MicroRNAs as Biomarkers for Nephrotic Syndrome
Abstract
:1. Introduction
2. miRNAs in Nephrotic Syndrome
3. miRNAs in Membranous Glomerulonephropathy
4. Biomarkers in Minimal Change Nephrotic Syndrome and Focal Segmental Glomerulosclerosis
5. miRNAs in Minimal Change Nephrotic Syndrome and Focal Segmental Glomerulosclerosis
6. Future Requirement for Further Exploration
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NS | nephrotic syndrome |
MCNS | minimal change nephrotic syndrome |
FSGS | focal segmental glomerulosclerosis |
MGN | membranous glomerulonephropathy |
suPAR | soluble form of the urokinase receptor |
miRNA | microRNA |
3′-UTR | three prime untranslated region |
PLA2R1 | phospholipase A2 receptor 1 |
THSD7A | thrombospondin type-1 domain-containing 7A |
NELL-1 | neural epidermal growth factor-like 1 protein |
TNFSF11 | TNF superfamily member 11 |
JNK | c-Jun N-terminal kinase |
LPS | lipopolysaccharide |
IL-13 | interleukin 13 |
Angptl-4 | angiopoietin-like 4 |
uPAR | urokinase plasminogen activator receptor |
PAN | puromycin aminonucleoside |
TRPC1 | transient receptor potential canonical 1 |
DN | diabetes nephropathy |
PTEN | phosphatase and tensin homolog |
BCL2L11 | Bcl-2-like protein 11 |
CXCL14 | C-X-C motif chemokine ligand 14 |
WT1 | Wilms’ tumor protein |
TRPC6 | transient receptor potential cation channel subfamily C member 6 |
PPP3CA | protein phosphatase 3 catalytic subunit alpha |
PPP3CB | protein phosphatase 3 catalytic subunit beta |
PPP3R1 | protein phosphatase 3 regulatory subunit alpha |
NFATC3 | nuclear factor of activated T cells 3 |
ITGB3 | integrin β3 |
BNIP3L | BCL2 interacting protein 3 like |
NOS | not otherwise specified |
References
- Bierzynska, A.; Saleem, M. Recent advances in understanding and treating nephrotic syndrome. F1000Research 2017, 6, 121. [Google Scholar] [PubMed]
- Bagga, A. Revised guidelines for management of steroid-sensitive nephrotic syndrome. Indian J. Nephrol. 2008, 18, 31–39. [Google Scholar] [PubMed]
- Haas, M.; Meehan, S.M.; Karrison, T.G.; Spargo, B.H. Changing etiologies of unexplained adult nephrotic syndrome: A comparison of renal biopsy findings from 1976–1979 and 1995–1997. Am. J. Kidney Dis. 1997, 30, 621–631. [Google Scholar] [PubMed]
- Cameron, J.S. Nephrotic syndrome in the elderly. Semin. Nephrol. 1996, 16, 319–329. [Google Scholar]
- Kim, S.H.; Park, S.J.; Han, K.H.; Kronbichler, A.; Saleem, M.A.; Oh, J.; Lim, B.J.; Shin, J.I. Pathogenesis of minimal change nephrotic syndrome: An immunological concept. Korean J. Pediatr. 2016, 59, 205–211. [Google Scholar]
- McCarthy, E.T.; Sharma, M.; Savin, V.J. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2010, 5, 2115–2121. [Google Scholar]
- Sharma, M.; Sharma, R.; Reddy, S.R.; McCarthy, E.T.; Savin, V.J. Proteinuria after injection of human focal segmental glomerulosclerosis factor. Transplantation 2002, 73, 366–372. [Google Scholar]
- Wei, C.; El Hindi, S.; Li, J.; Fornoni, A.; Goes, N.; Sageshima, J.; Maiguel, D.; Karumanchi, S.A.; Yap, H.K.; Saleem, M.; et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 2011, 17, 952–960. [Google Scholar]
- Selbach, M.; Schwanhausser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455, 58–63. [Google Scholar]
- Baek, D.; Villen, J.; Shin, C.; Camargo, F.D.; Gygi, S.P.; Bartel, D.P. The impact of microRNAs on protein output. Nature 2008, 455, 64–71. [Google Scholar]
- Leierer, J.; Mayer, G.; Kronbichler, A. Primary focal segmental glomerulosclerosis: miRNAs and targeted therapies. Eur. J. Clin. Investig. 2016, 46, 954–964. [Google Scholar]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. (Lausanne) 2018, 9, 402. [Google Scholar] [PubMed] [Green Version]
