Determination of Intraprostatic and Intratesticular Androgens
Abstract
:1. Introduction
1.1. Prostate
1.1.1. Intraprostatic Androgens
1.1.2. Prostate Cancer and Androgen Deprivation Therapy
1.1.3. 11-Oxygenated Androgens
1.1.4. Intraprostatic Androgens—A Summary
1.2. The Testis
1.2.1. Intratesticular Androgens and Their Forms
1.2.2. Regulation of Testicular Steroidogenesis
1.3. Conclusive Remarks
2. Sample Collection and Pre-Analytical Processing Techniques
2.1. Prostate
2.2. Testes
3. Determination of Steroid Hormones
3.1. Immunoanalytical Methods
3.2. Mass Spectrometry Methods
4. Clinical Information Value of Intraprostatic Steroid Concentrations for Diagnosis of Prostate Cancer
4.1. Subject Group
4.2. Extragonadal Androgen Sources
4.3. Technique and Site (Core) of Sample Removal
4.4. Choice of End-Point Steroid Determination
4.5. Applied Treatment
4.6. The Role of Intraprostatic Metabolism
4.7. Other Factors
5. Relationship between Intratesticular and Blood Steroid Concentrations: Clinical Information Value for Diagnosis
6. Conclusions
- Advanced analytical tools, such as LC- or GC-MS/MS, best facilitate the analysis of small amounts of prostatic tissue from needle biopsy, as well as providing a more patient-friendly approach.
- DHT is the main intraprostatic androgen, its concentration being about ten times that of blood serum.
- Although intraprostatic DHT is higher in patients with PCa than in other groups in most instances, available data from various researcher groups are not sufficient to distinguish definitely patients with PCa from other subjects. The results strongly depend on methodology, namely analyzed material, sample collection, separation techniques, and end-point measurement. Moreover, there is very little information from healthy men. Only results obtained by the same or similar methodology can be compared seriously.
- T is the main intratesticular androgen, its concentration exceeding blood levels by almost two orders of magnitude, but very little information is available from men with fertility disorders.
- There is no consensus as to whether intratesticular T concentrations correlate with serum levels.
- Intratesticular androgens respond either poorly or not at all to exogenous hormone administration.
- 11-oxygenated androgens as dominant active androgens are promising biomarkers in the evaluation and diagnosis of androgen-dependent diseases. Of crucial importance is their contribution to CRPC progression.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
17α-OH-prog | 17α-hydroxyprogesterone; 17-hydroxypregn-4-ene-3,20-dione |
3α-diol | 5α-androstane-3α,17β-diol |
3α-diol-17G | 3α-diol-17-glucuronide; 3α-hydroxy-5α-androstan-17β-yl D-glucopyranosiduronic acid |
3α-diol-G | 3α-diol-3-glucuronide; 3β-hydroxy-5α-androstan-3α-yl D-glucopyranosiduronic acid |
3β-diol | androstane-3β,17β-diol |
5-diol | 5-androsten-3β,17β-diol; androst-5-ene-3β,17β-diol |
ABP | androgen binding protein |
adiol | androstenediol; androst-5-ene-3β,17β-diol |
adione | androstenedione; androst-4-ene-3,17-dione |
ADT | androgen deprivation therapy |
ADT-G | androsterone glucuronide; 17-oxo-5α-androstan-3α-yl β-D-glucopyranosiduronic acid |
AS-BP | androgen stimulated benign prostate |
B | biopsy |
BP | benign prostate |
BPH | benign prostatic hyperplasia |
DHEA | dehydroepiandrosterone; 3β-hydroxyandrost-5-en-17-one |
DHEA-S | dehydroepiandrosterone-sulfate; 17-oxoandrost-5-en-3β-yl sulfate |
DHT | 5α-dihydrotestosterone; 17β-hydroxy-5α-androstan-3-one |
E1 | estrone; 3-hydroxyestra-1(10),2,4-trien-17-one |
E2 | estradiol; estra-1(10),2,4-triene-3,17β-diol |
EpiT | epitestosterone; 17α-hydroxyandrost-4-en-3-one |
EtOH | ethanol |
FNA | fine needle percutaneous testicular aspiration |
FSH | follicle-stimulating hormone |
GC-MS/MS | gas chromatography tandem mass spectrometry |
H | healthy |
HPLC | high-performance liquid chromatography |
hCG | human chorionic gonadotropin |
IA | immunoanalytical |
LC-MS/MS | liquid chromatography tandem mass spectrometry |
LH | luteinizing hormone |
M-TESE | microsurgical testicular sperm extraction |
PCa | prostate cancer |
