Bacopa monnieri (L.) Wettst. Extract Improves Memory Performance via Promotion of Neurogenesis in the Hippocampal Dentate Gyrus of Adolescent Mice
Abstract
:1. Introduction
2. Results
2.1. Effect of BME on Spatial Working Memory in Adolescent (5-Week-Old) and Adult (8-Week-Old) Mice after 7- and 28-Day Treatment
2.2. Determination of BrdU(+) Cells and Differentiation of BrdU(+) Cells to Mature Neurons in the Hippocampal Dentate Gyrus of Adolescent Mice
2.3. BME Treatment-Induced Changes Gene Expression in the Hippocampus
2.4. Bacopaside I Enhances Proliferation of Neural Progenitor Cells
3. Discussion
4. Materials and Methods
4.1. Preparation of BME
4.2. Animals
4.3. Behavioral Study4.3. Modified Y Maze Test
4.4. Immunohistochemistry
4.4.1. Preparation of Hippocampal Slices
4.4.2. Immunostaining
4.5. RNA Sequence Analysis
4.6. In-Vitro Neural Progenitor Cell (NPCs) Culture and Proliferation Assay
4.6.1. NPC Culture and MTT Assay
4.6.2. Western Blotting
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BME | Bacopa monnieri L. Wettst. extract |
TMT | Trimethyltin |
GCL | Granule cell layer |
SGZ | Subgranular zone |
PKC | Protein kinase C |
PI3K | Phosphatidylinositol-3 kinase |
NPC | Neural progenitor cells |
FJB | Fluoro-Jade B |
NAM | Neurobasal A medium |
BrdU | 5-Bromo-2´-Deoxyuridine |
NeuN | Neuronal nuclei |
OBX | Olfactory bulbectomized |
ChAT | Choline acetyltransferase |
PI3K/AKT | Phosphoinositide 3-kinases/ Protein kinase B |
pAkt | Phophorylated protein kinase B (Akt) |
ERK1/2 | Extracellular signal-regulated kinase 1/2 |
pERK1/2 | Phophorylated extracellular signal-regulated kinase 1/2 |
PPP2A | Protein Phosphatase 2A |
CREB | cAMP response element-binding protein |
BDNF | Brain-derived neurotrophic factor |
NAM | Neurobasal A medium |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
References
- Doe, C.Q. Neural stem cells: Balancing self-renewal with differentiation. Development 2008, 135, 1575–1587. [Google Scholar] [CrossRef] [Green Version]
- Ziemka-Nalecz, M.; Zalewska, T. Endogenous neurogenesis induced by ischemic brain injury or neurodegenerative diseases in adults. Acta Neurobiol. Exp. 2012, 72, 309–324. [Google Scholar]
- Lie, D.C.; Song, H.; Colamarino, S.A.; Ming, G.L.; Gage, F.H. Neurogenesis in the adult brain: New strategies for central nervous system diseases. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 399–421. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Buylla, A.; Lois, C. Neuronal stem cells in the brain of adult vertebrates. Stem Cells 1995, 13, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Drew, L.J.; Fusi, S.; Hen, R. Adult neurogenesis in the mammalian hippocampus: Why the dentate gyrus? Learn. Mem. 2013, 20, 710–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yau, S.-Y.; Li, A.; So, K.-F. Involvement of adult hippocampal neurogenesis in learning and forgetting. Neural Plast. 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leuner, B.; Gould, E.; Shors, T.J. Is there a link between adult neurogenesis and learning? Hippocampus 2006, 16, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, X.T.; Nguyet Pham, H.T.; Van Nguyen, T.; Minh Nguyen, K.; Tanaka, K.; Fujiwara, H.; Matsumoto, K. Protective effects of Bacopa monnieri on ischemia-induced cognitive deficits in mice: The possible contribution of bacopaside I and underlying mechanism. J. Ethnopharmacol. 2015, 164, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, N.P.; Amalraj, A.; Gopi, S. Neuropharmacological and cognitive effects of Bacopa monnieri (L.) Wettst—A review on its mechanistic aspects. Complement. Ther. Med. 2019, 44, 68–82. [Google Scholar] [CrossRef]
