42 fused to rat pre–proenkephalin signal peptide (SP) | Larva, Adult | Larvae: immunostaining and confocal microscopy for Aβ42 accumulation in imaginal eye discs Adult: SEM and light stereomicroscopy for eye morphology, lifespan, immunostaining with anti–Aβ (6E10) for Aβ42 accumulation, toluidine blue histological staining for ommatidial organization | [41] |
Pan–neuronal expression of Aβ40, Aβ42 and Aβ42arc fused to Drosophila Necrotic protein SP | Adult | Lifespan, climbing assay, immunostaining with anti–Aβ (4G8) for Aβ42 accumulation, SEM for eye morphology | [42] |
Photoreceptor–specific and mushroom body–specific expression of Aβ42 fused to Drosophila Argos SP | Adult | Light microscopy and SEM for retina structure, light microscopic histology of frontal eye sections for vacuolar degeneration, immunostaining and Thioflavin S staining for Aβ42 accumulation in eyes | [43] |
Photoreceptor–specific expression of Aβ42 and blocking | Larva, Pupa, Adult | 3rd Instar Larvae: immunostaining for eye imaginal disc development and Aβ42 accumulation, TUNEL staining for eye imaginal disc cell death, Pupae: immunostaining for eye development and Aβ42 accumulation Adult: immunostaining for eye development and Aβ42 accumulation, histology for photoreceptor morphology, SEM for eye morphology, | [44] |
Expression of various mutated Aβ42 peptides for the effect of specific amino acid substitutions on toxicity | Adult | Lifespan, locomotor assay, immunohistochemistry using anti– Aβ42, Thioflavin T staining for rates of Aβ42 aggregation, TEM for Aβ42 aggregate morphology | [45] |
Expression of various mutated Aβ42 peptides for the effect of specific amino acid substitutions on toxicity | Adult | Lifespan | [46] |
Pan–neuronal and muscle–specific expression of Aβ42, exposure to exogenous Aβ42, and treatment with anti–Aβ42 antibody (6E10) | Larva | 3rd Instar Larvae: Electrophysiology for synaptic transmission, FM1–43 dye imaging for neurotransmitter release, Thioflavin S staining for amyloid deposits | [47] |
Pan–neuronal and photoreceptor–specific expression of two human Tau variants, manipulation of light exposure | Adult | Lifespan, histology, and light microscopy to quantify neurodegeneration, climbing assay, immunohistochemistry for pTau accumulation, light microscopy for eye morphology | [48] |
Pan–neuronal expression of human APP and BACE1 separately and in combination, treatment with a γ–secretase inhibitor | Adult | Lifespan, fluorescence microscopy for defects in the whole–brain and mushroom body structure, immunostaining with anti– Aβ (6E10), Thioflavin S, and X–34 for amyloid deposition, climbing assay, conditioned courtship suppression assay | [57] |
Expression of human BACE1 and late–onset induction of human APP | Adult | Lifespan, climbing assay, immunostaining with anti–Aβ (6E10) for amyloid deposition, fluorescence microscopy for defects in the whole–brain and mushroom body structure, conditioned courtship suppression assay | [58] |
Combined models of Drosophila orthologs and overexpression of human transgenes | |||
Knockdown of orthologs of human CD2AP, SNRPN, PTPRD, XYLT1, FERMT2, CELF1, ITGAM, ITGA9, MAST4 in Drosophila overexpressing human TauV337M | Adult | Light microscopy for eye morphology | [39] |
Expression of Drosophila Psn, Drosophila APPL, human APP, and human BACE, separately and in combination | Adult | Histological staining for retinal degeneration, Thioflavin S and immunostaining with anti– Aβ (4G8) for Aβ accumulation in retinas, survival assay, lifespan | [20] |
Aβ42arc overexpression, Draper inhibition, overexpression of Draper/MEGF10 | Adult | Lifespan, Thioflavin S and anti–Aβ (6E10) immunostaining for Aβ, climbing assay, histological sectioning for vacuole quantification | [38] |
