A Review of Murine Cytomegalovirus as a Model for Human Cytomegalovirus Disease—Do Mice Lie?
Abstract
:1. Introduction
2. Murine Cytomegalovirus Infection as a Model for Human Cytomegalovirus Disease
2.1. Properties of Salivary Gland-Derived and Tissue Culture-Passaged MCMV
2.2. MCMV as a Model for HCMV Infection
2.3. Mouse Strain Selection Affects the Severity of MCMV Pathogenesis
2.4. MCMV-Based Models for Human Disease Requiring Chemical, Genetic or Physical Manipulation
2.5. MCMV Exacerbates the Effects of Other Clinical Diseases
2.6. Routes of Infection
2.7. Humanized Mouse Models
2.8. Immunology and MCMV Studies
2.8.1. Innate Immune Responses
2.8.2. Adaptive Immune Responses
2.9. Congenital Infection with Cytomegalovirus
2.9.1. Mouse Models of Congenital Infection
2.9.2. Comparative Anatomy of Mouse and Human Placentae
2.9.3. Mouse Brains Are Refractory to MCMV Infection
3. Conclusion—Do Mice Lie?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MCMV | Murine cytomegalovirus |
HCMV | Human cytomegalovirus |
SGV | Salivary gland virus |
TCV | Tissue culture virus |
PFU | Plaque forming unit |
i.p. | Intraperitoneal |
i.v. | Intravenous |
TNF | Tumor necrosis factor |
MCP-1 | Monocyte Chemoattractant Protein-1 |
ICAM-1 | Intercellular Adhesion Molecule 1 |
TGF-β | Transforming Growth Factor-beta |
CTL | Cytotoxic lymphocytes |
PDGF | Platelet-derived growth factor |
E0.5 | Day of fertilization |
References
- Veazey, R.S. Animal models for microbicide safety and efficacy testing. Curr. Opin. HIV AIDS 2013, 8, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Blevins, S.M.; Bronze, M.S. Robert Koch and the ‘golden age’ of bacteriology. Int. J. Infect. Dis. 2010, 14, e744–e751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrd, A.L.; Segre, J.A. Adapting Koch’s postulates. Science 2016, 351, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Prescott, J.; Feldmann, H.; Safronetz, D. Amending Koch’s postulates for viral disease: When “growth in pure culture” leads to a loss of virulence. Antivir. Res. 2017, 137, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Fouchier, R.A.M.; Kuiken, T.; Schutten, M.; van Amerongen, G.; van Doornum, G.J.J.; van den Hoogen, B.G.; Peiris, M.; Lim, W.; Stöhr, K.; Osterhaus, A.D.M.E. Koch’s postulates fulfilled for SARS virus. Nature 2003, 423, 240. [Google Scholar] [CrossRef]
- Mullick, J.B.; Simmons, C.S.; Gaire, J. Animal Models to Study Emerging Technologies Against SARS-CoV-2. Cell. Mol. Bioeng. 2020, 13, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, G.; Hoenerhoff, M.J.; Ruan, J.; Yang, D.; Zhang, J.; Yang, J.; Lester, P.A.; Sigler, R.; Bradley, M.; et al. Bacterial and Pneumocystis Infections in the Lungs of Gene-Knockout Rabbits with Severe Combined Immunodeficiency. Front. Immunol. 2018, 9, 429. [Google Scholar] [CrossRef] [Green Version]
- Enkirch, T.; von Messling, V. Ferret models of viral pathogenesis. Virology 2015, 479–480, 259–270. [Google Scholar] [CrossRef] [Green Version]
- St Claire, M.C.; Ragland, D.R.; Bollinger, L.; Jahrling, P.B. Animal Models of Ebolavirus Infection. Comp. Med. 2017, 67, 253–262. [Google Scholar]
- Ren, R.; Costantini, F.; Gorgacz, E.J.; Lee, J.J.; Racaniello, V.R. Transgenic mice expressing a human poliovirus receptor: A new model for poliomyelitis. Cell 1990, 63, 353–362. [Google Scholar] [CrossRef]
- Parrish, C.R.; Holmes, E.C.; Morens, D.M.; Park, E.-C.; Burke, D.S.; Calisher, C.H.; Laughlin, C.A.; Saif, L.J.; Daszak, P. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 2008, 72, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Shellam, G.R.; Redwood, A.J.; Smith, L.M.; Gorman, S. Cytomegalovirus and other herpesviruses. In The Mouse in Biomedical Research; Fox, J.G., Davisson, M.T., Quimby, F.W., Barthold, S.W., Newcomer, C.E., Smith, A.L., Eds.; Academic Press: San Diego, CA, USA, 2007; pp. 1–48. [Google Scholar]
- McGeoch, D.J.; Cook, S.; Dolan, A.; Jamieson, F.E.; Telford, E.A.R. Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J. Mol. Biol. 1995, 247, 443–458. [Google Scholar] [CrossRef] [PubMed]
- Sandford, G.R.; Brock, L.E.; Voigt, S.; Forester, C.M.; Burns, W.H. Rat Cytomegalovirus Major Immediate-Early Enhancer Switching Results in Altered Growth Characteristics. J. Virol. 2001, 75, 5076–5083. [Google Scholar] [CrossRef] [Green Version]
- Michaels, M.G.; Jenkins, F.J.; St George, K.; Nalesnik, M.A.; Starzl, T.E.; Rinaldo, C.R. Detection of infectious baboon cytomegalovirus after baboon-to-human liver xenotransplantation. J. Virol. 2001, 75, 2825–2828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denner, J. Xenotransplantation and porcine cytomegalovirus. Xenotransplantation 2015, 22, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.B.; Wei, L.S.; Griffiths, M. Mouse cytomegalovirus is infectious for rats and alters lymphocyte subsets and spleen cell proliferation. Arch. Virol. 1986, 90, 313–323. [Google Scholar] [CrossRef]
- Hudson, J.B.; Chantler, J.K.; Loh, L.; Misra, V.; Muller, M.T. Murine Cytomegalovirus—Model System for Study of Latent Herpes Infections. Can. J. Public Health 1978, 69, 72. [Google Scholar]
- Moro, D.; Lloyd, M.L.; Smith, A.L.; Shellam, G.R.; Lawson, M.A. Murine viruses in an island population of introduced house mice and endemic short-tailed mice in Western Australia. J. Wildl. Dis. 1999, 35, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.L.; Singleton, G.R.; Hansen, G.M.; Shellam, G. A serologic survey for viruses and Mycoplasma pulmonis among wild house mice (Mus domesticus) in southeastern Australia. J. Wildl. Dis. 1993, 29, 219–229. [Google Scholar] [CrossRef]
- Rawlinson, W.D.; Farrell, H.E.; Barrell, B.G. Analysis of the complete DNA sequence of murine cytomegalovirus. J. Virol. 1996, 70, 8833–8849. [Google Scholar] [CrossRef] [Green Version]
