Free Fatty Acid-Induced Peptide YY Expression Is Dependent on TG Synthesis Rate and Xbp1 Splicing
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animals and Diets
4.2. Chemicals and Reagents
4.3. In Vitro Studies
4.4. Oral Fat Tolerance Test
4.5. Real-Time Quantitative PCR
4.6. Statistical Analyses
Author Contributions
Funding
Conflicts of Interest
References
- Karra, E.; Chandarana, K.; Batterham, R.L. The role of peptide YY in appetite regulation and obesity. J. Physiol. 2009, 587, 19–25. [Google Scholar] [PubMed]
- Kaviani, S.; Cooper, J.A. Appetite responses to high-fat meals or diets of varying fatty acid composition: A comprehensive review. Eur. J. Clin. Nutr. 2017, 71, 1154. [Google Scholar] [PubMed]
- Kozimor, A.; Chang, J.A. Cooper, Effects of dietary fatty acid composition from a high fat meal on satiety. Appetite 2013, 69 (Suppl. C), 39–45. [Google Scholar]
- Cooper, J.A. Factors affecting circulating levels of peptide YY in humans: A comprehensive review. Nutr. Res. Rev. 2014, 27, 186–197. [Google Scholar] [PubMed] [Green Version]
- Moodaley, R.; Smith, D.M.; Tough, I.R.; Schindler, M.; Cox, H.M. Agonism of free fatty acid receptors 1 and 4 generates peptide YY-mediated inhibitory responses in mouse colon. Br. J. Pharmacol. 2017, 174, 4508–4522. [Google Scholar] [PubMed] [Green Version]
- Beloqui, A.; Alhouayek, M.; Carradori, D.; Vanvarenberg, K.; Muccioli, G.G.; Cani, P.D.; Preat, V. A Mechanistic Study on Nanoparticle-Mediated Glucagon-Like Peptide-1 (GLP-1) Secretion from Enteroendocrine L Cells, in Molecular Pharmaceutics. Am. Chem. Soc. 2016, 13, 4222–4230. [Google Scholar]
- Sancho, V.; Daniele, G.; Lucchesi, D.; Lupi, R.; Ciccarone, A.; Penno, G.; Bianchi, C.; Dardano, A.; Miccoli, R.; Prato, S.D. Metabolic regulation of GLP-1 and PC1/3 in pancreatic alpha cell line. PLoS ONE 2017, 12, e0187836. [Google Scholar]
- Sandoval, D.A.; D’Alessio, D.A. Physiology of Proglucagon Peptides: Role of Glucagon and GLP-1 in Health and Disease, in Physiological Reviews. Am. Physiol. Soc. 2015, 513–548. [Google Scholar]
- Wheeler, S.E.; Stacey, H.M.; Nahaei, Y.; Hale, S.J.; Hardy, A.B.; Reimann, F.; Gribble, F.M.; Larraufie, P.; Gaisano, H.Y.; Brubaker, P.L. The SNARE Protein Syntaxin-1a Plays an Essential Role in Biphasic Exocytosis of the Incretin Hormone Glucagon-Like Peptide 1. Diabetes 2017, 66, 2327. [Google Scholar]
- Ables, G.P.; Yang, K.J.Z.; Vogel, S.; Hernandez-Ono, A.; Yu, S.; Yuen, J.J.; Birtles, S.; Buckett, L.K.; Turnbull, A.V.; Goldberg, I.J.; et al. Intestinal DGAT1 deficiency reduces postprandial triglyceride and retinyl ester excursions by inhibiting chylomicron secretion and delaying gastric emptying. J. Lipid Res. 2012, 53, 2364–2379. [Google Scholar] [PubMed] [Green Version]