preg | pregnenolone; 3β-hydroxypregn-5-en-20-one |
PRL | prolactin |
prog | progesterone; pregn-4-ene-3,20-dione |
PTA | percutaneous testicular aspiration |
RC | radical cystectomy |
RP | radical prostatectomy |
SLCO | solute carrier organic anion protein |
SHBG | sex hormone-binding globulin |
SP | simple prostatectomy |
SPE | solid phase extraction |
T | testosterone; 17β-hydroxyandrost-4-en-3-one |
TURP | transurethral resection of the prostate |
UHPSFC-MS | ultra-high performance supercritical fluid chromatography tandem mass spectrometry |
References
- Elbers, J.M.; Grootenhuis, A.J. New tissue-selective androgens: Perspectives in the treatment of androgen deficits. Ann. Endocrinol. 2003, 64, 183–188. [Google Scholar]
- Labrie, F. Intracrinology. Mol. Cell Endocrinol. 1991, 78, C113–C118. [Google Scholar] [CrossRef]
- Fluck, C.E.; Pandey, A.V. Steroidogenesis of the testis—New genes and pathways. Ann. Endocrinol. 2014, 75, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Steers, W.D. 5alpha-reductase activity in the prostate. Urology 2001, 58 (Suppl. 1), 17–24, discussion 24. [Google Scholar] [CrossRef]
- Schiffer, L.; Barnard, L.; Baranowski, E.S.; Gilligan, L.C.; Taylor, A.E.; Arlt, W.; Shackleton, C.H.L.; Storbeck, K.-H. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. J. Steroid Biochem. Mol. Biol. 2019, 194, 105439. [Google Scholar] [CrossRef] [PubMed]
- Siiteri, P.K.; Wilson, J.D. Dihydrotestosterone in prostatic hypertrophy. I. The formation and content of dihydrotestosterone in the hypertrophic prostate of man. J. Clin. Investig. 1970, 49, 1737–1745. [Google Scholar] [CrossRef] [Green Version]
- Kjoseland, O.; Tveter, K.J.; Attramadal, A.; Hansson, V.; Haugen, H.N.; Mathisen, W. Metabolism of testosterone in the human prostate and seminal vesicles. Scand. J. Urol. Nephrol. 1977, 11, 1–6. [Google Scholar] [CrossRef]
- McMahon, M.J.; Thomas, G.H. The metabolism of testosterone by human prostate in organ culture. J. Endocrinol. 1970, 48, xx–xxi. [Google Scholar]
- Adeniji, A.O.; Chen, M.; Penning, T.M. AKR1C3 as a target in castrate resistant prostate cancer. J. Steroid Biochem. Mol. Biol. 2013, 137, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Bloem, L.M.; Storbeck, K.H.; Schloms, L.; Swart, A.C. 11β-hydroxyandrostenedione returns to the steroid arena: Biosynthesis, metabolism and function. Molecules 2013, 18, 13228–13244. [Google Scholar] [CrossRef] [Green Version]
- Du Toit, T.; Swart, A.C. The 11β-hydroxyandrostenedione pathway and C11-oxy C21 backdoor pathway are active in benign prostatic hyperplasia yielding 11keto-testosterone and 11keto-progesterone. J. Steroid Biochem. Mol. Biol. 2020, 196, 105497. [Google Scholar] [CrossRef] [PubMed]
- Turcu, A.F.; Auchus, R.J. Clinical significance of 11-oxygenated androgens. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 252–259. [Google Scholar] [CrossRef]
- Turcu, A.F.; Nanba, A.T.; Auchus, R.J. The Rise, Fall, and Resurrection of 11-Oxygenated Androgens in Human Physiology and Disease. Hormone Res. Paediatr. 2018, 89, 284–291. [Google Scholar] [CrossRef]
- Pretorius, E.; Africander, D.J.; Vlok, M.; Perkins, M.S.; Quanson, J.; Storbeck, K.H. 11-Ketotestosterone and 11-Ketodihydrotestosterone in Castration Resistant Prostate Cancer: Potent Androgens Which Can No Longer Be Ignored. PLoS ONE 2016, 11, e0159867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostaghel, E.A.; Cho, E.; Zhang, A.; Alyamani, M.; Kaipainen, A.; Green, S.; Marck, B.T.; Sharifi, N.; Wright, J.L.; Gulati, R.; et al. Association of Tissue Abiraterone Levels and SLCO Genotype with Intraprostatic Steroids and Pathologic Response in Men with High-Risk Localized Prostate Cancer. Clin. Cancer Res. 2017, 23, 4592–4601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinoshita, Y.; Hosaka, M.; Nishimura, R.; Takai, S. Partial characterization of 5 alpha-reductase in the human epididymis. Endocrinol. Jpn. 1980, 27, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, L.; Arlt, W.; Storbeck, K.H. Intracrine androgen biosynthesis, metabolism and action revisited. Mol. Cell Endocrinol. 2018, 465, 4–26. [Google Scholar] [CrossRef]