Photoreceptor–specific expression of human Aβ42 in eyes, supplementation with zinc or copper, treatment with chelators, and overexpression of MTF–1 | Larva, Adult | Larva: relative eclosion rate Adults: Stereomicroscopy for ommatidia structure, climbing assay | [50] |
Pan–neuronal expression of Aβ42, treatment with an iron chelator, and RNAi knockdown of ferritin | Embryo, Adult | Embryos: Hatching efficiency assay Adults: Survival assay, Thioflavin T staining for amyloid aggregation | [49] |
Photoreceptor–specific Aβ42 expression, over– and under–expression of an immunophilin, mutation in a copper transporter, and treatment with an exogenous copper chelator | Adult | Lifespan, light microscopy for eye morphology | [51] |
Parkinson’s Disease | |||
---|---|---|---|
Drosophila Model | Developmental Stage | Assay Used for Neuropathology | References |
Drosophila orthologs of human genes | |||
Parkin mutants | Adult | TH immunostaining, climbing assay | [78] |
PINK1 mutants PINK1 knock down in DA neurons | Adult | Lifespan, TH immunostaining, chemotaxis assay, dopamine enzyme immunoassay, HPLC for DA tissue and dopamine levels, fast–scan cyclic voltammetry, RT–PCR for DAT and GAPDH2, Western blot for TH, mobility assay | [69,75,76,80] |
LRRK2 mutants | Adult | Climbing assay, TH immunostaining | [71] |
DJ–1 mutants exposed to hydrogen peroxide, paraquat and rotenone | Adult | Lifespan, TH immunostaining | [74] |
Photoreceptor cell–specific overexpression of dUCH and DA neurons–specific knockdown of dUCH | Larva, Pupa, Adult | SEM for eye morphology, activated–Caspase 3 immunostaining, TH immunostaining, larval crawling assay, adult climbing assay, pupal retinal mispatterning determination | [77] |
HtrA2 knockdown in DA neurons and photoreceptor cells | Adult | Lifespan, climbing assay, SEM for eye morphology | [72] |
Double heterozygous GBA mutants (CG31414 and CG31148) | Adult | Lifespan, TH immunostaining, climbing assay | [73] |
Overexpression of dTau in mushroom body neurons | Adult | Survival up to 30 days of age, learning and memory assays | [87] |
Overexpression of human transgenes | |||
Co–expression of Tau and Alpha–Synuclein (α–syn) | Larva, Adult | Activated–caspase 3 immunostaining, larval NMJ morphology, TH immunostaining, SEM for adult eye morphology | [83] |
Pan–neuronal, photoreceptor cell– and DA neurons–specific overexpression of wild type, A30P and A53T α–syn | Adult | H&E staining, TH immunostaining, Lewy body detection using Ubiquitin immunostaining, TEM for neuronal α–syn inclusions, climbing assay, Toluidine blue staining of tangential retinal sections | [81] |
Pan–neuronal, photoreceptor cell– and DA neurons–specific overexpression of LRRK2 and LRRK2–G2019S–2 | Adult | Lifespan, climbing assay, TEM for photoreceptor morphology in ommatidia, TH immunostaining, actometer test | [82] |
Overexpression of Pael–R in DA neurons | Adult | TH immunostaining | [79] |
Toxin exposure | |||
Rotenone | Adult | TH immunostaining, climbing assay | [84] |
Paraquat | Adult | TH immunostaining, lifespan, climbing assay, jumping assay, Dopamine levels | [85,86] |
Amyotrophic Lateral Sclerosis | |||
---|---|---|---|
Drosophila Model | Developmental Stage | Assay Used for Neuropathology | References |
Drosophila Orthologs of Human Genes | |||
FUS (Cabeza in Drosophila) | |||
Ectopic expression of wildtype and disease–mutated FUS | Larva, Adult | Immunostaining to detect altered subcellular localization of Cabeza in larval motor neurons, adult eye morphology, lifespan | [96] |
VCP | |||
siRNA knockdown | Drosophila cell culture | Western blotting to detect accumulation of high molecular weight forms of ubiquitin | [97] |
VAPB (Vap33 in Drosophila) | |||
