Genome-Wide Identification and Characterization of UTR-Introns of Citrus sinensis
Abstract
:1. Introduction
2. Results and Discussion
2.1. UTR Introns in the Citrus sinensis Genome
2.2. Functional Implications of Genes with UTR Introns
2.3. UTR Introns and Transcriptional Enhancers
2.4. Experimental Validation of 5UI and 3UI Splicing
3. Materials and Methods
3.1. Genome-Wide Identification of Sweet Orange UIs
3.2. Enrichment Analysis of Genes Containing UIs
3.3. Cis-Acting Element Prediction of UI Sequences
3.4. UI Structure Verification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
Abbreviations
CDS | Coding sequence |
UTR | Untranslated region |
UI | UTR intron |
RT-PCR | Reverse transcription PCR |
qRT-PCR | Quantitative real time PCR |
EJC | exon-junction complex |
IME | Intron-mediated enhancement |
NMD | nonsense-mediated decay |
NPC | Nuclear pore complex |
UI-Ts | UI-containing gene transcripts |
AS | Alternative splicing |
SS | Splice sites |
References
- Sambrook, J. Adenovirus amazes at Cold Spring Harbor. Nature 1977, 268, 101–104. [Google Scholar] [PubMed]
- Roy, S.W.; Gilbert, W. The evolution of spliceosomal introns: Patterns, puzzles and progress. Nat. Rev. Genet. 2006, 7, 211–221. [Google Scholar] [PubMed]
- Wahl, M.C.; Will, C.L.; Luhrmann, R. The spliceosome: Design principles of a dynamic RNP machine. Cell 2009, 136, 701–718. [Google Scholar] [PubMed] [Green Version]
- Chorev, M.; Carmel, L. The function of introns. Front. Genet. 2012, 3, 55. [Google Scholar] [PubMed] [Green Version]
- Le Hir, H.; Nott, A.; Moore, M.J. How introns influence and enhance eukaryotic gene expression. Trends Biochem. Sci. 2003, 28, 215–220. [Google Scholar]
- Moore, M.J.; Proudfoot, N.J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 2009, 136, 688–700. [Google Scholar] [PubMed] [Green Version]
- Leon, P.; Planckaert, F.; Walbot, V. Transient Gene Expression in Protoplasts of Phaseolus vulgaris Isolated from a Cell Suspension Culture. Plant. Physiol. 1991, 95, 968–972. [Google Scholar]
- Maas, C.; Laufs, J.; Grant, S.; Korfhage, C.; Werr, W. The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol. Biol. 1991, 16, 199–207. [Google Scholar]
- Mascarenhas, D.; Mettler, I.J.; Pierce, D.A.; Lowe, H.W. Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol. Biol. 1990, 15, 913–920. [Google Scholar]
- Luehrsen, K.R.; Walbot, V. Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol. Gen. Genet. 1991, 225, 81–93. [Google Scholar]
- Akua, T.; Berezin, I.; Shaul, O. The leader intron of AtMHX can elicit, in the absence of splicing, low-level intron-mediated enhancement that depends on the internal intron sequence. BMC Plant Biol. 2010, 10, 93. [Google Scholar]
- Cao, Y.; Wang, Y.; Li, Y.; Yang, J.; Ma, L. The Arabidopsis AGAMOUS 5′-UTR represses downstream gene translation. Sci. China Tehnol. SC 2019, 62, 272–275. [Google Scholar]
- Bradnam, K.R.; Korf, I. Longer first introns are a general property of eukaryotic gene structure. PLoS ONE 2008, 3, e3093. [Google Scholar]