- Di Donato, M.; Cernera, G.; Giovannelli, P.; Galasso, G.; Bilancio, A.; Migliaccio, A.; Castoria, G. Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Mol. Cell. Endocrinol. 2017, 457, 35–42. [Google Scholar] [CrossRef]
- Prins, G.S. Endocrine disruptors and prostate cancer risk. Endocr. Relat. Cancer 2008, 15, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Cook, M.B.; Stanczyk, F.Z.; Wood, S.N.; Pfeiffer, R.M.; Hafi, M.; Veneroso, C.C.; Lynch, B.; Falk, R.T.; Zhou, C.K.; Niwa, S.; et al. Relationships between Circulating and Intraprostatic Sex Steroid Hormone Concentrations. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1660–1666. [Google Scholar] [CrossRef] [Green Version]
- Penning, T.M.; Detlefsen, A.J. Intracrinology-revisited and prostate cancer. J. Steroid Biochem. Mol. Biol. 2020, 196, 12. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, J.J. Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids 2015, 103, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Santiemma, V.; Rosati, P.; Guerzoni, C.; Mariani, S.; Beligotti, F.; Magnanti, M.; Garufi, G.; Galoni, T.; Fabbrini, A. Human Sertoli cells in vitro: Morphological features and androgen-binding protein secretion. J. Steroid Biochem. Mol. Biol. 1992, 43, 423–429. [Google Scholar] [CrossRef]
- Jarow, J.P.; Wright, W.W.; Brown, T.R.; Yan, X.; Zirkin, B.R. Bioactivity of Androgens Within the Testes and Serum of Normal Men. J. Androl. 2005, 26, 343–348. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, L.; Smith, L.B. Androgen receptor roles in spermatogenesis and infertility. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 595–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, S.T.; Lin, D.W.; Mostaghel, E.A.; Marck, B.T.; Wright, J.L.; Wu, J.; Amory, J.K.; Nelson, P.S.; Matsumoto, A.M. Dihydrotestosterone administration does not increase intraprostatic androgen concentrations or alter prostate androgen action in healthy men: A randomized-controlled trial. J. Clin. Endocrinol. Metab. 2011, 96, 430–437. [Google Scholar] [CrossRef]
- Roy, A.B. The steroid 5 -reductase activity of rat liver and prostate. Biochimie 1971, 53, 1031–1040. [Google Scholar] [CrossRef]
- Jarow, J.P.; Chen, H.; Rosner, T.W.; Trentacoste, S.; Zirkin, B.R. Assessment of the androgen environment within the human testis: Minimally invasive method to obtain intratesticular fluid. J. Androl. 2001, 22, 640–645. [Google Scholar]
- Lévesque, É.; Laverdière, I.; Lacombe, L.; Caron, P.; Rouleau, M.; Turcotte, V.; Têtu, B.; Fradet, Y.; Guillemette, C. Importance of 5α-Reductase Gene Polymorphisms on Circulating and Intraprostatic Androgens in Prostate Cancer. Clin. Cancer Res. 2014, 20, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Vlčková, H.; Pilařová, V.; Novák, O.; Solich, P.; Nováková, L. Micro-SPE in pipette tips as a tool for analysis of small-molecule drugs in serum. Bioanalysis 2017, 9, 887–901. [Google Scholar] [CrossRef]
- Nishiyama, T.; Ikarashi, T.; Hashimoto, Y.; Suzuki, K.; Takahashi, K. Association between the dihydrotestosterone level in the prostate and prostate cancer aggressiveness using the Gleason score. J. Urol. 2006, 176 (4 Pt 1), 1387–1391. [Google Scholar] [CrossRef]
- Mostaghel, E.A.; Nelson, P.S.; Lange, P.; Lin, D.W.; Taplin, M.E.; Balk, S.; Ellis, W.; Kantoff, P.; Marck, B.; Tamae, D.; et al. Targeted androgen pathway suppression in localized prostate cancer: A pilot study. J. Clin. Oncol. 2014, 32, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Heracek, J.; Hampl, R.; Hill, M.; Starka, L.; Sachova, J.; Kuncova, J.; Eis, V.; Urban, M.; Mandys, V. Tissue and serum levels of principal androgens in benign prostatic hyperplasia and prostate cancer. Steroids 2007, 72, 375–380. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Uemura, H.; Umemoto, S.; Sakamaki, K.; Morita, S.; Suzuki, K.; Shibata, Y.; Masumori, N.; Ichikawa, T.; Mizokami, A.; et al. High testosterone levels in prostate tissue obtained by needle biopsy correlate with poor-prognosis factors in prostate cancer patients. BMC Cancer 2014, 14, 1471–2407. [Google Scholar] [CrossRef] [Green Version]