Ectopic expression of mutant and wild type VAP–33 | Larva, Adult, Drosophila cell culture | Larvae: Larval wing imaginal disc, larval NMJ, adult brain, adult muscle, analysis of mitochondrial morphology in flight muscle; analysis of endoplasmic reticulum (ER) fragmentation in larval brains, Adult: analysis of eye morphology, analysis of cell death, ubiquitinated aggregates Drosophila cell culture: and ER stress in cultured Drosophila S2 cells | [98,99,100,101,102,103] |
Overexpression of Human Transgenes | |||
C9ORF72 | |||
Pan–neuronal expression of RNA–only constructs expressing (G4C2)106 repeats with both intronic (nucleus) and polyadenylated (cytoplasm) sense and antisense transcripts Pan–neuronal expression of UAS–RNA sense polyA constructs expressing 800–1000 and >1000 (G4C2) repeats | Adult | Lifespan, negative geotaxis, light microscopy for eye morphology | [104] |
Eye and pan–neuronal expression of UAS–(G4C2)3 and UAS–( G4C2)30 constructs in eye and motor neurons | Adult | Lifespan, light, and SE microscopy for eye structure and ommatidia loss, locomotion assay | [105] |
UAS–(G4C2)48 expression in Class IV epidermal sensory dendritic arborization neurons | Larva | Dendritic branching analysis using confocal microscopy | [106] |
Eye and pan–neuronal expression of UAS constructs containing 3, 36 and 103 pure, and 36, 108 and ~288 RNA–only (G4C2) repeats | Embryo, Adult | Stereomicroscopy for eye structure, lifespan, egg–to–adult viability | [107] |
Ectopic expression of UAS constructs containing 8, 28 and 58 (G4C2) repeats | Larva, Adult | Larval locomotion, larval salivary gland nuclear envelope morphology, adult eye morphology | [107,108,109,110] |
Ectopic expression of UAS constructs containing 36 protein–coding and 160 RNA–only (G4C2) repeats | Larva, Adult | Dendritic branching, lifespan, eye morphology | [110] |
Ectopic expression of UAS constructs containing 30 (G4C2) repeats | Cultured Drosophila S2 cells, larval salivary gland, adult eye | Nuclear import, adult eye morphology | [111] |
TDP–43 | |||
Reduced and ectopic expression of wild type TDP–43 | Larva, Adult | Larval and adult locomotion, larval NMJ morphology, adult mushroom body morphology, adult learning | [112] |
Ectopic expression of wild type and disease–mutated variants | Larva, Adult, cultured motorneurons | Larval NMJ morphology, larval motorneuron death, larval glia, adult sleep | [113,114] |
Ectopic expression of wild type and disease–mutated variants | Larval eye imaginal discs, Adult | Subcellular localization, lifespan, locomotor activity | [113] |
Ectopic expression of wild type and mutant TDP–43 with and without a chaperone protein | Larva, Adult | Larval protein aggregation, adult eye morphology, | [115] |
FUS | |||
Ectopic expression of wildtype and disease–mutated FUS | Larva, Adult | Subcellular localization in larval motor neurons, adult eye morphology, lifespan | [96] |
Ectopic expression of wildtype and disease–mutated FUS | Adult | Adult eye morphology, | [116,117,118] |
Motor neuron expression of wildtype and disease–mutated FUS | Larva, Adult | Larval brain size, larval motorneuron subcellular localization, larval locomotion, adult eye morphology | [119] |
UBQLN1/2 | |||
Ectopic expression of wild type and disease variants | Adult | Measurement of TDP–43 levels in adult eye lysates | [120] |
Co–expression of human UBQLN and TDP–43 | Larva, Adult | Larval NMJ morphology, lifespan, measurement of TDP–43 levels in adult head lysates, adult eye morphology, adult locomotion assays | [24,121] |
VAPB | |||
Expression of wild type human VAPB in Drosophila neurons | Larva | Larvae: Rescues lethality, NMJ morphology, and NMJ electrophysiology of loss–of–function mutations in Drosophila VAP–33 | [122] |
SOD–1 | |||