- Tufekci, K.U.; Oner, M.G.; Meuwissen, R.L.; Genc, S. The role of microRNAs in human diseases. Methods Mol. Biol. 2014, 1107, 33–50. [Google Scholar]
- Kipkeeva, F.; Muzaffarova, T.; Korotaeva, A.; Nikulin, M.; Grishina, K.; Mansorunov, D.; Apanovich, P.; Karpukhin, A. MicroRNA in Gastric Cancer Development: Mechanisms and Biomarkers. Diagnostics 2020, 10, 891. [Google Scholar]
- James, J.P.; Riis, L.B.; Malham, M.; Hogdall, E.; Langholz, E.; Nielsen, B.S. MicroRNA Biomarkers in IBD-Differential Diagnosis and Prediction of Colitis-Associated Cancer. Int. J. Mol. Sci. 2020, 21, 7893. [Google Scholar]
- Wu, Y.L.; Li, H.F.; Chen, H.H.; Lin, H. MicroRNAs as Biomarkers and Therapeutic Targets in Inflammation- and Ischemia-Reperfusion-Related Acute Renal Injury. Int. J. Mol. Sci. 2020, 21, 6738. [Google Scholar]
- Ramanathan, K.; Padmanabhan, G. MiRNAs as potential biomarker of kidney diseases: A review. Cell. Biochem. Funct. 2020. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, C.; Chen, X.; Zhong, T.; Cai, X.; Chen, S.; Shi, Y.; Hu, J.; Guan, X.; Xia, Z.; et al. Increased serum and urinary microRNAs in children with idiopathic nephrotic syndrome. Clin. Chem. 2013, 59, 658–666. [Google Scholar]
- Zhang, Y.R.; Wu, Y.F.; Wang, H.; Lin, X.M.; Zhang, X.M. Role of microRNA-17-5p in the pathogenesis of pediatric nephrotic syndrome and related mechanisms. Zhongguo Dang Dai Er Ke Za Zhi 2020, 22, 958–963. [Google Scholar]
- Chen, T.; Wang, C.; Yu, H.; Ding, M.; Zhang, C.; Lu, X.; Zhang, C.Y.; Zhang, C. Increased urinary exosomal microRNAs in children with idiopathic nephrotic syndrome. EBioMedicine 2019, 39, 552–561. [Google Scholar]
- Wang, H.; Hu, Z.; Chen, L. Decreased Serum miR-503 Level in Children with Nephrotic Syndrome. Clin. Lab. 2015, 61, 1917–1926. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Wang, C.; Yuan, Y.; Zhu, Y.; Yin, Z.; Xia, Z.; Zhang, C. Differentially expressed microRNAs in kidney biopsies from various subtypes of nephrotic children. Exp. Mol. Pathol. 2015, 99, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Kwan, B.C.; Lai, F.M.; Chow, K.M.; Li, P.K.; Szeto, C.C. Urinary sediment miRNA levels in adult nephrotic syndrome. Clin. Chim. Acta 2013, 418, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Benavides, P.; Arellano-Rodriguez, M.; Bollain, Y.G.J.J.; Franco-Molina, M.A.; Rangel-Ochoa, G.A.; Avalos-Diaz, E.; Herrera-Esparza, R.; Rodriguez-Padilla, C. Cytoplasmic Localization of WT1 and Decrease of miRNA-16-1 in Nephrotic Syndrome. Biomed. Res. Int. 2017, 2017, 9531074. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Sun, F.; Yu, P.F.; Li, J.X.; Yuan, D.; Chang, J.; Lin, S.H. Differential microRNA expression in the serum of patients with nephrotic syndrome and clinical correlation analysis. Int. J. Clin. Exp. Pathol. 2015, 8, 7282–7286. [Google Scholar]
- Sui, W.; Lin, H.; Li, H.; Yan, Q.; Chen, J.; Dai, Y. Circulating microRNAs as potential biomarkers for nephrotic syndrome. Iran J. Kidney Dis. 2014, 8, 371–376. [Google Scholar]
- Trionfini, P.; Benigni, A. MicroRNAs as Master Regulators of Glomerular Function in Health and Disease. J. Am. Soc. Nephrol. 2017, 28, 1686–1696. [Google Scholar] [CrossRef]