- Thirumalai, A.; Cooper, L.A.; Rubinow, K.B.; Amory, J.K.; Lin, D.W.; Wright, J.L.; Marck, B.T.; Matsumoto, A.M.; Page, S.T. Stable Intraprostatic Dihydrotestosterone in Healthy Medically Castrate Men Treated With Exogenous Testosterone. J. Clin. Endocrinol. Metab. 2016, 101, 2937–2944. [Google Scholar] [CrossRef] [Green Version]
- Pejcic, T.; Tosti, T.; Tesic, Z.; Milkovic, B.; Dragicevic, D.; Kozomara, M.; Cekerevac, M.; Dzamic, Z. Testosterone and dihydrotestosterone levels in the transition zone correlate with prostate volume. Prostate 2017, 77, 1082–1092. [Google Scholar] [CrossRef]
- Yamashita, K.; Miyashiro, Y.; Maekubo, H.; Okuyama, M.; Honma, S.; Takahashi, M.; Numazawa, M. Development of highly sensitive quantification method for testosterone and dihydrotestosterone in human serum and prostate tissue by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids 2009, 74, 920–926. [Google Scholar] [CrossRef]
- Olsson, M.; Ekstrom, L.; Guillemette, C.; Belanger, A.; Rane, A.; Gustafsson, O. Correlation between circulatory, local prostatic, and intra-prostatic androgen levels. Prostate 2011, 71, 909–914. [Google Scholar] [CrossRef]
- Titus, M.A.; Schell, M.J.; Lih, F.B.; Tomer, K.B.; Mohler, J.L. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin. Cancer Res. 2005, 11, 4653–4657. [Google Scholar] [CrossRef] [Green Version]
- Neuzillet, Y.; Raynaud, J.P.; Radulescu, C.; Fiet, J.; Giton, F.; Dreyfus, J.F.; Ghoneim, T.P.; Lebret, T.; Botto, H. Sexual steroids in serum and prostatic tissue of human non-cancerous prostate (STERPROSER trial). Prostate 2017, 77, 1512–1519. [Google Scholar] [CrossRef]
- Zhou, C.K.; Stanczyk, F.Z.; Hafi, M.; Veneroso, C.C.; Lynch, B.; Falk, R.T.; Niwa, S.; Emanuel, E.; Gao, Y.T.; Hemstreet, G.P.; et al. Circulating and intraprostatic sex steroid hormonal profiles in relation to male pattern baldness and chest hair density among men diagnosed with localized prostate cancers. Prostate 2017, 77, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Baker, S.D.; Yan, X.; Zhao, Y.; Wright, W.W.; Zirkin, B.R.; Jarow, J.P. Simultaneous determination of steroid composition of human testicular fluid using liquid chromatography tandem mass spectrometry. Steroids 2004, 69, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.P.; Roth, M.Y.; Nya-Ngatchou, J.J.; Lin, K.; Walsh, T.J.; Page, S.T.; Matsumoto, A.M.; Bremner, W.J.; Amory, J.K.; Anawalt, B.D. Testicular fine-needle aspiration for the assessment of intratesticular hormone concentrations. Asian J. Androl. 2016, 18, 21–24. [Google Scholar]
- Roth, M.Y.; Lin, K.; Amory, J.K.; Matsumoto, A.M.; Anawalt, B.D.; Snyder, C.N.; Kalhorn, T.F.; Bremner, W.J.; Page, S.T. Serum LH correlates highly with intratesticular steroid levels in normal men. J. Androl. 2010, 31, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heracek, J.; Sobotka, V.; Kolatorova, L.; Kocarek, J.; Hampl, R. Serum and intratesticular sex steroids in azoospermic men: How do they correlate? Physiol. Res. 2018, 67 (Suppl. S3), S521–S524. [Google Scholar] [CrossRef]
- Coviello, A.D.; Bremner, W.J.; Matsumoto, A.M.; Herbst, K.L.; Amory, J.K.; Anawalt, B.D.; Yan, X.; Brown, T.R.; Wright, W.W.; Zirkin, B.R.; et al. Intratesticular testosterone concentrations comparable with serum levels are not sufficient to maintain normal sperm production in men receiving a hormonal contraceptive regimen. J. Androl. 2004, 25, 931–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coviello, A.D.; Matsumoto, A.M.; Bremner, W.J.; Herbst, K.L.; Amory, J.K.; Anawalt, B.D.; Sutton, P.R.; Wright, W.W.; Brown, T.R.; Yan, X.; et al. Low-dose human chorionic gonadotropin maintains intratesticular testosterone in normal men with testosterone-induced gonadotropin suppression. J. Clin. Endocrinol. Metab. 2005, 90, 2595–2602. [Google Scholar] [CrossRef] [Green Version]
- Page, S.T.; Kalhorn, T.F.; Bremner, W.J.; Anawalt, B.D.; Matsumoto, A.M.; Amory, J.K. Intratesticular androgens and spermatogenesis during severe gonadotropin suppression induced by male hormonal contraceptive treatment. J. Androl. 2007, 28, 734–741. [Google Scholar] [CrossRef]