Ectopic expression of wild type and disease variants | Adult | Lifespan, locomotion, number of motorneurons, neuronal SOD–1 accumulation, glial stress response | [123] |
Drosophila Model | Developmental Stage | Assay Used for Neuropathology | References |
---|---|---|---|
Huntington’s Disease | |||
Drosophila orthologs of human genes | |||
Fly dHtt does not express polyQ in its N–terminus | N/A | N/A | [141] |
Overexpression of human transgenes | |||
Transgenic expression of a Q48 peptide or Htt Exon1p in neurons | Adult | Lifespan, photoreceptor morphology count | [144] |
Transgenic expression of various Q48 constructs | Adult | Locomotor, photoreceptor morphology count | [151] |
Transgenic expression of Q108 and Q48 peptides, transgenic expression of bivalent polyQ peptides | Adult | Lifespan, photoreceptor morphology count | [152] |
Expression of Q127 and Q20 peptides | Adult | SEM and light microscopy for retina morphology, light microscopy for pigmentation defects, staining with FITC for presence of polyQ aggregates | [153] |
Expression of mRFP–tagged N–terminal fragments of human Q15 or Q138 peptides | Adult | Lifespan, locomotion, activated–Caspase 3 immunostaining, immunostaining for brain size | [148] |
Expression of an mRFP–tagged N–terminal fragment of human Q15 or Q138 peptides containing exons 1–12 | Adult | Immunofluorescence for spreading of Huntingtin aggregates in the brain | [25] |
Expression of several 3– or 1–exon sections of mutant Htt with various polyQ lengths in clock neurons and ventral lateral neurons (sLNvs), RNAi knockdown of heat shock protein (Hsp) | Adult | Htt–eGFP fusions to track and quantify aggregation, sLNv count, rhythmicity, confocal imaging for PER protein intensity, transcript levels of Hop–associated proteins | [145] |
Expression of Q93 and Q20 peptides | Adult, Larva | Adult: locomotion Larva: crawling assay | [146] |
Temperature–inducible expression of a Q15 or Q138 12–exon fragment of the human Htt gene, or expression of a 548 amino acid Q0 or Q128 segment of human Htt | Adult, pharate adult, larva |
Adult: RFP tag for imaging of Htt aggregation and localization Pharate adult: lethality Larvae: viability past 2nd instar for small molecule screen, Fluorescence recovery after photobleaching for aggregate growth | [142] |
Expression of full–length Q128 or Q16 human Htt | Adult, larva | Adults: Western blot for Huntingtin levels, photoreceptor morphology count, locomotion, flying assay, confocal microscopy to count neuronal projections into IFMs Larvae: immunohistochemistry for third–instar larval NMJ count, EJP amplitudes, Ca2+ imaging | [143] |
Ataxia Telangiectasia | |||
---|---|---|---|
Drosophila Model | Developmental Stage | Assay Used for Neuropathology | References |
Drosophila orthologs of human genes | |||
ATM8 mutants and knockdown of ATM | Adult | Climbing assay, lifespan, histological staining for vacuole quantification, immunostaining with anti–CaspAct for prevalence of apoptosis | [155] |
ATM8 mutants and knockdown of ATM | Adult | Concurrent climbing assay, lifespan, histological staining for vacuole quantification, immunostaining with anti–CaspAct for prevalence of apoptosis | [156] |
ATM3, ATM4, and ATM8 mutants | Adult | Percent eclosion, lifespan | [159] |
Mitochondrial Gene Mutations and Neurodegeneration | |||
---|---|---|---|
Drosophila Model | Developmental Stage | Assay Used for Neuropathology | References |
Drosophila orthologs of human genes | |||
ND23 mutants | Adult | Climbing assay, bang–sensitivity assay, lifespan, histological staining for vacuole quantification | [21] |
dNRD1 mutants, OGDH mutants, and knockdown | Adult | Electroretinogram recordings for neuronal function, histology for retinal morphology | [162] |
ND75 knockdown | Adult | Lifespan, climbing assay, histological staining for vacuole quantification, immunostaining for cleaved PARP to quantify caspase activity | [165] |