- Van Damme, E.; Van Loock, M. Functional annotation of human cytomegalovirus gene products: An update. Front. Microbiol. 2014, 5, 218. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, G.W.G.; Davison, A.J.; Tomasec, P.; Fielding, C.A.; Aicheler, R.; Murrell, I.; Seirafian, S.; Wang, E.C.Y.; Weekes, M.; Lehner, P.J.; et al. Human cytomegalovirus: Taking the strain. Med. Microbiol. Immun. 2015, 204, 273–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, T.P.; Valentine, M.C.; Gao, J.; Pingel, J.T.; Yokoyama, W.M. Stability of Murine Cytomegalovirus Genome after In Vitro and In Vivo Passage. J. Virol. 2010, 84, 2623–2628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redwood, A.J.; Masters, L.L.; Chan, B.; Leary, S.; Forbes, C.; Jonjić, S.; Juranić Lisnić, V.; Lisnić, B.; Smith, L.M. Repair of an attenuated low passage murine cytomegalovirus bacterial artificial chromosome identifies a novel spliced gene essential for salivary gland tropism. J. Virol. 2020, 94. [Google Scholar] [CrossRef]
- Brizić, I.; Lisnić, B.; Brune, W.; Hengel, H.; Jonjić, S. Cytomegalovirus Infection: Mouse Model. Curr. Protoc. Immunol. 2018, 122, e51. [Google Scholar] [CrossRef]
- Osborn, J.E.; Walker, D.L. Virulence and Attenuation of Murine Cytomegalovirus. Infect. Immun. 1971, 3, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Mims, C.A.; Gould, J. Infection of salivary glands, kidneys, adrenals, ovaries and epithelia by murine cytomegalovirus. J. Med. Microbiol. 1978, 12, 113–122. [Google Scholar] [CrossRef]
- Allan, J.E.; Shellam, G.R. Genetic control of murine cytomegalovirus infection: Virus titres in resistant and susceptible strains of mice. Arch. Virol. 1984, 81, 139–150. [Google Scholar] [CrossRef]
- Grundy, J.E.; Mackenzie, J.S.; Stanley, N.F. Influence of H-2 and non-H-2 genes on resistance to murine cytomegalovirus infection. Infect. Immun. 1981, 32, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Hudson, J.B.; Misra, V.; Mosmann, T.R. Properties of the multicapsid virions of murine cytomegalovirus. Virology 1976, 72, 224–234. [Google Scholar] [CrossRef]
- Pollock, J.L.; Virgin, H.W. Latency, without persistence, of murine cytomegalovirus in the spleen and kidney. J. Virol. 1995, 69, 1762–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brune, W.; Hengel, H.; Koszinowski, U.H. A Mouse Model for Cytomegalovirus Infection. Curr. Protoc. Immunol. 2001, 43, 19.7.1–19.7.13. [Google Scholar] [CrossRef] [PubMed]
- Roback, J.D.; Su, L.; Newman, J.L.; Saakadze, N.; Lezhava, L.J.; Hillyer, C.D. Transfusion-transmitted cytomegalovirus (CMV) infections in a murine model: Characterization of CMV-infected donor mice. Transfusion 2006, 46, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Reddehase, M.J.; Balthesen, M.; Rapp, M.; Jonjic, S.; Pavic, I.; Koszinowski, U.H. The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J. Exp. Med. 1994, 179, 185–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonczol, E.; Danczig, E.; Boldogh, I.; Toth, T.; Vaczi, L. In vivo model for the acute, latent and reactivated phases of cytomegalovirus infection. Acta Microbiol. Hung. 1985, 32, 39–47. [Google Scholar] [PubMed]
- Jordan, M.C. Interstitial pneumonia and subclinical infection after intranasal inoculation of murine cytomegalivirus. Infect. Immun. 1978, 21, 275–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, N.A.; Papadimitriou, J.M.; Shellam, G.R. Cytomegalovirus-induced pneumonitis and myocarditis in newborn mice. A model for perinatal human cytomegalovirus infection. Arch. Virol. 1990, 115, 75–88. [Google Scholar] [CrossRef]
- Hayashi, K.; Kurihara, I.; Uchida, Y. Studies of Ocular Murine Cytomegalovirus Infection. Investig. Ophthalmol. Vis. Sci. 1985, 26, 486–493. [Google Scholar]
- Voigt, V.; Andoniou, C.E.; Schuster, I.S.; Oszmiana, A.; Ong, M.L.; Fleming, P.; Forrester, J.V.; Degli-Esposti, M.A. Cytomegalovirus establishes a latent reservoir and triggers long-lasting inflammation in the eye. PLoS Pathog. 2018, 14, e1007040. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.A.; Paveglio, S.A.; Lingenheld, E.G.; Zhu, L.; Lefrançois, L.; Puddington, L. Transmission of murine cytomegalovirus in breast milk: A model of natural infection in neonates. J. Virol. 2011, 85, 5115–5124. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.L.; Ke, Q.G.; Jin, Z.; Kocher, O.; Morgan, J.P.; Zhang, J.L.; Crumpacker, C.S. Cytomegalovirus Infection Causes an Increase of Arterial Blood Pressure. PLoS Pathog. 2009, 5, e1000427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenzo, J.C.; Fairweather, D.; Cull, V.; Shellam, G.R.; James Lawson, C.M. Characterisation of murine cytomegalovirus myocarditis: Cellular infiltration of the heart and virus persistence. J. Mol. Cell. Cardiol. 2002, 34, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Mutter, W.; Reddehase, M.J.; Busch, F.W.; Buhring, H.J.; Koszinowski, U.H. Failure in generating hemopoietic stem cells is the primary cause of death from cytomegalovirus disease in the immunocompromised host. J. Exp. Med. 1988, 167, 1645–1658. [Google Scholar] [CrossRef] [Green Version]
- Young, J.A.; Cheung, K.S.; Lang, D.J. Infection and fertilization of mice after artificial insemination with a mixture of sperm and murine cytomegalovirus. J. Infect. Dis. 1977, 135, 837–840. [Google Scholar] [CrossRef]
- Chalmer, J.E.; Mackenzie, J.S.; Stanley, N.F. Resistance to murine cytomegalovirus linked to the major histocompatibility complex of the mouse. J. Gen. Virol. 1977, 37, 107–114. [Google Scholar] [CrossRef]
- Bartholomaeus, W.N.; O’Donoghue, H.; Foti, D.; Lawson, C.M.; Shellam, G.R.; Reed, W.D. Multiple autoantibodies following cytomegalovirus infection: Virus distribution and specificity of autoantibodies. Immunology 1988, 64, 397–405. [Google Scholar]
- Lawson, C.M.; O’Donoghue, H.L.; Reed, W.D. Mouse cytomegalovirus infection induces antibodies which cross-react with virus and cardiac myosin: A model for the study of molecular mimicry in the pathogenesis of viral myocarditis. Immunology 1992, 75, 513–519. [Google Scholar]
- Rodriguez, M.; Sabastian, P.; Clark, P.; Brown, M.G. Cmv1-Independent Antiviral Role of NK Cells Revealed in Murine Cytomegalovirus-Infected New Zealand White Mice. J. Immunol. 2004, 173, 6312–6318. [Google Scholar] [CrossRef] [Green Version]
- Scalzo, A.A.; Fitzgerald, N.A.; Wallace, C.R.; Gibbons, A.E.; Smart, Y.C.; Burton, R.C.; Shellam, G.R. The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J. Immunol. 1992, 149, 581–589. [Google Scholar]