- Samadder, P.; Sivamani, E.; Lu, J.L.; Li, X.G.; Qu, R.D. Transcriptional and post-transcriptional enhancement of gene expression by the 5′ UTR intron of rice rubi3 gene in transgenic rice cells. Mol. Genet. Genom. 2008, 279, 429–439. [Google Scholar]
- Kamo, K.; Kim, A.Y.; Park, S.H.; Joung, Y.H. The 5′ UTR-intron of the Gladiolus polyubiquitin promoter GUBQ1 enhances translation efficiency in Gladiolus and Arabidopsis. BMC Plant Biol. 2012, 12, 79. [Google Scholar]
- Grant, T.N.L.; De La Torre, C.M.; Zhang, N.; Finer, J.J. Synthetic introns help identify sequences in the 5′ UTR intron of the Glycine max polyubiquitin (Gmubi) promoter that give increased promoter activity. Planta 2017, 245, 849–860. [Google Scholar]
- Laxa, M.; Muller, K.; Lange, N.; Doering, L.; Pruscha, J.T.; Peterhansel, C. The 5′UTR Intron of Arabidopsis GGT1 Aminotransferase Enhances Promoter Activity by Recruiting RNA Polymerase II. Plant Physiol. 2016, 172, 313–327. [Google Scholar]
- Gallegos, J.E.; Rose, A.B. An intron-derived motif strongly increases gene expression from transcribed sequences through a splicing independent mechanism in Arabidopsis thaliana. Sci. Rep. 2019, 9, 13777. [Google Scholar]
- Norris, S.R.; Meyer, S.E.; Callis, J. The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol. Biol. 1993, 21, 895–906. [Google Scholar]
- Sivamani, E.; Qu, R. Expression enhancement of a rice polyubiquitin gene promoter. Plant Mol. Biol. 2006, 60, 225–239. [Google Scholar]
- Chaubet-Gigot, N.; Kapros, T.; Flenet, M.; Kahn, K.; Gigot, C.; Waterborg, J.H. Tissue-dependent enhancement of transgene expression by introns of replacement histone H3 genes of Arabidopsis. Plant Mol. Biol. 2001, 45, 17–30. [Google Scholar] [PubMed]
- Barrett, L.W.; Fletcher, S.; Wilton, S.D. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol. Life Sci. 2012, 69, 3613–3634. [Google Scholar] [PubMed] [Green Version]
- Bicknell, A.A.; Cenik, C.; Chua, H.N.; Roth, F.P.; Moore, M.J. Introns in UTRs: Why we should stop ignoring them. Bioessays 2012, 34, 1025–1034. [Google Scholar] [PubMed]
- Zhang, J.; Sun, X.; Qian, Y.; Maquat, L.E. Intron function in the nonsense-mediated decay of beta-globin mRNA: Indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA 1998, 4, 801–815. [Google Scholar]
- Chang, Y.F.; Imam, J.S.; Wilkinson, M.F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 2007, 76, 51–74. [Google Scholar]
- McIlwain, D.R.; Pan, Q.; Reilly, P.T.; Elia, A.J.; McCracken, S.; Wakeham, A.C.; Itie-Youten, A.; Blencowe, B.J.; Mak, T.W. Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. Proc. Natl. Acad. Sci. USA 2010, 107, 12186–12191. [Google Scholar]
- Saltzman, A.L.; Pan, Q.; Blencowe, B.J. Regulation of alternative splicing by the core spliceosomal machinery. Genes Dev. 2011, 25, 373–384. [Google Scholar]
- Cenik, C.; Derti, A.; Mellor, J.C.; Berriz, G.F.; Roth, F.P. Genome-wide functional analysis of human 5′ untranslated region introns. Genome Biol. 2010, 11, R29. [Google Scholar]