- Le, X.T.; Pham, H.T.; Do, P.T.; Fujiwara, H.; Tanaka, K.; Li, F.; Van Nguyen, T.; Nguyen, K.M.; Matsumoto, K. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: Possible involvement of glutamatergic and cholinergic systems. Neurochem. Res. 2013, 38, 2201–2215. [Google Scholar] [CrossRef]
- Paulose, C.S.; Chathu, F.; Khan, S.R.; Krishnakumar, A. Neuroprotective role of Bacopa monnieri extract in epilepsy and effect of glucose supplementation during hypoxia: Glutamate receptor gene expression. Neurochem. Res. 2008, 33, 1663–1671. [Google Scholar] [CrossRef] [PubMed]
- Mathew, J.; Gangadharan, G.; Kuruvilla, K.P.; Paulose, C.S. Behavioral deficit and decreased GABA receptor functional regulation in the hippocampus of epileptic rats: Effect of Bacopa monnieri. Neurochem. Res. 2011, 36, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumar, A.; Abraham, P.M.; Paul, J.; Paulose, C.S. Down-regulation of cerebellar 5-HT(2C) receptors in pilocarpine-induced epilepsy in rats: Therapeutic role of Bacopa monnieri extract. J. Neurol. Sci. 2009, 284, 124–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holcomb, L.A.; Dhanasekaran, M.; Hitt, A.R.; Young, K.A.; Riggs, M.; Manyam, B.V. Bacopa monniera extract reduces amyloid levels in PSAPP mice. J. Alzheimers Dis. 2006, 9, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.T.N.; Phan, S.V.; Tran, H.N.; Phi, X.T.; Le, X.T.; Nguyen, K.M.; Fujiwara, H.; Yoneyama, M.; Ogita, K.; Yamaguchi, T.; et al. Bacopa monnieri (L.) Wettst. Ameliorates cognitive deficits caused in a trimethyltin-induced neurotoxicity model mice. Biol. Pharm. Bull. 2019, 42, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyck, L.; Kroigard, T.; Finsen, B. Unbiased cell quantification reveals a continued increase in the number of neocortical neurones during early post-natal development in mice. Eur. J. Neurosci. 2007, 26, 1749–1764. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Rusznak, Z.; Herculano-Houzel, S.; Watson, C.; Paxinos, G. Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord. Brain Struct. Funct. 2013, 218, 1337–1354. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Hayashida, M.; Zhao, Q.; Shibahara, N.; Tanaka, K.; Miyata, T.; Matsumoto, K. Ameliorative effects of yokukansan on learning and memory deficits in olfactory bulbectomized mice. J. Ethnopharmacol. 2011, 135, 737–746. [Google Scholar] [CrossRef]
- Mitra-Ganguli, T.; Kalita, S.; Bhushan, S.; Stough, C.; Kean, J.; Wang, N.; Sethi, V.; Khadilkar, A. A randomized, double-blind study assessing changes in cognitive function in Indian school children receiving a combination of Bacopa monnieri and micronutrient supplementation vs. placebo. Front. Pharmacol. 2017, 8, 678. [Google Scholar] [CrossRef]
- Vollala, V.R.; Upadhya, S.; Nayak, S. Learning and memory-enhancing effect of Bacopa monniera in neonatal rats. Bratisl. Lek. Listy 2011, 112, 663–669. [Google Scholar] [PubMed]
- Finlay, B.L.; Darlington, R.B. Linked regularities in the development and evolution of mammalian brains. Science 1995, 268, 1578–1584. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.J.; Andrews, N.; Ball, D.; Bellantuono, I.; Gray, J.; Hachoumi, L.; Holmes, A.; Latcham, J.; Petrie, A.; Potter, P.; et al. Does age matter? The impact of rodent age on study outcomes. Lab. Anim. 2017, 51, 160–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengupta, P. The laboratory rat: Relating its age with human’s. Int. J. Prev. Med. 2013, 4, 624. [Google Scholar] [PubMed]
- Spear, L.P. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 2000, 24, 417–463. [Google Scholar] [CrossRef]