- Takahashi, J.; Higashi, Y.; LaNasa, J.A.; Yoshida, K.; Winters, S.J.; Oshima, H.; Troen, P. Studies of the human testis. XVIII. Simultaneous measurement of nine intratesticular steroids: Evidence for reduced mitochondrial function in testis of elderly men. J. Clin. Endocrinol. Metab. 1983, 56, 1178–1187. [Google Scholar] [CrossRef]
- Huhtaniemi, I.; Nikula, H.; Parvinen, M.; Rannikko, S. Pituitary-testicular function of prostatic cancer patients during treatment with a gonadotropin-releasing hormone agonist analog. II. Endocrinology and histology of the testis. J. Androl. 1987, 8, 363–373. [Google Scholar] [CrossRef]
- Huhtaniemi, I.; Nikula, H.; Rannikko, S. Pituitary-testicular function of prostatic cancer patients during treatment with a gonadotropin-releasing hormone agonist analog. I. Circulating hormone levels. J. Androl. 1987, 8, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Makin, H.L.J.; Gower, D.B. Steroid Analysis; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Segura, J.; Ventura, R.; Jurado, C. Derivatization procedures for gas chromatographic-mass spectrometric determination of xenobiotics in biological samples, with special attention to drugs of abuse and doping agents. J. Chromatogr. B Biomed. Sci. Appl. 1998, 713, 61–90. [Google Scholar] [CrossRef]
- Webster, S.G. Catalysed derivatisation of trimethylsilyl ethers of ecdysterone: A preliminary study. J. Chromatogr. A 1985, 333, 186–190. [Google Scholar] [CrossRef]
- Marcos, J.; Pozo, O.J. Derivatization of steroids in biological samples for GC-MS and LC-MS analyses. Bioanalysis 2015, 7, 2515–2536. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, M.R.; Murtola, T.; Voutilainen, R.; Poutanen, M.; Linnanen, T.; Koskivuori, J.; Lakka, T.; Jääskeläinen, J.; Auriola, S. Simultaneous analysis by LC–MS/MS of 22 ketosteroids with hydroxylamine derivatization and underivatized estradiol from human plasma, serum and prostate tissue. J. Pharm. Biomed. Anal. 2019, 164, 642–652. [Google Scholar] [CrossRef]
- Yamashita, K.; Takahashi, M.; Tsukamoto, S.; Numazawa, M.; Okuyama, M.; Honma, S. Use of novel picolinoyl derivatization for simultaneous quantification of six corticosteroids by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2007, 1173, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Yamazaki, K.; Komatsu, S.; Numazawa, M. Fusaric acid as a novel proton-affinitive derivatizing reagent for highly sensitive quantification of hydroxysteroids by LC-ESI-MS/MS. J. Am. Soc. Mass Spectrom. 2010, 21, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, K.; Okuyama, M.; Watanabe, Y.; Honma, S.; Kobayashi, S.; Numazawa, M. Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids 2007, 72, 819–827. [Google Scholar] [CrossRef]
- Renne, A.; Luo, L.; Jarow, J.; Wright, W.W.; Brown, T.R.; Chen, H.; Zirkin, B.R.; Friesen, M.D. Simultaneous quantification of steroids in rat intratesticular fluid by HPLC-isotope dilution tandem mass spectrometry. J. Androl. 2012, 33, 691–698. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, Z.; Post, N.; Brown, M.; Madan, A.; Coon, T.; Luo, R.; Kohout, T.A. Validation and application of a liquid chromatography-tandem mass spectrometric method for the simultaneous determination of testosterone and dihydrotestosterone in rat prostatic tissue using a 96-well format. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 3515–3521. [Google Scholar] [CrossRef]
- Adomat, H.H.; Bains, O.S.; Lubieniecka, J.M.; Gleave, M.E.; Guns, E.S.; Grigliatti, T.A.; Reid, R.E.; Riggs, K.W. Validation of a sequential extraction and liquid chromatography-tandem mass spectrometric method for determination of dihydrotestosterone, androstanediol and androstanediol-glucuronide in prostate tissues. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 902, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Higashi, T.; Yamauchi, A.; Shimada, K. 2-hydrazino-1-methylpyridine: A highly sensitive derivatization reagent for oxosteroids in liquid chromatography-electrospray ionization-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 825, 214–222. [Google Scholar] [CrossRef]