- Lloyd, M.L.; Nikolovski, S.; Lawson, M.A.; Shellam, G.R. Innate antiviral resistance influences the efficacy of a recombinant murine cytomegalovirus immunocontraceptive vaccine. Vaccine 2007, 25, 679–690. [Google Scholar] [CrossRef]
- Booth, T.W.; Scalzo, A.A.; Carrello, C.; Lyons, P.A.; Farrell, H.E.; Singleton, G.R.; Shellam, G.R. Molecular and biological characterization of new strains of murine cytomegalovirus isolated from wild mice. Arch. Virol. 1993, 132, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Nikolovski, S.; Lloyd, M.L.; Harvey, N.; Hardy, C.M.; Shellam, G.R.; Redwood, A.J. Overcoming innate host resistance to vaccination: Employing a genetically distinct strain of murine cytomegalovirus avoids vector-mediated resistance to virally vectored immunocontraception. Vaccine 2009, 27, 5226–5232. [Google Scholar] [CrossRef]
- Zuhair, M.; Smit, G.S.A.; Wallis, G.; Jabbar, F.; Smith, C.; Devleesschauwer, B.; Griffiths, P. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razonable, R.R.; Humar, A. Cytomegalovirus in solid organ transplant recipients—Guidelines of the American Society of Transplantation Infectious Diseases Community of Practice. Clin. Transplant. 2019, 33, e13512. [Google Scholar] [CrossRef] [PubMed]
- Limaye, A.P.; Green, M.L.; Edmison, B.C.; Stevens-Ayers, T.; Chatterton-Kirchmeier, S.; Geballe, A.P.; Singh, N.; Boeckh, M. Prospective Assessment of Cytomegalovirus Immunity in High-Risk Donor-Seropositive/Recipient-Seronegative Liver Transplant Recipients Receiving Either Preemptive Therapy or Antiviral Prophylaxis. J. Infect. Dis. 2019, 220, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.D.; Lee, J.H.; Lee, S.W.; Kim, J.K.; Kim, M.J.; Song, J.H. Effect of Low-Dose Vs Standard-Dose Valganciclovir in the Prevention of Cytomegalovirus Disease in Kidney Transplantation Recipients: A Systemic Review and Meta-Analysis. Transplant. Proc. 2018, 50, 2473–2478. [Google Scholar] [CrossRef] [PubMed]
- El Haddad, L.; Ghantoji, S.S.; Park, A.K.; Batista, M.V.; Schelfhout, J.; Hachem, J.; Lobo, Y.; Jiang, Y.; Rondon, G.; Champlin, R.; et al. Clinical and economic burden of pre-emptive therapy of cytomegalovirus infection in hospitalized allogeneic hematopoietic cell transplant recipients. J. Med. Virol. 2020, 92, 86–95. [Google Scholar] [CrossRef]
- Reddehase, M.J.; Lemmermann, N.A.W. Mouse Model of Cytomegalovirus Disease and Immunotherapy in the Immunocompromised Host: Predictions for Medical Translation that Survived the “Test of Time”. Viruses 2018, 10, 693. [Google Scholar] [CrossRef] [Green Version]
- Hsu, K.M.; Pratt, J.R.; Akers, W.J.; Achilefu, S.I.; Yokoyama, W.M. Murine cytomegalovirus displays selective infection of cells within hours after systemic administration. J. Gen. Virol. 2009, 90, 33–43. [Google Scholar] [CrossRef]
- Farrell, H.E.; Davis-Poynter, N.; Bruce, K.; Lawler, C.; Dolken, L.; Mach, M.; Stevenson, P.G. Lymph Node Macrophages Restrict Murine Cytomegalovirus Dissemination. J. Virol. 2015, 89, 7147–7158. [Google Scholar] [CrossRef] [Green Version]
- Oduro, J.D.; Redeker, A.; Lemmermann, N.A.W.; Ebermann, L.; Marandu, T.F.; Dekhtiarenko, I.; Holzki, J.K.; Busch, D.H.; Arens, R.; Čičin-Šain, L. Murine cytomegalovirus (CMV) infection via the intranasal route offers a robust model of immunity upon mucosal CMV infection. J. Gen. Virol. 2016, 97, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Farrell, H.E.; Lawler, C.; Tan, C.S.; MacDonald, K.; Bruce, K.; Mach, M.; Davis-Poynter, N.; Stevenson, P.G. Murine Cytomegalovirus Exploits Olfaction To Enter New Hosts. MBio 2016, 7, e00251-16. [Google Scholar] [CrossRef] [Green Version]
- McWhorter, A.R.; Smith, L.M.; Masters, L.L.; Chan, B.; Shellam, G.R.; Redwood, A.J. Natural Killer Cell Dependent Within-Host Competition Arises during Multiple MCMV Infection: Consequences for Viral Transmission and Evolution. PLoS Pathog. 2013, 9, e1003111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, M.C.; Shanley, J.D.; Stevens, J.G. Immunosuppression reactivates and disseminates latent murine cytomegalovirus. J. Gen. Virol. 1977, 37, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Shanley, J.D.; Pesanti, E.L. The relation of viral replication to interstitial pneumonitis in murine cytomegalovirus lung infection. J. Infect. Dis. 1985, 151, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Fonseca Brito, L.; Brune, W.; Stahl, F.R. Cytomegalovirus (CMV) Pneumonitis: Cell Tropism, Inflammation, and Immunity. Int. J. Mol. Sci. 2019, 20, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang-Feldman, Y.J.; Lochhead, S.R.; Lochhead, G.R.; Yu, C.; George, M.; Villablanca, A.C.; Pomeroy, C. Murine cytomegalovirus (MCMV) infection upregulates P38 MAP kinase in aortas of Apo E KO mice: A molecular mechanism for MCMV-induced acceleration of atherosclerosis. J. Cardiovasc. Transl. Res. 2013, 6, 54–64. [Google Scholar] [CrossRef]
- Hsich, E.; Zhou, Y.F.; Paigen, B.; Johnson, T.M.; Burnett, M.S.; Epstein, S.E. Cytomegalovirus infection increases development of atherosclerosis in Apolipoprotein-E knockout mice. Atherosclerosis 2001, 156, 23–28. [Google Scholar] [CrossRef]
- Abele-Ohl, S.; Leis, M.; Wollin, M.; Mahmoudian, S.; Hoffmann, J.; Muller, R.; Heim, C.; Spriewald, B.M.; Weyand, M.; Stamminger, T.; et al. Human Cytomegalovirus Infection Leads to Elevated Levels of Transplant Arteriosclerosis in a Humanized Mouse Aortic Xenograft Model. Am. J. Transplant. 2012, 12, 1720–1729. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, L.; Yan, S.; Wang, J.J.; Thomas, P.M.; Kandpal, M.; Zhao, L.; Iovane, A.; Liu, X.F.; Thorp, E.B.; et al. A clinically relevant murine model unmasks a “two-hit” mechanism for reactivation and dissemination of cytomegalovirus after kidney transplant. Am. J. Transplant. 2019, 19, 2421–2433. [Google Scholar] [CrossRef]
- Fleck, M.; Kern, E.R.; Zhou, T.; Lang, B.; Mountz, J.D. Murine cytomegalovirus induces a Sjögren’s syndrome-like disease in C57Bl/6-lpr/lpr mice. Arthritis Rheum. 1998, 41, 2175–2184. [Google Scholar] [CrossRef]