- Hong, X.; Scofield, D.G.; Lynch, M. Intron size, abundance, and distribution within untranslated regions of genes. Mol. Biol. Evol. 2006, 23, 2392–2404. [Google Scholar]
- Chung, B.Y.W.; Simons, C.; Firth, A.E.; Brown, C.M.; Hellens, R.P. Effect of 5′ UTR introns on gene expression in Arabidopsis thaliana. BMC Genom. 2006, 7, 120. [Google Scholar]
- Xu, Q.; Chen, L.L.; Ruan, X.A.; Chen, D.J.; Zhu, A.D.; Chen, C.L.; Bertrand, D.; Jiao, W.B.; Hao, B.H.; Lyon, M.P.; et al. The draft genome of sweet orange (Citrus sinensis). Nat. Genet. 2013, 45, U59–U92. [Google Scholar]
- Nagy, E.; Maquat, L.E. A rule for termination-codon position within intron-containing genes: When nonsense affects RNA abundance. Trends Biochem. Sci. 1998, 23, 198–199. [Google Scholar] [PubMed]
- Lejeune, F.; Maquat, L.E. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr. Opin. Cell Biol. 2005, 17, 309–315. [Google Scholar] [PubMed]
- Pesole, G.; Mignone, F.; Gissi, C.; Grillo, G.; Licciulli, F.; Liuni, S. Structural and functional features of eukaryotic mRNA untranslated regions. Gene 2001, 276, 73–81. [Google Scholar] [PubMed]
- Nott, A.; Meislin, S.H.; Moore, M.J. A quantitative analysis of intron effects on mammalian gene expression. RNA 2003, 9, 607–617. [Google Scholar] [PubMed] [Green Version]
- Wiegand, H.L.; Lu, S.; Cullen, B.R. Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc. Natl. Acad. Sci. USA 2003, 100, 11327–11332. [Google Scholar] [PubMed] [Green Version]
- Nott, A.; Le Hir, H.; Moore, M.J. Splicing enhances translation in mammalian cells: An additional function of the exon junction complex. Genes Dev. 2004, 18, 210–222. [Google Scholar]
- Singh, G.; Rebbapragada, I.; Lykke-Andersen, J. A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol. 2008, 6, 860–871. [Google Scholar]
- Maquat, L.E. Nonsense-mediated mRNA decay: Splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 2004, 5, 89–99. [Google Scholar]
- Brown, J.W.; Simpson, C.G.; Thow, G.; Clark, G.P.; Jennings, S.N.; Medina-Escobar, N.; Haupt, S.; Chapman, S.C.; Oparka, K.J. Splicing signals and factors in plant intron removal. Biochem. Soc. Trans. 2002, 30, 146–149. [Google Scholar]
- Ling, L.; Oltean, S. Modulators of alternative splicing as novel therapeutics in cancer. Int. J. Mol. Med. 2017, 40, S23. [Google Scholar]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [PubMed] [Green Version]
- Burset, M.; Seledtsov, I.A.; Solovyev, V.V. Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res. 2000, 28, 4364–4375. [Google Scholar] [PubMed]
- Merendino, L.; Guth, S.; Bilbao, D.; Martinez, C.; Valcarcel, J. Inhibition of msl-2 splicing by Sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG. Nature 1999, 402, 838–841. [Google Scholar]
- Forch, P.; Merendino, L.; Martinez, C.; Valcarcel, J. Modulation of msl-2 5′ splice site recognition by Sex-lethal. RNA 2001, 7, 1185–1191. [Google Scholar]
- Clancy, M.; Hannah, L.C. Splicing of the maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing. Plant Physiol. 2002, 130, 918–929. [Google Scholar] [PubMed] [Green Version]