Brain Tumor | |||
---|---|---|---|
Drosophila Model | Developmental Stage | Assay Used for Neuropathology | References |
Drosophila orthologs of human genes | |||
bratchs mutant, bratchs; pcna–GFP and bratchs; CG15864MB04166 double mutants | Adult | Histological staining for vacuole quantification, climbing assay, immunostaining with anti–cleaved Dcp–1 for prevalence of apoptosis | [166] |
Traumatic Brain injury | |||
---|---|---|---|
Drosophila Model | Developmental Stage | Assay Used for Neuropathology | References |
Injury from the High–Impact Trauma device | Adult | Lifespan, histological staining for vacuole quantification | [173] |
Stab injury to the brain through the right eye | Adult | Lifespan, climbing assay, mobility assay | [183] |
Neuroregeneration | |||||
---|---|---|---|---|---|
Drosophila Model | Developmental Stage | Injured Tissue | Assay Used for Neuropathology | Assay Used for Neuroregeneration | References |
Nerve crush injury | Larva | Motor and sensory neuron axons | Visualization of degenerating distal stump using GFP reporters | Visualization of regenerating proximal stump using GFP reporters | [185,186,187] |
In vivo laser axotomy | Larva | Sensory neuron axons | Visualization of degenerating distal stump using GFP reporters | Visualization of axon regrowth using GFP reporters | [185,188,189,190] |
In vivo laser dendriotomy | Larva | Sensory neuron dendrites | n.d. | Visualization of dendrite regrowth using GFP reporters | [189,190,191] |
In vitro axotomy | Larva | Motor neuron axons | n.d. | Visualization of axon regrowth using GFP reporters | [192] |
In vivo axon pruning and remodeling | Pupa | Mushroom body of the brain axon pruning and remodeling | Immunostaining of fixed samples | Immunostaining of fixed samples | [193,194,195,196,197] |
Ex vivo axon pruning and remodeling | Pupa | Mushroom body of the brain axon pruning and remodeling | Immunostaining of fixed samples | Immunostaining of fixed samples | [198] |
Ex vivo axotomy | Adult | Brain sLN–v neurons | Visualization of degenerating distal stump using GFP reporters | Visualization of axon regrowth using GFP reporters | [199] |
Olfactory neuron axotomy | Adult | Antennal olfactory neuron axons | Visualization of degenerating distal stump using GFP reporters | n.d. | [196,200,201] |
In vivo axotomy | Adult | Wing sensory neuron axons | Visualization of degenerating distal stump using GFP reporters | Visualization of axon regrowth using GFP reporters | [202,203,204] |
Traumatic Brain Injury (TBI) | Adult | Various brain regions | histology | n.d. | [173,183] |
Penetrating Traumatic Brain Injury (PTBI) | Adult | Various brain regions | TUNEL assays, | Cell proliferation, lineage tracing | [183,205,206,207] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolus, H.; Crocker, K.; Boekhoff-Falk, G.; Chtarbanova, S. Modeling Neurodegenerative Disorders in Drosophila melanogaster. Int. J. Mol. Sci. 2020, 21, 3055. https://doi.org/10.3390/ijms21093055
Bolus H, Crocker K, Boekhoff-Falk G, Chtarbanova S. Modeling Neurodegenerative Disorders in Drosophila melanogaster. International Journal of Molecular Sciences. 2020; 21(9):3055. https://doi.org/10.3390/ijms21093055
Chicago/Turabian StyleBolus, Harris, Kassi Crocker, Grace Boekhoff-Falk, and Stanislava Chtarbanova. 2020. "Modeling Neurodegenerative Disorders in Drosophila melanogaster" International Journal of Molecular Sciences 21, no. 9: 3055. https://doi.org/10.3390/ijms21093055
APA StyleBolus, H., Crocker, K., Boekhoff-Falk, G., & Chtarbanova, S. (2020). Modeling Neurodegenerative Disorders in Drosophila melanogaster. International Journal of Molecular Sciences, 21(9), 3055. https://doi.org/10.3390/ijms21093055