- Cao, J.; Zhou, Y.; Peng, H.; Huang, X.; Stahler, S.; Suri, V.; Qadri, A.; Gareski, T.; Jones, J.; Hahm, S.; et al. Targeting Acyl-CoA: Diacylglycerol Acyltransferase 1 (DGAT1) with Small Molecule Inhibitors for the Treatment of Metabolic Diseases. J. Biol. Chem. 2011, 286, 41838–41851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denison, H.; Nilsson, C.; Löfgren, L.; Himmelmann, A.; Mårtensson, G.; Knutsson, M.; Al-Shurbaji, A.; Tornqvist, H.; Eriksson, J.W. Diacylglycerol acyltransferase 1 inhibition with AZD7687 alters lipid handling and hormone secretion in the gut with intolerable side effects: A randomized clinical trial. Diabetesobesity Metab. 2014, 16, 334–343. [Google Scholar]
- Lin, H.V.; Chen, D.; Shen, Z.; Zhu, L.; Ouyang, X.; Vongs, A.; Kan, Y.; Levorse, J.M.; Kowalik, E.J., Jr.; Szeto, D.M.; et al. Diacylglycerol Acyltransferase-1 (DGAT1) Inhibition Perturbs Postprandial Gut Hormone Release. PLoS ONE 2013, 8, e54480. [Google Scholar]
- Okawa, M.; Fujii, K.; Ohbuchi, K.; Okumoto, M.; Aragane, K.; Sato, H.; Tamai, Y.; Seo, T.; Itoh, Y.; Yoshimoto, R. Role of MGAT2 and DGAT1 in the release of gut peptides after triglyceride ingestion. Biochem. Biophys. Res. Commun. 2009, 390, 377–381. [Google Scholar] [PubMed]
- Frakes, A.E.; Dillin, A. The UPR-ER: Sensor and Coordinator of Organismal Homeostasis. Mol. Cell 2017, 66, 761–771. [Google Scholar] [PubMed] [Green Version]
- Piperi, C.; Adamopoulos, C.; Papavassiliou, A.G. XBP1: A Pivotal Transcriptional Regulator of Glucose and Lipid Metabolism. Trends Endocrinol. Metab. 2016, 27, 119–122. [Google Scholar] [PubMed]
- Wu, R.; Zhang, Q.-H.; Lu, Y.-J.; Ren, K.; Yi, G.-H. Involvement of the IRE1a-XBP1 Pathway and XBP1s-Dependent Transcriptional Reprogramming in Metabolic Diseases in DNA and Cell Biology; Mary Ann Liebert, Inc.: New Rochelle, NY, USA, 2014; pp. 6–18. [Google Scholar]
- Clevenger, H.C.; Stevenson, J.L.; Cooper, J.A. Metabolic responses to dietary fatty acids in obese women. Physiol. Behav. 2015, 139 (Suppl. C), 73–79. [Google Scholar] [CrossRef]
- Stevenson, J.L.; Clevenger, H.C.; Cooper, J.A. Hunger and satiety responses to high-fat meals of varying fatty acid composition in women with obesity. Obesity 2015, 23, 1980–1986. [Google Scholar] [PubMed] [Green Version]
- Paton, C.M.; Ntambi, J.M. Loss of stearoyl-CoA desaturase activity leads to free cholesterol synthesis through increased Xbp-1 splicing, in American Journal of Physiology-Endocrinology and Metabolism. Am. Physiol. Soc. 2010, 299, E1066–E1075. [Google Scholar]
- Kvilekval, K.; Lin, J.; Cheng, W.; Abumrad, N. Fatty acids as determinants of triglyceride and cholesteryl ester synthesis by isolated hepatocytes: Kinetics as a function of various fatty acids. J. Lipid Res. 1994, 35, 1786–1794. [Google Scholar]
- Feldman, E.B.; Russell, B.S.; Chen, R.; Johnson, J.; Forte, T.; Clark, S.B. Dietary saturated fatty acid content affects lymph lipoproteins: Studies in the rat. J. Lipid Res. 1983, 24, 967–976. [Google Scholar] [PubMed]
- Slabochova, Z.; Placer, Z. Adaptation of the Small Intestine to a High-Fat Diet containing Saturated and Unsaturated Fatty Acids. Nature 1962, 195, 380. [Google Scholar]