- Crews, F.T.; Vetreno, R.P.; Broadwater, M.A.; Robinson, D.L. Adolescent alcohol exposure persistently impacts adult neurobiology and behavior. Pharmacol. Rev. 2016, 68, 1074–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allan, J.J.; Damodaran, A.; Deshmukh, N.; Goudar, K.; Amit, A. Safety evaluation of a standardized phytochemical composition extracted from Bacopa monnieri in Sprague–Dawley rats. Food Chem. Toxicol. 2007, 45, 1928–1937. [Google Scholar] [CrossRef]
- Rocher, G.; Letourneux, C.; Lenormand, P.; Porteu, F. Inhibition of B56-containing protein phosphatase 2As by the early response gene IEX-1 leads to control of Akt activity. J. Biol. Chem. 2007, 282, 5468–5477. [Google Scholar] [CrossRef] [Green Version]
- Lie, D.-C.; Colamarino, S.; Song, H.-J.; Desire, L.; Mira, H.; Consiglio, A.; Lein, E.; Jessberger, S.; Lansford, H.; Dearie, A.; et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005, 437, 1370–1375. [Google Scholar] [CrossRef]
- Nieto-Estévez, V.; Defterali, Ç.; Vicario-Abejón, C. IGF-I: A key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the Brain. Front. Neurosci. 2016, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Song, X.; He, R.; Li, T.; Cheng, L.; Xie, L.; Chen, H.; Jiang, L. VEGF regulates hippocampal neurogenesis and reverses cognitive deficits in immature rats after status epilepticus through the VEGF R2 signaling pathway. Epilepsy Behav. 2017, 68, 159–167. [Google Scholar] [CrossRef]
- Asrican, B.; Paez-Gonzalez, P.; Erb, J.; Kuo, C.T. Cholinergic circuit control of postnatal neurogenesis. Neurogenesis 2016, 3, e1127310. [Google Scholar] [CrossRef] [PubMed]
- Merz, K.; Herold, S.; Lie, D.C. CREB in adult neurogenesis—Master and partner in the development of adult-born neurons? Eur. J. Neurosci. 2011, 33, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Aimone, J.B.; Li, Y.; Lee, S.W.; Clemenson, G.D.; Deng, W.; Gage, F.H. Regulation and function of adult neurogenesis: From genes to cognition. Physiol. Rev. 2014, 94, 991–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Crews, F.T. Neurogenesis decreases during brain maturation from adolescence to adulthood. Pharmacol. Biochem. Behav. 2007, 86, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.Y.; Fuenzalida, M.; Inestrosa, N.C. In vivo activation of Wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer’s disease model. J. Neurosci. 2014, 34, 2191–2202. [Google Scholar] [CrossRef] [Green Version]
- Zu, X.; Zhang, M.; Li, W.; Xie, H.; Lin, Z.; Yang, N.; Liu, X.; Zhang, W. Antidepressant-like effect of bacopaside i in mice exposed to chronic unpredictable mild stress by modulating the hypothalamic-pituitary-adrenal axis function and activating BDNF signaling pathway. Neurochem. Res. 2017, 42, 3233–3244. [Google Scholar] [CrossRef]
- Numakawa, T.; Adachi, N.; Richards, M.; Chiba, S.; Kunugi, H. Brain-derived neurotrophic factor and glucocorticoids: Reciprocal influence on the central nervous system. Neuroscience 2013, 239, 157–172. [Google Scholar] [CrossRef]
- Tardito, D.; Musazzi, L.; Tiraboschi, E.; Mallei, A.; Racagni, G.; Popoli, M. Early induction of CREB activation and CREB-regulating signalling by antidepressants. Int. J. Neuropsychopharmacol. 2009, 12, 1367–1381. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Nan, G. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). Int. J. Mol. Med. 2017, 39, 1338–1346. [Google Scholar] [CrossRef] [Green Version]
- Lefloch, R.; Pouyssegur, J.; Lenormand, P. Total ERK1/2 activity regulates cell proliferation. Cell Cycle 2009, 8, 705–711. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Huang, D.; Jiang, Z.; Luo, Y.; Norris, C.; Zhang, M.; Tian, X.; Tang, Y. Akt3 is responsible for the survival and proliferation of embryonic stem cells. Biol. Open 2017, 6, 850–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shioda, N.; Han, F.; Fukunaga, K. Chapter 26 Role of Akt and Erk Signaling in the Neurogenesis Following Brain Ischemia. In International Review of Neurobiology; Academic Press: Cambridge, MA, USA, 2009; Volume 85, pp. 375–387. [Google Scholar]