- Beck, L.H., Jr.; Bonegio, R.G.; Lambeau, G.; Beck, D.M.; Powell, D.W.; Cummins, T.D.; Klein, J.B.; Salant, D.J. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 2009, 361, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Sethi, S.; Debiec, H.; Madden, B.; Charlesworth, M.C.; Morelle, J.; Gross, L.; Ravindran, A.; Buob, D.; Jadoul, M.; Fervenza, F.C.; et al. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int. 2020, 97, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Tomas, N.M.; Beck, L.H., Jr.; Meyer-Schwesinger, C.; Seitz-Polski, B.; Ma, H.; Zahner, G.; Dolla, G.; Hoxha, E.; Helmchen, U.; Dabert-Gay, A.S.; et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 2014, 371, 2277–2287. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Cao, Y.; Dai, H.; Yuan, L.; Shi, L.; Zhang, Y. Anti-Phospholipase A2 Receptor (Anti-PLA2R) Antibody in Diagnosis and Treatment of Idiopathic Membranous Nephropathy: A Single-Center Observational Study in China. Med. Sci. Monit. 2019, 25, 9364–9368. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lin, X.; Huang, J.; Tan, K.; Chen, Y.; Peng, W.; Li, W.; Dai, Y. Integrated profiling of microRNA expression in membranous nephropathy using high-throughput sequencing technology. Int. J. Mol. Med. 2014, 33, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Liu, B.; Xue, H.; Zhou, Q.Q.; Peng, L. miR-217 is a Useful Diagnostic Biomarker and Regulates Human Podocyte Cells Apoptosis via Targeting TNFSF11 in Membranous Nephropathy. Biomed. Res. Int. 2017, 2017, 2168767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sha, W.G.; Shen, L.; Zhou, L.; Xu, D.Y.; Lu, G.Y. Down-regulation of miR-186 contributes to podocytes apoptosis in membranous nephropathy. Biomed. Pharmacother. 2015, 75, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Hejazian, S.M.; Ardalan, M.; Shoja, M.M.; Samadi, N.; Zununi Vahed, S. Expression Levels of miR-30c and miR-186 in Adult Patients with Membranous Glomerulonephritis and Focal Segmental Glomerulosclerosis. Int. J. Nephrol. Renovasc. Dis. 2020, 13, 193–201. [Google Scholar] [CrossRef]
- Rahbar Saadat, Y.; Hejazian, S.M.; Nariman-Saleh-Fam, Z.; Bastami, M.; Poursheikhani, A.; Shoja, M.M.; Ardalan, M.; Zununi Vahed, S. Glucocorticoid receptors and their upstream epigenetic regulators in adults with steroid-resistant nephrotic syndrome. Biofactors 2020. [Google Scholar] [CrossRef]
- Liu, D.; Liu, F.; Wang, X.; Qiao, Y.; Pan, S.; Yang, Y.; Hu, Y.; Zhang, Y.; Tian, F.; Liu, Z. MiR-130a-5p prevents angiotensin II-induced podocyte apoptosis by modulating M-type phospholipase A2 receptor. Cell Cycle 2018, 17, 2484–2495. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Ren, Y.; Li, J. Application of miR-193a/WT1/PODXL axis to estimate risk and prognosis of idiopathic membranous nephropathy. Ren. Fail. 2019, 41, 704–717. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Zhang, X.; Wang, W.; Zhang, W.; Wang, H.; Xin, G. Both Peripheral Blood and Urinary miR-195-5p, miR-192-3p, miR-328-5p and Their Target Genes PPM1A, RAB1A and BRSK1 May Be Potential Biomarkers for Membranous Nephropathy. Med. Sci. Monit. 2019, 25, 1903–1916. [Google Scholar] [CrossRef]
- Barbagallo, C.; Passanisi, R.; Mirabella, F.; Cirnigliaro, M.; Costanzo, A.; Lauretta, G.; Barbagallo, D.; Bianchi, C.; Pagni, F.; Castorina, S.; et al. Upregulated microRNAs in membranous glomerulonephropathy are associated with significant downregulation of IL6 and MYC mRNAs. J. Cell. Physiol. 2019, 234, 12625–12636. [Google Scholar] [CrossRef]