- Araujo, P.R.; Yoon, K.; Ko, D.; Smith, A.D.; Qiao, M.; Suresh, U.; Burns, S.C.; Penalva, L.O. Before It Gets Started: Regulating Translation at the 5′ UTR. Comp. Funct. Genom. 2012, 2012, 475731. [Google Scholar]
- Cenik, C.; Chua, H.N.; Zhang, H.; Tarnawsky, S.P.; Akef, A.; Derti, A.; Tasan, M.; Moore, M.J.; Palazzo, A.F.; Roth, F.P. Genome analysis reveals interplay between 5′UTR introns and nuclear mRNA export for secretory and mitochondrial genes. PLoS Genet. 2011, 7, e1001366. [Google Scholar]
- Merrick, W.C.; Hershey, J.W. The pathway and mechanism of eukaryotic protein synthesis. Cold Spring Harb. Monogr. Arch. 1996, 30, 31–69. [Google Scholar]
- Siniossoglou, S.; Wimmer, C.; Rieger, M.; Doye, V.; Tekotte, H.; Weise, C.; Emig, S.; Segref, A.; Hurt, E.C. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell 1996, 84, 265–275. [Google Scholar]
- Mitchell, S.F.; Jain, S.; She, M.; Parker, R. Global analysis of yeast mRNPs. Nat. Struct. Mol. Biol. 2013, 20, 127–133. [Google Scholar] [PubMed] [Green Version]
- Bischoff, F.R.; Klebe, C.; Kretschmer, J.; Wittinghofer, A.; Ponstingl, H. RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc. Natl. Acad. Sci. USA 1994, 91, 2587–2591. [Google Scholar] [PubMed] [Green Version]
- Dix, I.; Russell, C.; Yehuda, S.B.; Kupiec, M.; Beggs, J.D. The identification and characterization of a novel splicing protein, Isy1p, of Saccharomyces cerevisiae. RNA 1999, 5, 360–368. [Google Scholar] [PubMed] [Green Version]
- Will, C.L.; Urlaub, H.; Achsel, T.; Gentzel, M.; Wilm, M.; Luhrmann, R. Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J. 2002, 21, 4978–4988. [Google Scholar]
- Pillai, R.S.; Grimmler, M.; Meister, G.; Will, C.L.; Luhrmann, R.; Fischer, U.; Schumperli, D. Unique Sm core structure of U7 snRNPs: Assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing. Genes Dev. 2003, 17, 2321–2333. [Google Scholar]
- He, Y.; Smith, R. Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol. Life Sci. 2009, 66, 1239–1256. [Google Scholar]
- Agafonov, D.E.; Kastner, B.; Dybkov, O.; Hofele, R.V.; Liu, W.T.; Urlaub, H.; Luhrmann, R.; Stark, H. Molecular architecture of the human U4/U6.U5 tri-snRNP. Science 2016, 351, 1416–1420. [Google Scholar]
- Akua, T.; Shaul, O. The Arabidopsis thaliana MHX gene includes an intronic element that boosts translation when localized in a 5′ UTR intron. J. Exp. Bot. 2013, 64, 4255–4270. [Google Scholar]
- Manna, S. An overview of pentatricopeptide repeat proteins and their applications. Biochimie 2015, 113, 93–99. [Google Scholar]
- Small, I.D.; Rackham, O.; Filipovska, A. Organelle transcriptomes: Products of a deconstructed genome. Curr. Opin. Microbiol. 2013, 16, 652–658. [Google Scholar]
- Dahan, J.; Mireau, H. The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes. RNA Biol. 2013, 10, 1469–1476. [Google Scholar] [PubMed] [Green Version]