- Podlech, J.; Holtappels, R.; Pahl-Seibert, M.F.; Steffens, H.P.; Reddehase, M.J. Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: Persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J. Virol. 2000, 74, 7496–7507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtappels, R.; Böhm, V.; Podlech, J.; Reddehase, M.J. CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model. Med. Microbiol. Immun. 2008, 197, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Via, C.S.; Shanley, J.D.; Shearer, G.M. Synergistic effect of murine cytomegalovirus on the induction of acute graft-vs-host disease involving MHC class I differences only. Analysis of in vitro T cell function. J. Immunol. 1990, 145, 3283–3289. [Google Scholar] [PubMed]
- Martins, J.P.; Andoniou, C.E.; Fleming, P.; Kuns, R.D.; Schuster, I.S.; Voigt, V.; Daly, S.; Varelias, A.; Tey, S.K.; Degli-Esposti, M.A.; et al. Strain-specific antibody therapy prevents cytomegalovirus reactivation after transplantation. Science 2019, 363, 288–293. [Google Scholar] [CrossRef]
- Zhang, M.; Atherton, S.S. Apoptosis in the retina during MCMV retinitis in immuno suppressed BALB/c mice. J. Clin. Virol. 2002, 25, S137–S147. [Google Scholar] [CrossRef]
- Mo, J.; Atherton, S.S.; Wang, L.; Liu, S. Autophagy protects against retinal cell death in mouse model of cytomegalovirus retinitis. BMC Ophthalmol. 2019, 19, 146. [Google Scholar] [CrossRef] [Green Version]
- Marshall, B.; Mo, J.; Covar, J.; Atherton, S.S.; Zhang, M. Decrease of murine cytomegalovirus-induced retinitis by intravenous delivery of immediate early protein-3-specific siRNA. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4151–4157. [Google Scholar] [CrossRef] [Green Version]
- Dix, R.D.; Cray, C.; Cousins, S.W. Mice immunosuppressed by murine retrovirus infection (MAIDS) are susceptible to cytomegalovirus retinitis. Curr. Eye Res. 1994, 13, 587–595. [Google Scholar] [CrossRef]
- Alston, C.I.; Dix, R.D. Reduced frequency of murine cytomegalovirus retinitis in C57BL/6 mice correlates with low levels of suppressor of cytokine signaling (SOCS)1 and SOCS3 expression within the eye during corticosteroid-induced immunosuppression. Cytokine 2017, 97, 38–41. [Google Scholar] [CrossRef]
- Li, M.; Boddeda, S.R.; Chen, B.; Zeng, Q.; Schoeb, T.R.; Velazquez, V.M.; Shimamura, M. NK cell and Th17 responses are differentially induced in murine cytomegalovirus infected renal allografts and vary according to recipient virus dose and strain. Am. J. Transplant. 2018, 18, 2647–2662. [Google Scholar] [CrossRef] [PubMed]
- Reuter, J.D.; Wilson, J.H.; Idoko, K.E.; van den Pol, A.N. CD4(+) T-cell reconstitution reduces cytomegalovirus in the immunocompromised brain. J. Virol. 2005, 79, 9527–9539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brisse, E.; Imbrechts, M.; Mitera, T.; Vandenhaute, J.; Wouters, C.H.; Snoeck, R.; Andrei, G.; Matthys, P. Lytic viral replication and immunopathology in a cytomegalovirus-induced mouse model of secondary hemophagocytic lymphohistiocytosis. Virol. J. 2017, 14, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahl, F.R.; Jung, R.; Jazbutyte, V.; Ostermann, E.; Tödter, S.; Brixel, R.; Kemmer, A.; Halle, S.; Rose-John, S.; Messerle, M.; et al. Laboratory diagnostics of murine blood for detection of mouse cytomegalovirus (MCMV)-induced hepatitis. Sci. Rep. 2018, 8, 14823. [Google Scholar] [CrossRef]
- Matsumura, K.; Nakase, H.; Kosugi, I.; Honzawa, Y.; Yoshino, T.; Matsuura, M.; Kawasaki, H.; Arai, Y.; Iwashita, T.; Nagasawa, T.; et al. Establishment of a Novel Mouse Model of Ulcerative Colitis with Concomitant Cytomegalovirus Infection: In Vivo Identification of Cytomegalovirus Persistent Infected Cells. Inflamm. Bowel Dis. 2013, 19, 1951–1963. [Google Scholar] [CrossRef] [Green Version]
- Krenzlin, H.; Behera, P.; Lorenz, V.; Passaro, C.; Zdioruk, M.; Nowicki, M.O.; Grauwet, K.; Zhang, H.; Skubal, M.; Ito, H.; et al. Cytomegalovirus promotes murine glioblastoma growth via pericyte recruitment and angiogenesis. J. Clin. Investig. 2019, 129, 1671–1683. [Google Scholar] [CrossRef] [Green Version]
- Cook, C.H.; Zhang, Y.; McGuinness, B.J.; Lahm, M.C.; Sedmak, D.D.; Ferguson, R.M. Intra-abdominal bacterial infection reactivates latent pulmonary cytomegalovirus in immunocompetent mice. J. Infect. Dis. 2002, 185, 1395–1400. [Google Scholar] [CrossRef] [Green Version]
- Hraiech, S.; Bordes, J.; Mège, J.L.; de Lamballerie, X.; Charrel, R.; Bechah, Y.; Pastorino, B.; Guervilly, C.; Forel, J.M.; Adda, M.; et al. Cytomegalovirus reactivation enhances the virulence of Staphylococcus aureus pneumonia in a mouse model. Clin. Microbiol. Infect. 2017, 23, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Rattay, S.; Graf, D.; Kislat, A.; Homey, B.; Herebian, D.; Häussinger, D.; Hengel, H.; Zimmermann, A.; Schupp, A.K. Anti-inflammatory consequences of bile acid accumulation in virus-infected bile duct ligated mice. PLoS ONE 2018, 13, e0199863. [Google Scholar] [CrossRef]
- Zurbach, K.A.; Moghbeli, T.; Snyder, C.M. Resolving the titer of murine cytomegalovirus by plaque assay using the M2-10B4 cell line and a low viscosity overlay. Virol. J. 2014, 11, 71. [Google Scholar] [CrossRef] [Green Version]
- Wilski, N.A.; Del Casale, C.; Purwin, T.J.; Aplin, A.E.; Snyder, C.M. Murine Cytomegalovirus Infection of Melanoma Lesions Delays Tumor Growth by Recruiting and Repolarizing Monocytic Phagocytes in the Tumor. J. Virol. 2019, 93, e00533-19. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gao, J.; Wang, G.; Fei, G. Latent cytomegalovirus infection exacerbates experimental pulmonary fibrosis by activating TGF-β1. Mol. Med. Rep. 2016, 14, 1297–1301. [Google Scholar] [CrossRef] [Green Version]