- Inoue-Torii, A.; Kitamura, S.; Wada, J.; Tsuji, K.; Makino, H. The level of urinary semaphorin3A is associated with disease activity in patients with minimal change nephrotic syndrome. Int. J. Nephrol. Renovasc. Dis. 2017, 10, 167–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sang, Y.; Tsuji, K.; Inoue-Torii, A.; Fukushima, K.; Kitamura, S.; Wada, J. Semaphorin3A-Inhibitor Ameliorates Doxorubicin-Induced Podocyte Injury. Int. J. Mol. Sci. 2020, 21, 4099. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, R.J.; Freeman, G.J.; Sharpe, A.H. The B7 family revisited. Annu. Rev. Immunol. 2005, 23, 515–548. [Google Scholar] [CrossRef] [PubMed]
- Ishimoto, T.; Cara-Fuentes, G.; Wang, H.; Shimada, M.; Wasserfall, C.H.; Winter, W.E.; Rivard, C.J.; Araya, C.E.; Saleem, M.A.; Mathieson, P.W.; et al. Serum from minimal change patients in relapse increases CD80 expression in cultured podocytes. Pediatr. Nephrol. 2013, 28, 1803–1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garin, E.H.; Mu, W.; Arthur, J.M.; Rivard, C.J.; Araya, C.E.; Shimada, M.; Johnson, R.J. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int. 2010, 78, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiser, J.; von Gersdorff, G.; Loos, M.; Oh, J.; Asanuma, K.; Giardino, L.; Rastaldi, M.P.; Calvaresi, N.; Watanabe, H.; Schwarz, K.; et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J. Clin. Investig. 2004, 113, 1390–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, H.K.; Cheung, W.; Murugasu, B.; Sim, S.K.; Seah, C.C.; Jordan, S.C. Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: Evidence for increased IL-13 mRNA expression in relapse. J. Am. Soc. Nephrol. 1999, 10, 529–537. [Google Scholar]
- Mishra, O.P.; Teli, A.S.; Singh, U.; Abhinay, A.; Prasad, R. Serum immunoglobulin E and interleukin-13 levels in children with idiopathic nephrotic syndrome. J. Trop. Pediatr. 2014, 60, 467–471. [Google Scholar] [CrossRef] [Green Version]
- Van Den Berg, J.G.; Aten, J.; Chand, M.A.; Claessen, N.; Dijkink, L.; Wijdenes, J.; Lakkis, F.G.; Weening, J.J. Interleukin-4 and interleukin-13 act on glomerular visceral epithelial cells. J. Am. Soc. Nephrol. 2000, 11, 413–422. [Google Scholar]
- Lai, K.W.; Wei, C.L.; Tan, L.K.; Tan, P.H.; Chiang, G.S.; Lee, C.G.; Jordan, S.C.; Yap, H.K. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J. Am. Soc. Nephrol. 2007, 18, 1476–1485. [Google Scholar] [CrossRef] [Green Version]
- Bakker, W.W.; van Dael, C.M.; Pierik, L.J.; van Wijk, J.A.; Nauta, J.; Borghuis, T.; Kapojos, J.J. Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr. Nephrol. 2005, 20, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Lennon, R.; Singh, A.; Welsh, G.I.; Coward, R.J.; Satchell, S.; Ni, L.; Mathieson, P.W.; Bakker, W.W.; Saleem, M.A. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J. Am. Soc. Nephrol. 2008, 19, 2140–2149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clement, L.C.; Avila-Casado, C.; Mace, C.; Soria, E.; Bakker, W.W.; Kersten, S.; Chugh, S.S. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat. Med. 2011, 17, 117–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Liu, J.; Wu, N.; Zhang, H.; Zhang, S.; Li, L.; Wang, M. ANGPTL4 overexpression is associated with progression and poor prognosis in breast cancer. Oncol. Lett. 2020, 20, 2499–2505. [Google Scholar] [CrossRef] [PubMed]
- Clement, L.C.; Mace, C.; Avila-Casado, C.; Joles, J.A.; Kersten, S.; Chugh, S.S. Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat. Med. 2014, 20, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, A.Z.; Kopp, J.B. Focal Segmental Glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2017, 12, 502–517. [Google Scholar] [CrossRef] [Green Version]
- Maas, R.J.; Deegens, J.K.; Wetzels, J.F. Serum suPAR in patients with FSGS: Trash or treasure? Pediatr. Nephrol. 2013, 28, 1041–1048. [Google Scholar] [CrossRef]