- Xing, H.; Fu, X.; Yang, C.; Tang, X.; Guo, L.; Li, C.; Xu, C.; Luo, K. Genome-wide investigation of pentatricopeptide repeat gene family in poplar and their expression analysis in response to biotic and abiotic stresses. Sci. Rep. 2018, 8, 2817. [Google Scholar] [PubMed] [Green Version]
- Riedl, S.J.; Li, W.; Chao, Y.; Schwarzenbacher, R.; Shi, Y. Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 2005, 434, 926–933. [Google Scholar] [PubMed]
- Lu, J.; Sivamani, E.; Azhakanandam, K.; Samadder, P.; Li, X.; Qu, R. Gene expression enhancement mediated by the 5′ UTR intron of the rice rubi3 gene varied remarkably among tissues in transgenic rice plants. Mol. Genet. Genom. 2008, 279, 563–572. [Google Scholar]
- Ibraheem, O.; Botha, C.E.; Bradley, G. In silico analysis of cis-acting regulatory elements in 5′ regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana. Comput. Biol. Chem. 2010, 34, 268–283. [Google Scholar]
- Rose, A.B.; Emami, S.; Bradnam, K.; Korf, I. Evidence for a DNA-Based Mechanism of Intron-Mediated Enhancement. Front. Plant Sci. 2011, 2, 98. [Google Scholar]
- Ji, Z.; Lee, J.Y.; Pan, Z.; Jiang, B.; Tian, B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl. Acad. Sci. USA 2009, 106, 7028–7033. [Google Scholar]
- Lewis, B.P.; Green, R.E.; Brenner, S.E. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl. Acad. Sci. USA 2003, 100, 189–192. [Google Scholar]
- Ni, J.Z.; Grate, L.; Donohue, J.P.; Preston, C.; Nobida, N.; O’Brien, G.; Shiue, L.; Clark, T.A.; Blume, J.E.; Ares, M., Jr. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 2007, 21, 708–718. [Google Scholar]
- Bruno, I.G.; Karam, R.; Huang, L.; Bhardwaj, A.; Lou, C.H.; Shum, E.Y.; Song, H.W.; Corbett, M.A.; Gifford, W.D.; Gecz, J.; et al. Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol. Cell 2011, 42, 500–510. [Google Scholar]
- Hoshida, H.; Kondo, M.; Kobayashi, T.; Yarimizu, T.; Akada, R. 5 -UTR introns enhance protein expression in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2017, 101, 241–251. [Google Scholar]
- Bianchi, M.; Crinelli, R.; Giacomini, E.; Carloni, E.; Magnani, M. A potent enhancer element in the 5′-UTR intron is crucial for transcriptional regulation of the human ubiquitin C gene. Gene 2009, 448, 88–101. [Google Scholar]
- Beaulieu, E.; Green, L.; Elsby, L.; Alourfi, Z.; Morand, E.F.; Ray, D.W.; Donn, R. Identification of a novel cell type-specific intronic enhancer of macrophage migration inhibitory factor (MIF) and its regulation by mithramycin. Clin. Exp. Immunol. 2011, 163, 178–188. [Google Scholar]
- Rearick, D.; Prakash, A.; McSweeny, A.; Shepard, S.S.; Fedorova, L.; Fedorov, A. Critical association of ncRNA with introns. Nucleic Acids Res. 2011, 39, 2357–2366. [Google Scholar]
- Wu, G.A.; Prochnik, S.; Jenkins, J.; Salse, J.; Hellsten, U.; Murat, F.; Perrier, X.; Ruiz, M.; Scalabrin, S.; Terol, J.; et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat. Biotechnol. 2014, 32, 656. [Google Scholar]
- Thimm, O.; Blasing, O.; Gibon, Y.; Nagel, A.; Meyer, S.; Kruger, P.; Selbig, J.; Muller, L.A.; Rhee, S.Y.; Stitt, M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004, 37, 914–939. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar]