- Vanheusden, M.; Broux, B.; Welten, S.P.M.; Peeters, L.M.; Panagioti, E.; Van Wijmeersch, B.; Somers, V.; Stinissen, P.; Arens, R.; Hellings, N. Cytomegalovirus infection exacerbates autoimmune mediated neuroinflammation. Sci. Rep. 2017, 7, 663. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, S.; Dwivedi, V.; Byrd, S.; Trgovcich, J.; Griessl, M.; Gutknecht, M.; Cook, C.H. Broncholaveolar lavage to detect cytomegalovirus infection, latency, and reactivation in immune competent hosts. J. Med. Virol. 2016, 88, 1408–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunson, J.L.; Becker, F.; Stokes, K.Y. The impact of primary and persistent cytomegalovirus infection on the progression of acute colitis in a murine model. Pathophysiology 2015, 22, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuter, S.; Lemmermann, N.A.W.; Maxeiner, J.; Podlech, J.; Beckert, H.; Freitag, K.; Teschner, D.; Ries, F.; Taube, C.; Buhl, R.; et al. Coincident airway exposure to low-potency allergen and cytomegalovirus sensitizes for allergic airway disease by viral activation of migratory dendritic cells. PLoS Pathog. 2019, 15, e1007595. [Google Scholar] [CrossRef] [Green Version]
- Crawford, L.B.; Streblow, D.N.; Hakki, M.; Nelson, J.A.; Caposio, P. Humanized mouse models of human cytomegalovirus infection. Curr. Opin. Virol. 2015, 13, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Koenig, J.; Theobald, S.J.; Stripecke, R. Modeling Human Cytomegalovirus in Humanized Mice for Vaccine Testing. Vaccines (Basel) 2020, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Gabel, M.; Baumann, N.S.; Oxenius, A.; Graw, F. Investigating the Dynamics of MCMV-Specific CD8(+) T Cell Responses in Individual Hosts. Front. Immunol. 2019, 10, 1358. [Google Scholar] [CrossRef]
- Berry, R.; Watson, G.M.; Jonjic, S.; Degli-Esposti, M.A.; Rossjohn, J. Modulation of innate and adaptive immunity by cytomegaloviruses. Nat. Rev. Immunol. 2020, 20, 113–127. [Google Scholar] [CrossRef]
- Bancroft, G.J.; Shellam, G.R.; Chalmer, J.E. Genetic influences on the augmentation of natural killer (NK) cells during murine cytomegalovirus infection: Correlation with patterns of resistance. J. Immunol. 1981, 126, 988–994. [Google Scholar] [PubMed]
- Nabekura, T.; Lanier, L.L. Tracking the fate of antigen-specific versus cytokine-activated natural killer cells after cytomegalovirus infection. J. Exp. Med. 2016, 213, 2745–2758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scalzo, A.A.; Wheat, R.; Dubbelde, C.; Stone, L.; Clark, P.; Du, Y.; Dong, N.; Stoll, J.; Yokoyama, W.M.; Brown, M.G. Molecular genetic characterization of the distal NKC recombination hotspot and putative murine CMV resistance control locus. Immunogenetics 2003, 55, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Goodier, M.R.; Jonjić, S.; Riley, E.M.; Juranić Lisnić, V. CMV and natural killer cells: Shaping the response to vaccination. Eur. J. Immunol. 2018, 48, 50–65. [Google Scholar] [CrossRef]
- Farrell, H.E.; Bruce, K.; Lawler, C.; Stevenson, P.G. Murine Cytomegalovirus Spread Depends on the Infected Myeloid Cell Type. J. Virol. 2019, 93, e00540-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clement, M.; Humphreys, I.R. Cytokine-Mediated Induction and Regulation of Tissue Damage During Cytomegalovirus Infection. Front. Immunol. 2019, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Jonjic, S.; Mutter, W.; Weiland, F.; Reddehase, M.J.; Koszinowski, U.H. Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J. Exp. Med. 1989, 169, 1199–1212. [Google Scholar] [CrossRef]
- Renzaho, A.; Podlech, J.; Kühnapfel, B.; Blaum, F.; Reddehase, M.J.; Lemmermann, N.A.W. Cytomegalovirus-Associated Inhibition of Hematopoiesis Is Preventable by Cytoimmunotherapy With Antiviral CD8 T Cells. Front. Cell. Infect. Microbiol. 2020, 10, 138. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Weiskopf, D.; Gupta, A.; McDonald, B.; Peters, B.; Sette, A.; Benedict, C.A. Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J. Virol. 2016, 90, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Price, P.; Olver, S.D.; Gibbons, A.E.; Shellam, G.R. B-cell activation following murine cytomegalovirus infection: Implications for autoimmunity. Immunology 1993, 78, 14–21. [Google Scholar]
- Lawson, C.M.; Grundy, J.E.; Shellam, G.R. Antibody responses to murine cytomegalovirus in genetically resistant and susceptible strains of mice. J. Gen. Virol. 1988, 69, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Bootz, A.; Karbach, A.; Spindler, J.; Kropff, B.; Reuter, N.; Sticht, H.; Winkler, T.H.; Britt, W.J.; Mach, M. Protective capacity of neutralizing and non-neutralizing antibodies against glycoprotein B of cytomegalovirus. PLoS Pathog. 2017, 13, e1006601. [Google Scholar] [CrossRef] [PubMed]
- Kenneson, A.; Cannon, M.J. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med. Virol. 2007, 17, 253–276. [Google Scholar] [CrossRef] [PubMed]
- Iwasenko, J.M.; Howard, J.; Arbuckle, S.; Graf, N.; Hall, B.; Craig, M.E.; Rawlinson, W.D. Human cytomegalovirus infection is detected frequently in stillbirths and is associated with fetal thrombotic vasculopathy. J. Infect. Dis. 2011, 203, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Leyder, M.; Vorsselmans, A.; Done, E.; Van Berkel, K.; Faron, G.; Foulon, I.; Naessens, A.; Jansen, A.; Foulon, W.; Gucciardo, L. Primary maternal cytomegalovirus infections: Accuracy of fetal ultrasound for predicting sequelae in offspring. Am. J. Obstet. Gynecol. 2016, 215, 638.e1–638.e8. [Google Scholar] [CrossRef] [PubMed]
- Enders, G.; Daiminger, A.; Bader, U.; Exler, S.; Enders, M. Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J. Clin. Virol. 2011, 52, 244–246. [Google Scholar] [CrossRef]
- Kylat, R.I.; Kelly, E.N.; Ford-Jones, E.L. Clinical findings and adverse outcome in neonates with symptomatic congenital cytomegalovirus (SCCMV) infection. Eur. J. Pediatr. 2006, 165, 773–778. [Google Scholar] [CrossRef]
- Nigro, G. Maternal-fetal cytomeglaovirus infection: From diagnosis to therapy. J. Matern. Fetal Neonatal Med. 2009, 22, 169–174. [Google Scholar] [CrossRef]
- Medearis, D.N.; Campbell, F.; Arnold, P. Mouse Cytomegalovirus infection III. Attempts to produce intrauterine infections. Am. J. Hygeine 1964, 80, 113–120. [Google Scholar]