- Tamae, D.; Byrns, M.; Marck, B.; Mostaghel, E.A.; Nelson, P.S.; Lange, P.; Lin, D.; Taplin, M.-E.; Balk, S.; Ellis, W.; et al. Development, validation and application of a stable isotope dilution liquid chromatography electrospray ionization/selected reaction monitoring/mass spectrometry (SID-LC/ESI/SRM/MS) method for quantification of keto-androgens in human serum. J. Steroid Biochem. Mol. Biol. 2013, 138, 281–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolatorova Sosvorova, L.; Chlupacova, T.; Vitku, J.; Vlk, M.; Heracek, J.; Starka, L.; Saman, D.; Simkova, M.; Hampl, R. Determination of selected bisphenols, parabens and estrogens in human plasma using LC-MS/MS. Talanta 2017, 174, 21–28. [Google Scholar] [CrossRef]
- Šimková, M.; Vítků, J.; Kolátorová, L.; Vrbíková, J.; Vosátková, M.; Včelák, J.; Dušková, M. Endocrine disruptors, obesity, and cytokines—How relevant are they to PCOS? Physiol. Res. 2020, 69 (Suppl. S2), S279–S293. [Google Scholar]
- Weng, Y.; Xie, F.; Xu, L.; Zagorevski, D.; Spink, D.C.; Ding, X. Analysis of testosterone and dihydrotestosterone in mouse tissues by liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal. Biochem. 2010, 402, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Higashi, T.; Ogawa, S. Chemical derivatization for enhancing sensitivity during LC/ESI–MS/MS quantification of steroids in biological samples: A review. J. Steroid Biochem. Mol. Biol. 2016, 162, 57–69. [Google Scholar] [CrossRef]
- Denver, N.; Khan, S.; Homer, N.Z.M.; MacLean, M.R.; Andrew, R. Current strategies for quantification of estrogens in clinical research. J. Steroid Biochem. Mol. Biol. 2019, 192, 105373. [Google Scholar] [CrossRef]
- Chang, K.H.; Li, R.; Papari-Zareei, M.; Watumull, L.; Zhao, Y.D.; Auchus, R.J.; Sharifi, N. Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc. Natl. Acad. Sci. USA 2011, 108, 13728–13733. [Google Scholar] [CrossRef] [Green Version]
- Barnard, M.; Mostaghel, E.A.; Auchus, R.J.; Storbeck, K.-H. The role of adrenal derived androgens in castration resistant prostate cancer. J. Steroid Biochem. Mol. Biol. 2020, 197, 105506. [Google Scholar] [CrossRef]
- Jacobi, G.H.; Sinterhauf, K.; Altwein, J.E. Prostatic carcinoma: Plasma kinetics and intraprostatic metabolism of testosterone in low-dose estrogen-treated patients in vivo. Urology 1978, 12, 359–364. [Google Scholar] [CrossRef]
- Orestano, F.; Altwein, J.E. Testosterone metabolism in benign prostatic hypertrophy: In vivo studies of gestonorone caproate and cyproterone acetate. Br. J. Urol. 1976, 48, 485–491. [Google Scholar] [CrossRef]
- Brodie, A.M.; Banks, P.K.; Inkster, S.E.; Son, C.; Koos, R.D. Aromatase and other inhibitors in breast and prostatic cancer. J. Steroid Biochem. Mol. Biol. 1990, 37, 1043–1048. [Google Scholar] [CrossRef]
- Ellis, J.A.; Stebbing, M.; Harrap, S.B. Polymorphism of the androgen receptor gene is associated with male pattern baldness. J. Investig. Dermatol. 2001, 116, 452–455. [Google Scholar] [CrossRef]
- Roth, M.Y.; Page, S.T.; Lin, K.; Anawalt, B.D.; Matsumoto, A.M.; Snyder, C.N.; Marck, B.T.; Bremner, W.J.; Amory, J.K. Dose-dependent increase in intratesticular testosterone by very low-dose human chorionic gonadotropin in normal men with experimental gonadotropin deficiency. J. Clin. Endocrinol. Metab. 2010, 95, 3806–3813. [Google Scholar] [CrossRef] [Green Version]
- Huhtaniemi, I.; Rannikko, S.; Orava, M.; Vihko, R. Steroid sulfates in testis tissue of prostatic cancer patients treated for six months with the gonadotropin releasing hormone agonist buserelin. J. Steroid Biochem. 1989, 32, 811–813. [Google Scholar] [CrossRef]
Probands | Diagnosis | Material | Technique of Tissue Processing | Determination | Intraprostatic Steroids | Serum Steroid and Other Hormones | Reference |
---|---|---|---|---|---|---|---|
196 | PCa | B, RP | cutting, homogenization, protein precipitation, SPE extraction, derivatization | LC-MS/MS | DHT, T | DHT, T | [34] |
27 | H | B | homogenization, extraction, derivatization | LC-MS/MS, RIA | DHT, T, adione, DHEA | DHT, T, adione, E2, DHEA, LH, FSH, SHBG | [26] |
51 | H | B | extraction, derivatization | LC-MS/MS | DHT, T, adione, DHEA, preg, prog, 17α-OH-preg,17α-OH-prog | DHT, T | [35] |