- Cheng, C.Z.; Yang, J.W.; Yan, H.B.; Bei, X.J.; Zhang, Y.Y.; Lu, Z.M.; Zhong, G.Y. Expressing p20 hairpin RNA of Citrus tristeza virus confers Citrus aurantium with tolerance/resistance against stem pitting and seedling yellow CTV strains. J. Integr. Agr. 2015, 14, 1767–1777. [Google Scholar]
- Simpson, C.G.; Jennings, S.N.; Clark, G.P.; Thow, G.; Brown, J.W. Dual functionality of a plant U-rich intronic sequence element. Plant J. 2004, 37, 82–91. [Google Scholar]
- Sureau, A.; Gattoni, R.; Dooghe, Y.; Stevenin, J.; Soret, J. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J. 2001, 20, 1785–1796. [Google Scholar]
- Lareau, L.F.; Inada, M.; Green, R.E.; Wengrod, J.C.; Brenner, S.E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 2007, 446, 926–929. [Google Scholar] [PubMed] [Green Version]
- Martin, G.B. Functional analysis of plant disease resistance genes and their downstream effectors. Curr. Opin. Plant Biol. 1999, 2, 273–279. [Google Scholar] [PubMed]
- Innes, R.W. Genetic dissection of R gene signal transduction pathways. Curr. Opin. Plant Biol. 1998, 1, 299–304. [Google Scholar]
Number of Sequences | Sequences with Introns | Total Bases (Genomic) | Intron/Sequence | Number of Introns/Nucleotide (mRNA) | |
---|---|---|---|---|---|
5′UTR | 16,916 | 617 | 6.8 × 106 | 0.06 | 1.42 × 10−4 |
CDS | 23,394 | 17,897 | 3.8 × 107 | 4.81 | 2.98 × 10−3 |
3′UTR | 17,408 | 469 | 1.2 ×107 | 0.04 | 6.36 × 10−5 |
UI Number | 5UI-Ts Number/Percentage (Gene ID) | 3UI-Ts Number/Percentage (Gene ID) |
---|---|---|
1 UI | 713/86.43% (NS) | 448/78.60% (NS) |
2 UIs | 90/10.91% (NS) | 90/15.79% (NS) |
3 UIs | 18/2.18% (Cs1g06160.1, Cs2g16080.1, Cs2g03700.1, Cs2g01050.1, Cs3g12240.1, Cs3g19040.1, Cs4g10860.1, Cs5g07860.1, Cs6g06255.1, Cs7g12410.1, Cs9g09475.1, orange1.1t05830.1, orange1.1t01413.1, orange1.1t02679.1, orange1.1t02923.1, orange1.1t04234.1, orange1.1t05909.1, orange1.1t06043.1) | 18/3.16% (Cs1g09404.1, Cs1g10030.1, Cs3g02530.1, Cs3g21100.1, Cs3g25390.1, Cs4g03945.1, Cs6g08820.1, Cs7g04620.1, Cs7g09600.1, Cs8g11445.1, Cs8g11845.1, Cs8g15200.1, orange1.1t02481.1, orange1.1t05875.1, orange1.1t03487.1, orange1.1t06018.1, orange1.1t05916.1, orange1.1t05924.1) |
4 UIs | 2/0.24% (Cs2g17870.1, Cs5g25765.1) | 8/1.40% (Cs2g08495.1, Cs3g10260.1, Cs3g12715.1, Cs5g26550.1; Cs5g28645.2, Cs7g15390.1, orange1.1t05956.1, orange1.1t03536.1) |
5 UIs | 2/0.24% (orange1.1t06039.1, Cs7g06380.1) | 4/0.70% (Cs2g11780.1, orange1.1t01460.1, orange1.1t03486.1, Cs1g16990.1) |
6 UIs | 0 | 2/0.35% (Cs1g15550.1, Cs1g17000.1) |
Chr No. | 5UI Numbers/Percentage | 5UI Density | 3UI Numbers/Percentage | 3UI Density | 5UI-T Number/Percentage | 5UI-T Density | 3UI-T Number/Percentage | 3UI-T Density |
---|---|---|---|---|---|---|---|---|
chr1 | 81 (8.39%) | 2.81 × 10−6 | 103 (13.83%) | 3.58 × 10−6 | 70 (8.49%) | 2.43 × 10−6 | 72 (12.6%) | 2.5 × 10−6 |
chr2 | 162 (16.79%) | 5.26 × 10−6 | 65 (8.73%) | 2.11 × 10−6 | 137 (16.61%) | 4.45 × 10−6 | 50 (8.77%) | 1.62 × 10−6 |