- Schleiss, M.R.; Mcvoy, M.A. Guinea pig cytomegalovirus: A model for the prevention and treatment of maternal-fetal cytomegalovirus transmission. Future Virol. 2010, 5, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.P. Mouse cytomegalovirus: Placental infection. J. Infect. Dis. 1969, 120, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Lansdown, A.B.; Brown, J.D. Pathological observations on experimental cytomegalovirus infections in pregnancy. J. Pathol. 1978, 125, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Baskar, J.F.; Peacock, J.; Sulik, K.K.; Huang, E.S. Early-stage developmental abnormalities induced by murine cytomegalovirus. J. Infect. Dis. 1987, 155, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, N.A.; Shellam, G.R. Host genetic influences on fetal susceptibility to murine cytomegalovirus after maternal or fetal infection. J. Infect. Dis. 1991, 163, 276–281. [Google Scholar] [CrossRef]
- Tsutsui, Y. Developmental Disorders of the Mouse-Brain Induced by Murine Cytomegalovirus–Animal-Models for Congenital Cytomegalovirus-Infection. Pathol. Int. 1995, 45, 91–102. [Google Scholar] [CrossRef]
- Tsutsui, Y.; Kashiwai, A.; Kawamura, N.; Aibamasago, S.; Kosugi, I. Prolonged Infection of Mouse-Brain Neurons with Murine Cytomegalovirus after Prenatal and Perinatal Infection. Arch. Virol. 1995, 140, 1725–1736. [Google Scholar] [CrossRef]
- Li, R.Y.; Tsutsui, Y. Growth retardation and microcephaly induced in mice by placental infection with murine cytomegalovirus. Teratology 2000, 62, 79–85. [Google Scholar] [CrossRef]
- Woolf, N.K.; Jaquish, D.V.; Koehrn, F.J. Transplacental murine cytomegalovirus infection in the brain of SCID mice. Virol. J. 2007, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Cekinovic, D.; Golemac, M.; Pugel, E.P.; Tomac, J.; Cicin-Sain, L.; Slavuljica, I.; Bradford, R.; Misch, S.; Winkler, T.H.; Mach, M.; et al. Passive Immunization Reduces Murine Cytomegalovirus-Induced Brain Pathology in Newborn Mice. J. Virol. 2008, 82, 12172–12180. [Google Scholar] [CrossRef] [Green Version]
- Slavuljica, I.; Kveštak, D.; Huszthy, P.C.; Kosmac, K.; Britt, W.J.; Jonjić, S. Immunobiology of congenital cytomegalovirus infection of the central nervous system—the murine cytomegalovirus model. Cell Mol. Immunol. 2015, 12, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Sung, C.Y.W.; Seleme, M.C.; Payne, S.; Jonjic, S.; Hirose, K.; Britt, W. Virus-induced cochlear inflammation in newborn mice alters auditory function. JCI Insight 2019, 4, e128878. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Kosugi, I.; Han, G.P.; Kawasaki, H.; Arai, Y.; Takeshita, T.; Tsutsui, Y. Induction of cytomegalovirus-infected labyrinthitis in newborn mice by lipopolysaccharide: A model for hearing loss in congenital CMV infection. Lab. Investig. 2008, 88, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Gombos, R.B.; Wolan, V.; McDonald, K.; Hemmings, D.G. Impaired vascular function in mice with an active cytomegalovirus infection. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, 937–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikuta, K.; Ogawa, H.; Hashimoto, H.; Okano, W.; Tani, A.; Sato, E.; Kosugi, I.; Kobayashi, T.; Omori, K.; Suzutani, T. Restricted infection of murine cytomegalovirus (MCMV) in neonatal mice with MCMV-induced sensorineural hearing loss. J. Clin. Virol. 2015, 69, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Zhang, Y.N.; Liu, X.L.; Lu, Y.Y.; Zhang, L.L.; Xi, T.; Shu, S.N.; Fang, F. Maternal Murine Cytomegalovirus Infection during Pregnancy Up-regulates the Gene Expression of Toll-like Receptor 2 and 4 in Placenta. Curr. Med. Sci. 2018, 38, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Georgiades, P.; Ferguson-Smith, A.C.; Burton, G.J. Comparative developmental anatomy of the murine and human definitive placentae. Placenta 2002, 23, 3–19. [Google Scholar] [CrossRef]
- Rossant, J.; Cross, J.C. Placental development: Lessons from mouse mutants. Nat. Rev. Genet. 2001, 2, 538–548. [Google Scholar] [CrossRef]
- Smith, M.G. Propagation of Salivary Gland Virus of the mouse in Tissue Cultures. Proc. Soc. Exp. Biol. Med. 1954, 86, 433–440. [Google Scholar] [CrossRef]
- La Torre, R.; Nigro, G.; Mazzocco, M.; Best, A.M.; Adler, S.P. Placental enlargement in women with primary maternal cytomegalovirus infection is associated with fetal and neonatal disease. Clin. Infect. Dis. 2006, 43, 994–1000. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, Y. Effects of cytomegalovirus infection on embryogenesis and brain development. Congenit. Anom. 2009, 49, 47–55. [Google Scholar] [CrossRef]
- Tsutsui, Y.; Kosugi, I.; Kawasaki, H.; Arai, Y.; Han, G.P.; Li, L.; Kaneta, M. Roles of neural stem progenitor cells in cytomegalovirus infection of the brain in mouse models. Pathol. Int. 2008, 58, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Brizić, I.; Hiršl, L.; Šustić, M.; Golemac, M.; Britt, W.J.; Krmpotić, A.; Jonjić, S. CD4 T cells are required for maintenance of CD8 T(RM) cells and virus control in the brain of MCMV-infected newborn mice. Med. Microbiol. Immunol. 2019, 208, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Bantug, G.R.B.; Cekinovic, D.; Bradford, R.; Koontz, T.; Jonjic, S.; Britt, W.J. CD8+ T Lymphocytes Control Murine Cytomegalovirus Replication in the Central Nervous System of Newborn Animals. J. Immunol. 2008, 181, 2111–2123. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, Y.; Kawasaki, H.; Kosugi, I. Reactivation of latent cytomegalovirus infection in mouse brain cells detected after transfer to brain slice cultures. J. Virol. 2002, 76, 7247–7254. [Google Scholar] [CrossRef] [Green Version]
Human Condition | Lab Conditions | SGV 1/TCV 2 PFU 3 | Effect | Reference |
---|---|---|---|---|
Viremia | Intraperitoneal (i.p) inoculation of BALB/cByJ mice. | SGV/TCV not specified 106 PFU | White blood cells have viral DNA but no evidence of ie1 RNA. | [34] |
Viral latency | BALB/c footpad inoculated at 2 weeks of age. Latency present after 3 weeks. | TCV 105 PFU | Whole body irradiation leads to reactivation of infection. Antibody protects from viral dissemination. | [35,36] |
Pneumonitis | 1. Intranasal inoculation into outbred Swiss mice or intra-tracheal infection of BALB/c mice. | TCV >104 PFU | Severe diffuse interstitial pneumonitis closely resembling that seen in immunocompromised patients and in newborn infants, 20% died. | [37] |
2. Inoculation of newborn BALB/c. | SGV, 6 PFU i.p. | Pneumonitis and myocarditis, 95% lethal. | [38] | |