- Li, B.S.; Ma, W.; Zhang, L.; Barker, J.L.; Stenger, D.A.; Pant, H.C. Activation of phosphatidylinositol-3 kinase (PI-3K) and extracellular regulated kinases (Erk1/2) is involved in muscarinic receptor-mediated DNA synthesis in neural progenitor cells. J. Neurosci. 2001, 21, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, M.; Shiba, T.; Hasebe, S.; Umeda, K.; Yamaguchi, T.; Ogita, K. Lithium promotes neuronal repair and ameliorates depression-like behavior following trimethyltin-induced neuronal loss in the dentate gyrus. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Keith, B.J.; Franklin, M. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates; Elsevier Science: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Schmued, L.C.; Hopkins, K.J. Fluoro-Jade: Novel fluorochromes for detecting toxicant-induced neuronal degeneration. Toxicol. Pathol. 2000, 28, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, M.; Tanaka, M.; Hasebe, S.; Yamaguchi, T.; Shiba, T.; Ogita, K. Beneficial effect of cilostazol-mediated neuronal repair following trimethyltin-induced neuronal loss in the dentate gyrus. J. Neurosci. Res. 2015, 93, 56–66. [Google Scholar] [CrossRef]
- Yoneyama, M.; Hasebe, S.; Kawamoto, N.; Shiba, T.; Yamaguchi, T.; Kikuta, M.; Shuto, M.; Ogita, K. Beneficial in vivo effect of aripiprazole on neuronal regeneration following neuronal loss in the dentate gyrus: Evaluation using a mouse model of trimethyltin-induced neuronal loss/self-repair in the dentate gyrus. J. Pharmacol. Sci. 2014, 124, 99–111. [Google Scholar] [CrossRef] [Green Version]
Signaling Pathway | Gene Products | Gene Symbol | Fold Change | p-Value | Neurogenesis-Related Function Citation |
---|---|---|---|---|---|
Neurotrophin signaling pathway | NT3 | NTRK2 (TrKB) | 1.325 | < 0.0001 | Receptor tyrosine kinase is involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4, alternatively, can also bind NTF3/neurotrophin-3, which is less efficient in activating the receptor but regulates neuron survival. |
NTRK3 (TrKC) | 1.501 | < 0.0001 | NTF3/neurotrophin-3, NTRK3, autophosphorylates and activates different signaling pathways, including the phosphatidylinositol 3-kinase/AKT and the MAPK pathways, which control cell survival and differentiation. | ||
PI3K-Akt | PP2A | Ppp2r3d | (1.342) | 0.005 | Cell proliferation |
Ppp2r1a | (1.371) | 0.012 | Cell death, cell differentiation, cellular component organization | ||
Ppp2r5a | (1.228) | 0.009 | Lipid metabolic process, protein metabolic process, response to stimulus, signaling | ||
Ppp2r5b | (1.354) | 0.008 | Cell differentiation, cellular component organization, nucleic-acid-templated transcription, protein metabolic process response to stimulus, signaling, system development | ||
PI3K class IA | Pik3ca | 1.342 | 0.009 | Cell death, cell population proliferation, establishment of localization, homeostatic process, lipid metabolic process, protein metabolic process, response to stimulus signaling, system development | |
Pik3cb | 1.351 | 0.001 | Cell death, establishment of localization, homeostatic process, immune system process, lipid metabolic process, response to stimulus, signaling, system development | ||
Pik3r1 | 1.367 | 0.008 | Cell death, cell differentiation, cell population proliferation, cellular component organization, establishment of localization, homeostatic process, immune system process, lipid metabolic process, nucleic-acid-templated transcription, protein metabolic process, response to stimulus, signaling, system development | ||