58 | PCa | B, RP | tissue heating to 60 °C, homogenization, extraction, derivatization | LC-MS/MS | DHT, T, adione, DHEA, preg, prog | DHT, T, adione, DHEA, preg, prog | [15] |
526 | PCa | RP | homogenization, extraction, enzymatic deconjugation, derivatization, SPE extraction | GC-MS/MS | DHT, T, DHEA, 5diol, 3β-diol, androsterone | DHT, T, adione, E2, DHEA, DHEA-S, 5diol, 3β-diol, ADT, E1, E1-S, ADT-G, 3α-diol-3G, 3α-diol-17G | [29] |
251 | PCa | RP | cutting, mincing, extraction, celite column partition chromatography | celite column partition-RIA | DHT, T, adione, E2, E1, 3α-diol G | DHT, T, adione, E2, E1, 3α-diol-G | [20] |
93 | BPH (48), PCa (45) | B | chopping, extraction (in an ice-cooling ultrasonic bath), extraction, SPE extraction | LC-MS/MS | DHT, T | none | [36] |
67 | BPH (30), PCa (37) | B | homogenization in an ice-cooling bath, protein precipitation with EtOH, SPE extraction, derivatization | LC-MS/MS | DHT, T | DHT, T | [37] |
178 | BPH (57), PCa (121) | SP/RP | homogenization, double extraction, HPLC column separation | HPLC-RIA | DHT, T, adione, epiT | DHT, T, SHBG | [33] |
16 | PCa | RP, peripheral serum, serum from the prostatic veins | homogenization, precipitation, extraction, derivatization | GC-MS/MS, IA | DHT, T, androsterone, 3α-diol-3G, 3α-diol-17G, ADT-G | DHT, T, SHBG, LH, FSH | [38] |
36 | PCa with ADT (18), AS-BP (18) | RP, TURP | homogenization at 4 °C, extraction, SPE extraction | LC-MS/MS | DHT, T | none | [39] |
81 | PCa (47), H (34) | B | dissolution of DHT in alkalite solution, SPE extraction, derivatization | LC-MS/MS (DHT), RIA | DHT | T, adione, DHEA, DHEA-S, ACTH, F, PRL, LH, FSH | [31] |
35 | PCa | RP | homogenization, extraction, derivatization | GC-MS/MS, IA | DHT, T, androsterone, 3α-diol-3G, 3α-diol-17G, ADT-G | DHT, T, SHBG, LH, FSH | [32] |
32 | BPH, bladder cancer | SP, RC | frozen tissue pulverizing, homogenization at 4 °C, SPE extraction, solvolysis of conjugates with sulfuric acid, derivatization | GC-MS/MS, RIA | DHT, T, E2, DHEA, DHEA-S, E1,5-diol | DHT, T, E2, DHEA, DHEA-S, E1, 5-diol, FSH, LH, SHBG | [40] |
248 | PCa | RP | homogenization, extraction | RIA | DHT, T, adione, E2, 3α-diol-G, E1, | DHT, T, adione, E2, E1, 3α-diol-G, SHBG | [41] |
3 | BPH | TURP | lyophilization, extraction, enzymatic deconjugation | UHPSFC-MS | DHT, T, adione, 3α-diol, other androgen metabolites | [11] |
Probands | Diagnosis | Material | Technique of Material Processing | Determination | Intratesticular Hormones | Serum Steroids and Other Hormones | Reference |
---|---|---|---|---|---|---|---|
22 | H, undergoing vasectomy | intratesticular fluid (PTA) | centrifugation, extraction, HPLC separation | RIA | DHT, T, SHBG/ABP | T | [24] |
84 | azoospermic | testicular tissue (M-TESE) | homogenization, extraction, solvent partition, HPLC separation | HPLC-RIA | DHT, T, adione, E2, EpiT | T, E2, LH, FSH, PRL, SHBG | [45] |
10 | H | intratesticular fluid (PTA) | centriguation, extraction, derivatization | LC-MS/MS | DHT, T, E2 | T, DHT, E2 | [44] |
10 | H | intratesticular fluid (PTA) | centrifugation, extraction, HPLC separation | LC-MS/MS | DHT, T, E2, 3α-diol | not given | [42] |
7 | H | intratesticular fluid (PTA) | centrifugation, extraction | IA | T | LH, FSH, T | [46] |
29 | H | intratesticular fluid (FNA) | centrifugation, extraction | RIA | T | LH, FSH, T | [47] |
20 | H | intratesticular fluid (FNA) | centrifugation, extraction | LC-MS/MS | DHT, T | T, LH, FSH | [48] |
52 | old men with PCa/young men with varicocele | orchiectomy of prostatic carcinoma/biopsy of varicocele testes | homogenization, centrifugation, extraction, Sephadex column chromatography | RIA | T | T, LH, FSH | [49] |
17 | PCa | orchiectomy | homogenization, extraction, column chromatography separation | RIA | DHT, T, adione | T, LH, FSH, SHBG | [50,51] |
Diagnosis | Concentrations Testes [ng/mL] | Concentrations Serum [ng/mL] | Reference |
---|---|---|---|
H, undergoing vasectomy | DHT [not detectable], T [356 ± 24.8], × | T [3.7 ± 0.3], × | [24] |
azoospermic | DHT [98.8 ± 145], T [603 ± 684], adione [22.9 ± 37.2], E2 [19,067 ± 24,514], £ | T [0.004 ± 0.001], E2 [0.021 ± 0.009], £ | [45] |