- Shuai, T.; Pei Jing, Y.; Huang, Q.; Xiong, H.; Liu, J.; Zhu, L.; Yang, K.; Jian, L. Serum soluble urokinase type plasminogen activated receptor and focal segmental glomerulosclerosis: A systematic review and meta-analysis. BMJ Open 2019, 9, e031812. [Google Scholar] [CrossRef]
- Lee, J.M.; Yang, J.W.; Kronbichler, A.; Eisenhut, M.; Kim, G.; Lee, K.H.; Shin, J.I. Increased Serum Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) Levels in FSGS: A Meta-Analysis. J. Immunol. Res. 2019, 2019, 5679518. [Google Scholar] [CrossRef] [Green Version]
- Skorecki, K.L.; Freedman, B.I. A suPAR Biomarker for Chronic Kidney Disease. N. Engl. J. Med. 2015, 373, 1971–1972. [Google Scholar] [CrossRef]
- Meijers, B.; Maas, R.J.; Sprangers, B.; Claes, K.; Poesen, R.; Bammens, B.; Naesens, M.; Deegens, J.K.; Dietrich, R.; Storr, M.; et al. The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int. 2014, 85, 636–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco Palacios, C.R.; Lieske, J.C.; Wadei, H.M.; Rule, A.D.; Fervenza, F.C.; Voskoboev, N.; Garovic, V.D.; Zand, L.; Stegall, M.D.; Cosio, F.G.; et al. Urine but not serum soluble urokinase receptor (suPAR) may identify cases of recurrent FSGS in kidney transplant candidates. Transplantation 2013, 96, 394–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramezani, A.; Devaney, J.M.; Cohen, S.; Wing, M.R.; Scott, R.; Knoblach, S.; Singhal, R.; Howard, L.; Kopp, J.B.; Raj, D.S. Circulating and urinary microRNA profile in focal segmental glomerulosclerosis: A pilot study. Eur. J. Clin. Investig. 2015, 45, 394–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Wu, D.; Du, H.; Nie, F.; Pang, X.; Xu, Y. MicroRNA-135a is involved in podocyte injury in a transient receptor potential channel 1-dependent manner. Int. J. Mol. Med. 2017, 40, 1511–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Zhang, W.; Chen, H.M.; Liu, C.; Wu, J.; Shi, S.; Liu, Z.H. Plasma microRNA-186 and proteinuria in focal segmental glomerulosclerosis. Am. J. Kidney Dis. 2015, 65, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zheng, C.; Fan, Y.; Zeng, C.; Chen, Z.; Qin, W.; Zhang, C.; Zhang, W.; Wang, X.; Zhu, X.; et al. Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J. Am. Soc. Nephrol. 2014, 25, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Fu, J.; Luan, J.; Jiao, C.; Cui, X.; Cao, X.; Zhang, Y.; Wang, Y.; Kopp, J.B.; Pi, J.; et al. miR-150 inhibitor ameliorates adriamycin-induced focal segmental glomerulosclerosis. Biochem. Biophys. Res. Commun. 2020, 522, 618–625. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, L.N.; Li, W.; Gong, L.; Yu, T.; Zuo, Q.F.; Zhao, H.W.; Zou, Q.M. Plasma microRNA panel is a novel biomarker for focal segmental glomerulosclerosis and associated with podocyte apoptosis. Cell. Death Dis. 2018, 9, 533. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, C.; Chen, H.; Li, L.; Tu, Y.; Liu, C.; Shi, S.; Zen, K.; Liu, Z. Evaluation of microRNAs miR-196a, miR-30a-5P, and miR-490 as biomarkers of disease activity among patients with FSGS. Clin. J. Am. Soc. Nephrol. 2014, 9, 1545–1552. [Google Scholar] [CrossRef] [Green Version]
- Gebeshuber, C.A.; Kornauth, C.; Dong, L.; Sierig, R.; Seibler, J.; Reiss, M.; Tauber, S.; Bilban, M.; Wang, S.; Kain, R.; et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat. Med. 2013, 19, 481–487. [Google Scholar] [CrossRef]