- Steenbock, H.; Irwin, M.H.; Weber, J.; Templin, V.M.; Pickering, M.A.; Kemmerer, A.R.; Lease, E.J. The Comparative Rate of Absorption of Different Fats. J. Nutr. 1936, 12, 103–111. [Google Scholar] [CrossRef]
- Jackson, K.G.; Robertson, M.D.; Fielding, B.A.; Frayn, K.N.; Williams, C.M. Olive oil increases the number of triacylglycerol-rich chylomicron particles compared with other oils: An effect retained when a second standard meal is fed. Am. J. Clin. Nutr. 2002, 76, 942–949. [Google Scholar]
- Son, Y.; Cox, J.M.; Stevenson, J.L.; Cooper, J.A.; Paton, C.M. Angiopoietin-1 protects 3T3-L1 preadipocytes from saturated fatty acid–induced cell death. Nutr. Res. 2020, 76, 20–28. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
SFA | MUFA | |
---|---|---|
Energy (kcals) | 1.3 | 1.3 |
Energy from Fat (kcals) | 1.0 | 0.9 |
Protein | 15.8 mg | 15.8 mg |
Carbohydrate | 75 mg | 75 mg |
SFA | 58 mg | 11 mg |
MUFA | 19 mg | 60 mg |
PUFA | 7 mg | 23 mg |
% Energy from Fat | 69.0 | 69.7 |
% Energy from test Fat | 40.3 | 42.4 |
Diet | Protein | CHO | Total Fat | SFA | MUFA | 18:2n6 | 18:3n3 | Kcal/g |
---|---|---|---|---|---|---|---|---|
Chow (TD.8604) | 243 | 402 | 47 | 8 | 9 | 19 | 2 | 3.0 |
SFA (TD.130051) | 177 | 330 | 222 | 530 | 330 | 27 | 10 | 4.0 |
MUFA (TD.130379) | 177 | 330 | 222 | 120 | 670 | 14 | 5 | 4.0 |
High Fat (TD.06414) | 235 | 273 | 343 | 370 | 470 | 160 | 10 | 5.1 |
Forward | Reverse | |
---|---|---|
SCD1 | AAGAGATCTCCAGTTCTTACA | GATATCCATAGAGATGCGCGG |
SREBP1c | AGAAGCTCAAGCAGGAGAACCTGA | ACTTCGGGTTTCATGCCCTCCATA |
PYY | TGCCTCTCCCTGTTTCTCGTATCC | AAGTCCACCTGTGTTCTCCTCCTC |
CCK | TCAACTTAGCTGGACTGCAGCCTT | ACATACGCCGCTCTTCATGGCTTT |
Xbp1 | AAACAGAGTAGCAGCGCAGACTGC | TCCTTCTGGGTAGACCTCTGGGAG |
DGAT1 | CCTGAATTGGTGTGTGGTGATGCT | GCCAGGCGCTTCTCAATCTGAAAT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paton, C.M.; Son, Y.; Vaughan, R.A.; Cooper, J.A. Free Fatty Acid-Induced Peptide YY Expression Is Dependent on TG Synthesis Rate and Xbp1 Splicing. Int. J. Mol. Sci. 2020, 21, 3368. https://doi.org/10.3390/ijms21093368
Paton CM, Son Y, Vaughan RA, Cooper JA. Free Fatty Acid-Induced Peptide YY Expression Is Dependent on TG Synthesis Rate and Xbp1 Splicing. International Journal of Molecular Sciences. 2020; 21(9):3368. https://doi.org/10.3390/ijms21093368
Chicago/Turabian StylePaton, Chad M., Yura Son, Roger A. Vaughan, and Jamie A. Cooper. 2020. "Free Fatty Acid-Induced Peptide YY Expression Is Dependent on TG Synthesis Rate and Xbp1 Splicing" International Journal of Molecular Sciences 21, no. 9: 3368. https://doi.org/10.3390/ijms21093368
APA StylePaton, C. M., Son, Y., Vaughan, R. A., & Cooper, J. A. (2020). Free Fatty Acid-Induced Peptide YY Expression Is Dependent on TG Synthesis Rate and Xbp1 Splicing. International Journal of Molecular Sciences, 21(9), 3368. https://doi.org/10.3390/ijms21093368