H | DHT [3.7,(1.1–4.7)], T [486 (429–897)], E2 [2.7,(1.3–2.4)], § | DHT [0.2,(0.12–0.24)], T [3.0,(2.3–3.9)], E2 [(0.025,(0.019–0.029)], § | [44] |
H | DHT [13.4 ± 1.8], T [572 ± 102], E2 [15.7 ± 2.3], £ | none | [42] |
H after hormonal contraception | T [238 ± 39.3], × | T [6.59 ± 0.55], × | [46] |
H after hormonal contraception | T [339 ± 22.83], × | T [4.07 ± 0.32], × | [47] |
H after male contraceptive treatment | DHT [1.48 ± 0.23], T [10.12 ± 2.31], £ | none | [48] |
old men with PCa/young men with varicocele | aged men T [860 ± 530 ng/g tissue] × young men T [1700 ± 1100 ng/g tissue] × | aged men T [3.34 ± 1.93] × young men T [6.42 ± 1.91] × | [49] |
PCa | T (not treated) [398 ± 60 ng/g tissue] × | dependent on the treatment | [50,51] |
Diagnosis | Concentrations Tissue [ng/g] | Concentrations Serum [ng/mL] | Reference |
---|---|---|---|
PCa | DHT [7.06, (8.75–11.63)], T [0.57, (0.94–1.38)], ¥ | DHT [0.33 (0.33–0.38)], T [(3.55 [3.49–3.90)] ¥ | [34] |
H | DHT [2.8 ± 0.2], T [0.6 ± 0.2], adione [0.27 ± 0.03], × | adione [0.8 ± 0.2], × | [26] |
H | DHT [4.03], T [0.22], adione [0.16, (1, 0.33)], § | DHT [0.36, (0.27, 0.47)], T [4.50, (3.15, 5.16)], § | [35] |
PCa | DHT [2.08 ± 0.17], T [0.67 ± 0.16] | DHT and T not given | [29] |
PCa | DHT [6.81 (5.3, 8.06), T [0.215, (0.17, 0.29)], adione [0.58 (0.42, 0.82)], E2 [0.05 (0.04, 0.07)], § | DHT [(0.50 (0.38, 0.67)], T [4.68 (3.4, 6.21)], adione [0.69 (0.52, 0.91)], E2 [0.03 (0.02, 0.04)], § | [20] |
BPH (48), PCa (45), | DHT [10.3 ± 7.2], T [0.79 ± 0.66], DHT range: [0.98–24.9, median 7.7], T range: [0.1–3.12, median 0.53], £ | not given | [36] |
BPH (30), PCa (37) | BPH: DHT [7.39 ± 3.08], T [0.37 ± 0.23], PCa: DHT [7.52 ± 3.65], T [0.85 ± 0.92], £ | DHT [0.48 ± 0.17], T [4.77 ± 1.53], £ | [37] |
BPH (57), PCa (121) | BPH: DHT [1.87 ± 1.87], T [0.99 ± 1.31], adione [1.14 ± 1.53], PCa: DHT [2.57 ± 1.97], T [1.32 ± 2.02], adione [1.42 ± 1.28], × | BPH: DHT [0.62 ± 0.2], T [4.56 ± 2.19], PCa: T [4.25 ± 1.98], DHT [0.59 ± 0.21], × | [33] |
PCa | DHT [5.96 ± 0.61], T [ < 0.0374—under LOD], × | peripheral: DHT [0.48 ± 0.006], T [3.06 ± 0.2], local: DHT [0.95 ± 0.004], T [2.83 ± 0.18], × | [38] |
PCa with ADT (18), AS-BP (18) | AS-BP: DHT [3.98], T [0.79], PCa: DHT [0.36], T [1.08], ¢ | not given | [39] |
PCa (47), H (34) | PCa: DHT [5.41 ± 2.55], suspected without PCa: DHT [5.61 ± 1.96], £ | PCa: DHT [0.51 ± 0.27], T [4.45], adione [0.81 ± 0.35],H: DHT [0.44 ± 0.23], T [4.25 ± 1.33], adione [0.86 ± 0.41], £ | [31] |
PCa | DHT [4.38 ± 0.99], T [0.26 ± 0.17], £ | range of T in castrate men: [0.094–0.27] | [32] |
BPH, bladder cancer | high volume prostate: DHT [6.1, (5.5–6.7)], T [0.43, (0.24–0.61)], E2 [0.0155, (0.0115–0.0194)] normal volume prostate: DHT [5.1, (4.5–5.7)], T [0.47, (0.29–0.66)], E2 [0.02, (0.02–0.03)] | high volume prostate: DHT [0.4, (0.3–0.5)], T [4.4, (3.6–5.3)], E2 [0.03, (0.02–0.03)] normal volume prostate: DHT [0.4, (0.3–0.5)], T [5.0, (4.1–6)], E2 [28.7, (24.3–32.7)] | [40] |
PCa | DHT [6.43, (6.08, 6.81)], T [0.21, (0.19, 0.22)], adione [0.59, (0.54, 0.65)], E2 [0.04, (0.04, 0.05)], * | DHT [0.46, (0.43, 0.5)], adione [0.68, (0.63, 0.73)], E2 [0.03, (0.03, 0.03)], * | [41] |
BPH | adione [~7.5] | [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimková, M.; Heráček, J.; Drašar, P.; Hampl, R. Determination of Intraprostatic and Intratesticular Androgens. Int. J. Mol. Sci. 2021, 22, 466. https://doi.org/10.3390/ijms22010466
Šimková M, Heráček J, Drašar P, Hampl R. Determination of Intraprostatic and Intratesticular Androgens. International Journal of Molecular Sciences. 2021; 22(1):466. https://doi.org/10.3390/ijms22010466
Chicago/Turabian StyleŠimková, Markéta, Jiří Heráček, Pavel Drašar, and Richard Hampl. 2021. "Determination of Intraprostatic and Intratesticular Androgens" International Journal of Molecular Sciences 22, no. 1: 466. https://doi.org/10.3390/ijms22010466
APA StyleŠimková, M., Heráček, J., Drašar, P., & Hampl, R. (2021). Determination of Intraprostatic and Intratesticular Androgens. International Journal of Molecular Sciences, 22(1), 466. https://doi.org/10.3390/ijms22010466