chr3 | 87 (9.02%) | 3.03 × 10−6 | 83 (11.14%) | 2.89 × 10−6 | 73 (8.85%) | 2.54 × 10−6 | 61 (10.7%) | 2.13 × 10−6 |
chr4 | 75 (7.77%) | 3.75 × 10−6 | 60 (8.05%) | 3.00 × 10−6 | 66 (8.00%) | 3.3 × 10−6 | 48 (8.42%) | 2.40 × 10−6 |
chr5 | 100 (10.36%) | 2.76 × 10−6 | 85 (11.41%) | 2.35 × 10−6 | 84 (10.18%) | 2.32 × 10−6 | 71 (12.46%) | 1.96 × 10−6 |
chr6 | 96 (9.95%) | 4.53 × 10−6 | 39 (5.24%) | 1.84 × 10−6 | 85 (10.30%) | 4.01 × 10−6 | 33 (5.79%) | 1.56 × 10−6 |
chr7 | 97 (10.05%) | 3.01 × 10−6 | 78 (10.47%) | 2.42 × 10−6 | 85 (10.30%) | 2.64 × 10−6 | 62 (10.88%) | 1.93 × 10−6 |
chr8 | 54 (5.59%) | 2.38 × 10−6 | 57 (7.65%) | 2.51 × 10−6 | 48 (5.82%) | 2.11 × 10−6 | 43 (7.54%) | 1.89 × 10−6 |
chr9 | 48 (4.97%) | 2.59 × 10−6 | 27 (3.62%) | 1.46 × 10−6 | 43 (5.21%) | 2.32 × 10−6 | 23 (4.04%) | 1.24 × 10−6 |
chrUn | 165 (17.01%) | - | 148 (19.86%) | - | 134 (16.24%) | - | 107 (18.77%) | - |
Gene Family | Gene ID | 3UI Number and Length (bp) | 5UI Number and Length (bp) |
---|---|---|---|
PPR | Cs4g02090.2 | 1 (150) | - |
Cs4g03660.1 | 1 (119) | - | |
Cs4g07420.1 | 1 (1165) | - | |
Cs4g13530.1 | 2 (366, 98) | - | |
Cs4g13560.1 | 2 (710, 98) | - | |
Cs4g20340.4 | 1 (334) | - | |
Cs4g20340.1 | - | 1 (576) | |
Cs4g20340.2 | - | 1 (143) | |
Cs2g05520.1 | 1 (754) | - | |
Cs2g07840.2 | 1 (486) | - | |
Cs2g09470.2 | 1 (1044) | - | |
Cs2g11780.1 | 5 (614, 1389, 178, 567, 78) | - | |
Cs2g13460.1 | 1 (93) | - | |
Cs2g19190.1 | 1 (93) | - | |
Cs2g19710.1 | 2 (113, 442) | - | |
Cs2g27580.1 | 1 (1233) | - | |
Cs5g03910.1 | 1 (108) | 1 (147) | |
Cs5g04860.1 | 1 (422) | - | |
Cs5g08440.2 | 1 (670) | - | |
Cs5g17240.1 | 1 (98) | - | |
Cs5g26200.2 | 1 (771) | - | |
Cs5g26550.1 | 4 (314, 152, 720, 78) | - | |
Cs5g34090.1 | 1 (513) | 1 (114) | |
Cs7g04230.1 | 1 (212) | - | |
Cs7g04980.1 | 1 (234) | - | |
Cs7g09600.1 | 3 (781, 330, 112) | - | |
Cs7g10230.1 | 2 (278, 91) | 1 (490) | |
Cs7g13700.2 | 1 (949) | - | |
Cs7g15390.1 | 4 (661, 120, 811, 136) | - | |
Cs3g02530.2 | 1 (707) | - | |
Cs3g09780.2 | 1 (103) | - | |
Cs3g10260.1 | 4 (161, 862, 194, 186) | - | |
Cs3g11640.1 | 2 (1094, 97) | - | |
Cs3g19210.1 | 2 (334, 140) | - | |
Cs3g20090.1 | 2 (506, 107) | 1 (666) | |
Cs3g20090.2 | - | 1 (462) | |
Cs3g20480.1 | 2 (220, 166) | - | |
Cs3g24370.1 | 2 (104, 668) | - | |
Cs3g25390.1 | 3 (109, 158, 105) | - | |
Cs6g01290.1 | 2 (280, 132) | 1 (93) | |
Cs6g07760.1 | 2 (102, 211) | - | |
Cs6g08820.2 | 1 (107) | - | |
Cs6g11340.2 | 1 (270) | - | |
Cs6g11530.1 | 1 (909) | - | |
Cs6g11910.2 | 1 (388) | - | |
Cs1g10030.4 | 1 (194) | - | |
Cs1g10310.2 | 1 (1699) | - | |
Cs1g12770.2 | 1 (997) | - | |
Cs1g12780.1 | 2 (89, 306) | - | |
Cs1g24360.1 | 1 (1265) | - | |
Cs1g26320.1 | 1 (531) | - | |
Cs8g15200.1 | 3 (158, 1006, 208) | - | |
Cs8g18540.1 | 1 (134) | - | |
Cs9g01900.1 | 1 (99) | - | |
Cs9g03060.1 | 1 (468) | - | |
Cs9g17260.1 | 1 (1131) | - | |
orange1.1t00940.1 | 2 (725, 181) | - | |
orange1.1t01460.1 | 5 (431, 636, 473, 134, 97) | 1 (268) | |