Pik3cg | 1.968 | 0.000 | Cell death, establishment of localization, homeostatic process, immune system process, lipid metabolic process, protein metabolic process, response to stimulus signaling, system development | ||
AKT | Akt1 | (1.282) | 0.035 | Cell death, cell differentiation, cell population proliferation, cellular component organization, establishment of localization, homeostatic process immune system process, lipid metabolic process, nucleic-acid-templated transcription, protein metabolic process response to stimulus, signaling, system development | |
Akt3 | 1.615 | < 0.0001 | Cell population proliferation, cellular component organization, establishment of localization, homeostatic process | ||
GF | HgfP | 2.213 | 0.035 | Cell death, cell differentiation, cell population proliferation, cellular component organization | |
PKC | PrkcaR | 1.546 | < 0.0001 | Cell death, cell differentiation, cell population proliferation, cellular component organization, establishment of localization, homeostatic process, immune system process | |
Prkcb | 1.249 | 0.000 | Cell death, cellular component organization, establishment of localization, homeostatic process, immune system process, nucleic-acid-templated transcription protein metabolic process, response to stimulus signaling system development | ||
CREB | pCREB | Creb1 | 1.337 | 0.016 | Cell differentiation, cellular component organization, signaling, system development |
Atf2 | 1.323 | 0.003 | Cell death, cell differentiation, cell population proliferation, cellular component organization, establishment of localization | ||
Cholinergic receptor | ChAT | ChatE | 3.970 | 0.005 | Cell differentiation, cellular component organization, signaling, system development |
M2 | Chrm2 | 1.582 | 0.003 | Establishment of localization, response to stimulus, signaling | |
M5 | Chrm5 | 2.592 | 0.000 | Establishment of localization, lipid metabolic process, response to stimulus, signaling |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, H.T.N.; Tran, H.N.; Nguyen, P.T.; Le, X.T.; Nguyen, K.M.; Phan, S.V.; Yoneyama, M.; Ogita, K.; Yamaguchi, T.; Folk, W.R.; et al. Bacopa monnieri (L.) Wettst. Extract Improves Memory Performance via Promotion of Neurogenesis in the Hippocampal Dentate Gyrus of Adolescent Mice. Int. J. Mol. Sci. 2020, 21, 3365. https://doi.org/10.3390/ijms21093365
Pham HTN, Tran HN, Nguyen PT, Le XT, Nguyen KM, Phan SV, Yoneyama M, Ogita K, Yamaguchi T, Folk WR, et al. Bacopa monnieri (L.) Wettst. Extract Improves Memory Performance via Promotion of Neurogenesis in the Hippocampal Dentate Gyrus of Adolescent Mice. International Journal of Molecular Sciences. 2020; 21(9):3365. https://doi.org/10.3390/ijms21093365
Chicago/Turabian StylePham, Hang Thi Nguyet, Hong Nguyen Tran, Phuong Thi Nguyen, Xoan Thi Le, Khoi Minh Nguyen, Sinh Viet Phan, Masanori Yoneyama, Kiyokazu Ogita, Taro Yamaguchi, William R. Folk, and et al. 2020. "Bacopa monnieri (L.) Wettst. Extract Improves Memory Performance via Promotion of Neurogenesis in the Hippocampal Dentate Gyrus of Adolescent Mice" International Journal of Molecular Sciences 21, no. 9: 3365. https://doi.org/10.3390/ijms21093365
APA StylePham, H. T. N., Tran, H. N., Nguyen, P. T., Le, X. T., Nguyen, K. M., Phan, S. V., Yoneyama, M., Ogita, K., Yamaguchi, T., Folk, W. R., Yamaguchi, M., & Matsumoto, K. (2020). Bacopa monnieri (L.) Wettst. Extract Improves Memory Performance via Promotion of Neurogenesis in the Hippocampal Dentate Gyrus of Adolescent Mice. International Journal of Molecular Sciences, 21(9), 3365. https://doi.org/10.3390/ijms21093365