- Cai, X.; Xia, Z.; Zhang, C.; Luo, Y.; Gao, Y.; Fan, Z.; Liu, M.; Zhang, Y. Serum microRNAs levels in primary focal segmental glomerulosclerosis. Pediatr. Nephrol. 2013, 28, 1797–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Zhou, Y.; Jiang, L.; Li, D.; Yang, J.; Zhang, C.Y.; Zen, K. Urinary microRNA-10a and microRNA-30d serve as novel, sensitive and specific biomarkers for kidney injury. PLoS ONE 2012, 7, e51140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuji, K.; Kitamura, S.; Wada, J. Immunomodulatory and Regenerative Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Renal Diseases. Int. J. Mol. Sci. 2020, 21, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, R.; Zhou, L.; Zhou, Y.; Zhao, Y.; Li, Q.; Ni, D.; Hu, Y.; Long, Y.; Liu, J.; Lyu, Z.; et al. MiR-30a Inhibits the Epithelial--Mesenchymal Transition of Podocytes through Downregulation of NFATc3. Int. J. Mol. Sci. 2015, 16, 24032–24047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Zheng, C.; Wang, X.; Yun, S.; Zhao, Y.; Liu, L.; Lu, Y.; Ye, Y.; Zhu, X.; Zhang, C.; et al. MicroRNA-30 family members regulate calcium/calcineurin signaling in podocytes. J. Clin. Investig. 2015, 125, 4091–4106. [Google Scholar] [CrossRef] [Green Version]
- Lang, Y.; Zhao, Y.; Zheng, C.; Lu, Y.; Wu, J.; Zhu, X.; Zhang, M.; Yang, F.; Xu, X.; Shi, S.; et al. MiR-30 family prevents uPAR-ITGB3 signaling activation through calcineurin-NFATC pathway to protect podocytes. Cell. Death Dis. 2019, 10, 401. [Google Scholar] [CrossRef]
- Guo, Y.; Deng, X.; Chen, S.; Yang, L.; Ni, J.; Wang, R.; Lin, J.; Bai, M.; Jia, Z.; Huang, S.; et al. MicroRNA-30e targets BNIP3L to protect against aldosterone-induced podocyte apoptosis and mitochondrial dysfunction. Am. J. Physiol. Renal. Physiol. 2017, 312, F589–F598. [Google Scholar] [CrossRef] [Green Version]
- Chiang, H.R.; Schoenfeld, L.W.; Ruby, J.G.; Auyeung, V.C.; Spies, N.; Baek, D.; Johnston, W.K.; Russ, C.; Luo, S.; Babiarz, J.E.; et al. Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes. Genes Dev. 2010, 24, 992–1009. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, P.; Sun, T.; Li, D.; Xu, X.; Rui, Y.; Li, C.; Chong, M.; Ibrahim, T.; Mercatali, L.; et al. miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat. Cell. Biol. 2013, 15, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, K.; Furukawa, C.; Haraguchi, T.; Inada, K.; Shiogama, K.; Tagawa, T.; Fujita, S.; Ueno, Y.; Ogata, A.; Ito, M.; et al. MicroRNAs miR-199a-5p and -3p target the Brm subunit of SWI/SNF to generate a double-negative feedback loop in a variety of human cancers. Cancer Res. 2011, 71, 1680–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, S.; Liang, Y.; Zhao, M.; Liang, G.; Long, H.; Zhao, S.; Wang, Y.; Yin, H.; Zhang, P.; Zhang, Q.; et al. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheumatol. 2012, 64, 2953–2963. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pi, J.; Zou, D.; Wang, X.; Xu, J.; Yu, S.; Zhang, T.; Li, F.; Zhang, X.; Zhao, H.; et al. microRNA arm-imbalance in part from complementary targets mediated decay promotes gastric cancer progression. Nat. Commun. 2019, 10, 4397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
miRNA | Analyte | Disease | Comparison | Levels | Feature | Reference |
---|---|---|---|---|---|---|
miR-30a-5p miR-151-3p miR-150 miR-191 miR-19b | serum | Child NS | healthy control | ↑ | [18] | |
miR-30a-5p | urine | Child NS | healthy control | ↑ | [18] | |
miR-17-5p | peripheral blood | Child NS | healthy control | ↑ | [19] | |
miR-194-5p miR-146b-5p miR-378a-3p miR-23b-3p miR-30a-5p | urine | Child NS | healthy control | ↑ |
| [20] |
miR-503 | serum | Child NS | healthy control | ↓ | [21] | |