orange1.1t01541.1 | 2 (554, 509) | - | |
orange1.1t04277.2 | 1 (366) | - | |
orange1.1t04409.1 | 2 (343, 301) | - | |
Cs4g03945.1 | 3 (633, 89, 99) | - | |
Cs4g11335.1 | 1 (295) | - | |
Cs9g14456.1 | 1 (91) | - | |
R | Cs4g07730.1 | 2 (92, 142) | - |
Cs4g07730.2 | 2 (87, 138) | - | |
Cs4g10830.1 | 1 (363) | 1 (93) | |
Cs2g19600.2 | 1 (238) | - | |
Cs2g30590.1 | 2 (138, 605) | - | |
Cs5g20470.1 | 1 (89) | - | |
Cs5g21990.1 | 1 (131) | - | |
Cs5g22710.1 | 1 (140) | - | |
Cs5g28770.1 | 2 (239, 685) | - | |
Cs5g29510.1 | 1 (145) | - | |
Cs7g02220.1 | 1 (82) | - | |
Cs3g13340.1 | 2 (187, 175) | - | |
Cs3g13390.1 | 2 (180, 130) | - | |
Cs1g06720.1 | 1 (163) | - | |
Cs1g08080.2 | 1 (99) | - | |
Cs1g11430.1 | 2 (291, 1,488) | - | |
Cs1g12140.1 | 1 (482) | - | |
Cs1g14030.1 | 1 (171) | - | |
Cs1g14090.1 | 1 (327) | - | |
Cs1g14120.1 | 1 (400) | - | |
Cs1g15550.1 | 6 (408, 159, 163, 293, 120, 101) | - | |
Cs1g16990.1 | 5 (174, 104, 82, 71, 95 ) | - | |
Cs1g17000.1 | 6 (332, 96, 357, 268, 161, 144) | - | |
Cs1g18380.2 | 1 (663) | - | |
Cs9g18740.1 | 1 (178) | - | |
orange1.1t01926.1 | 1 (163) | - | |
orange1.1t02481.1 | 3 (137, 210, 362) | - | |
orange1.1t02498.1 | 1 (290) | - | |
orange1.1t02751.1 | 1 (401) | 1 (347) | |
orange1.1t02917.1 | 1 (138) | - | |
orange1.1t02924.1 | 1 (140) | - | |
orange1.1t03486.1 | 5 (169, 195, 93, 377, 127) | - | |
orange1.1t03487.3 | 1 (571) | - | |
orange1.1t03742.2 | 1 (140) | - | |
orange1.1t04592.1 | 1 (238) | - | |
Cs2g30865.1 | 1 (303) | - | |
Cs1g09404.1 | 3 (133, 117, 473) | - | |
orange1.1t05891.1 | 1 (4655) | - | |
Cs4g17710.1 | 1 (712) | - | |
Cs4g08050.1 | 1 (282) | - | |
Cs4g08050.2 | 1 (274) | - | |
Cs4g08110.2 | 1 (277) | - | |
Cs6g19070.1 | 1 (751) | - | |
Cs1g14090.2 | 1 (321) | - | |
Cs1g14090.3 | 1 (321) | - | |
orange1.1t03332.1 | 1 (133) | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Wu, J.; Mensah, R.A.; Tian, N.; Liu, J.; Liu, F.; Chen, J.; Che, J.; Guo, Y.; Wu, B.; et al. Genome-Wide Identification and Characterization of UTR-Introns of Citrus sinensis. Int. J. Mol. Sci. 2020, 21, 3088. https://doi.org/10.3390/ijms21093088
Shi X, Wu J, Mensah RA, Tian N, Liu J, Liu F, Chen J, Che J, Guo Y, Wu B, et al. Genome-Wide Identification and Characterization of UTR-Introns of Citrus sinensis. International Journal of Molecular Sciences. 2020; 21(9):3088. https://doi.org/10.3390/ijms21093088
Chicago/Turabian StyleShi, Xiaobao, Junwei Wu, Raphael Anue Mensah, Na Tian, Jiapeng Liu, Fan Liu, Jialan Chen, Jingru Che, Ye Guo, Binghua Wu, and et al. 2020. "Genome-Wide Identification and Characterization of UTR-Introns of Citrus sinensis" International Journal of Molecular Sciences 21, no. 9: 3088. https://doi.org/10.3390/ijms21093088
APA StyleShi, X., Wu, J., Mensah, R. A., Tian, N., Liu, J., Liu, F., Chen, J., Che, J., Guo, Y., Wu, B., Zhong, G., & Cheng, C. (2020). Genome-Wide Identification and Characterization of UTR-Introns of Citrus sinensis. International Journal of Molecular Sciences, 21(9), 3088. https://doi.org/10.3390/ijms21093088