Hepatitis | i.p inoculation of BALB/c mice. | SGV, 105 PFU | Hepatitis evident, dose is Lethal Dose50. | [26] |
Ocular infection (retinitis) | 1. Intraocular inoculation (scarified cornea or through corneal limbus) of IRC/Sic mice. 2. Intraperitoneal inoculation of BALB/c mice. | SGV, Tissue Culture Infectious Dose50 values given. | Different effects SGV vs. TCV. | [39] |
Inflammatory response in retina (virus not present) and iris (virus present). | [40] | |||
Excretion of CMV into breastmilk | Acute or latently inoculated C57BL/6 mothers (i.p.), leukocytes from BM positive by ie1 mRNA detection, RTPCR. | SGV 3 × 102–3 × 104 PFU | Evidence of neonatal infection via breast milk. Inoculation of milk into CD-1 1-day old mice results in infection. | [41] |
Arterial blood pressure post CMV infection | i.p. inoculation of 2-week-old C57BL/6 mice. | TCV, 3 × 105 PFU/1mL/mouse | MCMV increased blood pressure independent of diet. Increased serum IL-6, TNF-alpha, and MCP-1. | [42] |
Viral myocarditis | i.p. inoculation of C57BL/6 and BALB/c mice. | SGV 104 PFU | Inflammatory foci in the heart and infection of cardiac myocytes. | [43] |
Infection post bone marrow transplantation | Irradiated BALB/c mice inoculated with virus prior to intravenous (i.v.) purified bone marrow cells. | 105 PFU | Failure in haematopoiesis, leading to death. | [44] |
Sexual transmission of CMV via semen | Spermatozoa plus Smith MCMV artificially inseminated (compared with sperm alone). | SGV 105 PFU | Embryos collected on E14. One produced cytopathic effect (second passage). No significant difference with numbers or abnormalities. | [45] |
Human Condition | Lab Conditions | SGV 1/TCV 2 PFU 3 | C 4 | G 5 | P 6 | Effect | Reference |
---|---|---|---|---|---|---|---|
Reactivation after immunosuppression | i.p. inoculation of C3H/St mice. | SGV subcutaneous infection with 103 PFU Latency = 8 months | x | Immunosuppression by rabbit antilymphocyte serum and corticosteroid. | [65] | ||
Pneumonitis | Intranasal MCMV plus cyclophosphamide 24 h after viral inoculation in BALB/c. | SGV, 105 PFU | x | Interstitial pneumonitis. | [66] Reviewed in [67] | ||
Atherogenesis | MCMV inoculated i.p. in APO-E−/− mice (C57BL/6 background). | SGV 105 PFU Or 3 × 104 PFU TCV | x | Larger atherosclerotic lesions in infected mice, potentially caused by upregulation of p38. | [68,69] | ||
Transplant-arteriosclerosis | Human peripheral blood leukocyte/Rag-2−/−γc−/− mouse-xenograft-model inoculated with HCMV. | Segments of mammary artery incubated in vivo with 105 PFU HCMV before implantation | x | x | Transplant arteriosclerosis was significantly elevated and increased ICAM-1, PDGF-R-b and macrophages. | [70] | |
Reactivation of CMV infection post organ transplantation | Immunosuppression of BALB/c mice receiving donor kidney (C57BL/6 allograft) leads to dissemination of reactivated MCMV. | SGV 107 PFU MCMV-Δm157. Mice used as donors 4–8 months post i.p. inoculation (latency) | x | x | Two-step process: allograft ischemia and reperfusion injury (step 1). Immunosuppression mediated viral dissemination (step 2). | [71] | |
Sjogren’s syndrome | 1. MCMV inoculated i.p. in Fas-deficient C57Bl/6-lpr/lpr mice. 2. MCMV inoculated i.p. in tumor necrosis factor-related apoptosis-inducing ligand deficient BALB/c mice. | SGV, 105 PFU SGV 104 PFU | x x | Salivary gland inflammation and autoantibody production. Autoantibody production and lymphocytic aggregates. | [72] | ||
Reactivation of CMV infection post haemopoietic cell transplantation | 1. BALB/c mice undergo sublethal irradiation (6 Gy), undergo syngeneic haematopoietic stem cell transplant 6 h later, 2 h later inoculated with CMV via foot pad. | TCV 105 PFU | x | Pulmonary infection control depends on CD8 T cell reconstitution. | [73] | ||
2. CD8 T cell immunotherapy. | Controls CMV associated immunopathology. | [74] Reviewed in [59] | |||||
Graft versus host disease | 1. Inoculated with MCMV 3 days prior to transplant. A variety of H-2 defined mice inoculated i.v. with spleen cells (either MHC1 or MHCII disparity). 2. Strain specific antibody therapy. Latently inoculated mice (i.p). | 1 × LD50 SGV | x | Reduction of CTL and immunodeficiency induced, 10 × less donor cells required. | [75] | ||
104 (B6 or B6D2F1) or 5 × 103 PFU (BALB/c) SGV | x | Strain-specific antibody therapy protects from MCMV reactivation. | [76] | ||||
CMV retinitis | 1. Inoculation into supraciliary space (described in [77]) + immunosuppression of BALB/c mice via methylprednisolone every 3 days starting 2 days prior to inoculation. | SGV 5 × 103 PFU | x | Retinitis abrogated using i.v. siRNAs directed against MCMV immediate early protein-3 (IE-3). | [78,79] | ||
2. Immunosuppression using C57Bl/6J intraretinal inoculation PLUS MAIDs. | SGV 104 PFU | x | (MAIDS—retrovirus mixture defined in [80]) Severity of effect may be due to suppressor of cytokine signaling (SOCS) 1 and 2. | [81] | |||
Renal allograft loss due to MCMV reactivation (donor positive) | Donor BALB/c recipient C57Bl/6 after renal transplantation. | TCV MCMV or Δm157, Infection with 104 PFU (Δm157) all donors. Recipient either 104 PFU Δm157/WT or 102 Δm157. | x | x | Th17 inhibition reduced injury to graft. | [82] | |
Brain infection in immunosuppressed patients | Severe combined immunodeficient (SCID) mice (BALB/c background), intracranial infection. Virus expressing green fluorescent protein (GFP). | TCV, 106 PFU (GFP), 4.83 × 105 PFU wildtype | x | x | Adoptive transfer of MCMV-specific CD4 T cells clears CMV from the brain. Treatment prior to infection prevents MCMV replication. | [83] | |
Hemophagocytic lymphohistiocytosis | IFN-γ-knockout (KO) mice on BALB/c background or BALB/c | SGV, 5 × 103 PFU | x | Severity not associated with titer, associated with inflammation. | [84] | ||
Laboratory diagnosis of hepatitis | i.v. inoculation of C57BL/6 mice with marker virus (luciferase, mCherry, SINFEKL) | TCV, 106 PFU | x | Blood biochemistry levels given (allowing diagnosis of hepatitis). | [85] |
Medical Condition | Lab Conditions | SGV 1/TCV 2 PFU 3 | Effect | Reference |