miR-191 | kidney | Child NS | healthy control | ↑ | [22] | |
miR-151-3p | kidney | Child NS | healthy control | ↓ | [22] | |
miR-638 | urine | NS | non-NS control | ↓ | [23] | |
miR-16-1 | serum | NS | healthy control | ↓ | [24] | |
miR-181a miR-210 miR-30a miR-942 miR-192 miR-586 | serum | NS | healthy control | ↑ |
| [25] |
miR-181a | serum | NS | healthy control | ↑ | [26] |
miRNA | Analyte | Comparison | Levels | Mechanism | Reference |
---|---|---|---|---|---|
miR-217 | Peripheral blood lymphocytes | healthy control | ↓ | [32] | |
miR-217 | plasma kidney | healthy control | ↓ | podocyte apoptosis | [33] |
miR-30c | Peripheral blood mononuclear cells | FSGS healthy control | ↑ | [35] | |
miR-186 | plasma | FSGS healthy control | ↑ | [35] | |
miR-30a | Peripheral blood mononuclear cells | FSGS | ↑ | [36] | |
miR-24 | Peripheral blood mononuclear cells | FSGS healthy control | ↓ | [36] | |
miR-370 | Peripheral blood mononuclear cells | FSGS healthy control | ↑ | [36] | |
miR-186 | kidney | healthy control | ↓ | podocyte apoptosis | [34] |
miR-130-5p | kidney | control patients | ↓ | PLA2R- podocyte apoptosis | [37] |
miR-193a | urine | healthy control | ↑ | [38] | |
miR-195-5p miR-192-3p | Peripheral blood mononuclear cells urine | healthy control | ↑ | [39] | |
miR-328-5p | Peripheral blood mononuclear cells urine | healthy control | ↓ | [39] | |
let-7a-5p let-7b-5p let-7c-5p let-7d-5p miR-107 miR-423-5p miR-516-3p miR-532-3p miR-1275 | kidney | normal kidney from renal cell carcinoma | ↑ | [40] | |
miR-129-3p | kidney | normal kidney from renal cell carcinoma | ↓ | [40] |
miRNA | Analyte | Disease | Comparison | Levels | Mechanism | Reference |
---|---|---|---|---|---|---|
miR-150 | kidney | Child MCNS | other NS types | ↓ | [22] | |
miR-30b miR-30c miR-34b miR-34c miR-342 | plasma | MCNS | FSGS healthy control | ↑ | [63] | |
miR-1225-5p | urine | MCNS | FSGS healthy control | ↑ | [63] | |
miR-135a | kidney | FSGS | normal control | ↑ | TRP channel 1-disarray of podocyte cytoskeleton | [64] |
miR-125b miR-186 miR-193a-3p | plasma | FSGS | MGN DN healthy control | ↑ | [65] | |
miR-155 | urine | FSGS | MCNS healthy control | ↑ | [63] | |
miR-1915 miR-663 | urine | FSGS | MCNS healthy control | ↓ | [63] | |
miR-30a miR-30b miR-30c miR-30d miR-30e | kidney | FSGS | healthy control | ↓ | [66] | |
miR-150 | kidney | FSGS | healthy control | ↑ | fibrosis inflammation | [67] |
miR-17 miR-451 miR-106a miR-19b | plasma | FSGS | healthy control | ↓ | podocyte apoptosis | [68] |
miR-196a miR-30a-5p miR-490 | urine | FSGS | remission period | ↑ | [69] | |
miR-193a | kidney | FSGS | healthy controls other glomerular diseases | ↑ | regulation of WT1 | [70] |
miR192 miR-205 | serum | FSGS | MCNS | ↑ | [71] | |
miR-10a miR-30d | urine | FSGS | healthy control | ↑ | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuji, K.; Kitamura, S.; Wada, J. MicroRNAs as Biomarkers for Nephrotic Syndrome. Int. J. Mol. Sci. 2021, 22, 88. https://doi.org/10.3390/ijms22010088
Tsuji K, Kitamura S, Wada J. MicroRNAs as Biomarkers for Nephrotic Syndrome. International Journal of Molecular Sciences. 2021; 22(1):88. https://doi.org/10.3390/ijms22010088
Chicago/Turabian StyleTsuji, Kenji, Shinji Kitamura, and Jun Wada. 2021. "MicroRNAs as Biomarkers for Nephrotic Syndrome" International Journal of Molecular Sciences 22, no. 1: 88. https://doi.org/10.3390/ijms22010088
APA StyleTsuji, K., Kitamura, S., & Wada, J. (2021). MicroRNAs as Biomarkers for Nephrotic Syndrome. International Journal of Molecular Sciences, 22(1), 88. https://doi.org/10.3390/ijms22010088