---|---|---|---|---|
Ulcerative colitis in CMV-inoculated individuals | T cell receptor alpha−/− mice (C57BL/6 background) inoculated i.p. at 7 days of age with MCMV or MCMV-enhanced GFP | TCV, 5 × 105 PFU of MCMV for C57BL/6 mice and 2 × 104 PFU of MCMV-EGFP for TCR-alpha−/− | Ulcerative colitis is exacerbated in latently infected mice | [86] |
Growth of glioblastoma | Mice inoculated i.p. day 2 of life (P2), tumor injection week 15 | TCV 103 PFU MCMV-Δm157 | Tumor growth and reduction in survival | [87] |
CMV reactivation after physical damage | Caecal ligation and puncture in latently i.p. inoculated BALB/c mice | TCV, 2 × 104 cgrmPFU | Plus S. aureus to induce bacterial pneumonia | [88,89] |
MCMV infection after cholestasis | C57BL/8 mice bile duct ligated, inoculated i.p. Δm157-MCMV-luciferase | SGV/TCV not specified. 2 × 105 PFU | Impaired inflammatory response, but no increase in liver pathology | [90] |
Melanomas growth, repeated injection recapitulates transient response | Intra-tumoral inoculation of MCMV or ΔgL MCMV (spread deficient) impairs melanoma growth in BALB/c mice | TCV (described in [91]), 5 × 105 PFU | Infection of macrophages leads to proinflammatory M1 state | [92] |
Idiopathic pulmonary fibrosis | Latent MCMV infection in BALB/c mice (i.p.—4 weeks prior), intratracheal bleomycin | SGV, 105 PFU | MCMV-exacerbated fibrosis, activation of TGF-β1 | [93] |
Experimental autoimmune encephalomyelitis (EAE) | C57BL/6J and CD80/86−/− mice inoculated with MCMV i.p. and 8 days later, EAE induced | SGV, 5 × 104 PFU | More severe disease (e.g., enhanced demyelination), severity associated with number of splenic CD4+CD28null T cells | [94] |
Use of bronchiolar lavage (BAL) to detect reactivation of CMV in sepsis | BALB/c mice inoculated with MCMV, sepsis by caecal ligation and puncture | SGV/TCV not specified; 102, 106 | qPCR of BAL cell pellets similar to that of lung tissue | [95] |
Acute colitis | C57BL/6 mice | TCV, 3 × 104 PFU | Acceleration of colitis development, but no difference in histology | [96] |
Allergic airway disease | C57BL/6 mice inoculated intra tracheally | TCV, 106 PFU | Exposed to ovalbumin, CMV-exacerbated disease | [97] |
Inoculation Details | Mouse | SGV 1/TCV 2 PFU 3 | Effect | Year | Reference |
---|---|---|---|---|---|
Inoculation of pregnant mice (approx.) Day 8 Inoculation of fetal and neonatal mice | Outbred Harvard | 1000 fifty-percent tissue culture doses (stock was stored as SGV) | Placental infection, but no evidence of fetal infection after maternal infection. Fetal infection (often lethal) shows that fetal mice are susceptible. | 1969 | [122] |
Pregnant mice inoculated i.p. or intramuscularly on E8 | TO Swiss outbred and BALB/c | SGV 1.1 × 107 (Infective Dose50) at various concentrations | i.p. administration produced more fetal wastage and smaller litter sizes. Placental weights not changed. Maternal illness pronounced. | 1978 | [123] |
MCMV injected into endometrial lumina on day of implantation | CF1 (Albino Swiss) | TCV, 100–200 PFU | Reduced litter sizes, malformed fetuses (neural tube defects). | 1987 | [124] |
Maternal i.p. inoculation on Day 8 of pregnancy | BALB/c, BALB/K, CBA | SGV, 3.57 × 103 PFU | Dose dependent, effect related to MHC. No fetal infection. Some placental infection. | 1991 | [125] |
In utero inoculation of fetuses, Day 8 | BALB/c and CBA | SGV, 11 PFU | High resorption rate in BALB/c. | 1991 | [125] |
Microinjection of fertilized ova, cultured to blastocyst and implanted | F1 SJL × C57BL/6J | 2 pL MCMV DNA (2.5 µg/mL) | Maldeveloped fetuses, increased resorptions. | 1993 | [126,127] |
Inoculation of conceptus D8.5 | ICR mice | TCV, 104 PFU | Microphthalmia and cerebral atrophy, potentially model of subclinical cCMV. | 1995 | [126,127] |
Intraplacental inoculation of 10 ng TNF-alpha (D12.5), i.v. inoculation of mother 2 h later | ICR mice | TCV, 105 PFU | Some growth retardation and microcephaly (25%). | 2000 | [128] |
Maternal inoculation of SCID mice i.p. | SCID mice | SGV, 103 PFU (varied) | Maximal placental transmission with maternal infection at E4 (i.p.). | 2007 | [129] |
MCMV inoculated i.p. into newborn pups | BALB/c | TCV, 500 PFU | 1. Infection in brain. 2.P3–P5 prednisolone cochlear inflammation. | 2008 2019 | [130], reviewed in [131] [132] |
i.p. inoculation of neonatal mice plus intracerebral inoculation of E. coli-derived lipopolysaccharide | BALB/c mice | TCV, 105 | Labyrinthitis, significant increase in mean sound pressure level responses due to disruption of the blood labyrinth barrier. | 2008 | [133] |
i.p. RM427+ (recombinant virus expressing LacZ from ie2) mated 5–12 days later, evaluated on D17–18 of pregnancy | C57BL/6 | TCV, 106 | Increased vasodilation in pregnancy implicating CMV in hypertensive disorders. | 2009 | [134] |
Intracerebral inoculation of neonatal mice | BALB/c | TCV, 17–1700 PFU | Sensorineural hearing loss with dose response. | 2015 | [135] |
Acute group inoculated i.p. MCMV at E7.5 pre-pregnancy, inoculated i.p. mated one month later, PBS E12.5 | BALB/c mice | SGV, 5 × 103 PFU | Acute toll-like receptor 2 and 4 upregulation in acute group. Increased placental size in pre-pregnancy group. | 2018 | [136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fisher, M.A.; Lloyd, M.L. A Review of Murine Cytomegalovirus as a Model for Human Cytomegalovirus Disease—Do Mice Lie? Int. J. Mol. Sci. 2021, 22, 214. https://doi.org/10.3390/ijms22010214
Fisher MA, Lloyd ML. A Review of Murine Cytomegalovirus as a Model for Human Cytomegalovirus Disease—Do Mice Lie? International Journal of Molecular Sciences. 2021; 22(1):214. https://doi.org/10.3390/ijms22010214
Chicago/Turabian StyleFisher, Michelle A., and Megan L. Lloyd. 2021. "A Review of Murine Cytomegalovirus as a Model for Human Cytomegalovirus Disease—Do Mice Lie?" International Journal of Molecular Sciences 22, no. 1: 214. https://doi.org/10.3390/ijms22010214
APA StyleFisher, M. A., & Lloyd, M. L. (2021). A Review of Murine Cytomegalovirus as a Model for Human Cytomegalovirus Disease—Do Mice Lie? International Journal of Molecular Sciences, 22(1), 214. https://doi.org/10.3390/ijms22010214