When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood
Abstract
:1. Introduction
1.1. Intracerebral and Intraventricular Hemorrhage
1.2. Aneurysmal Subarachnoid Hemorrhage
1.3. Extravasated Blood: More Than Just a Mass Lesion
2. Blood Harbors Numerous Neurotoxins
2.1. Thrombin
2.2. Fibrinogen
2.3. Complement
2.4. Clot-Associated Cell Debris, Leukocytes, and Platelets
2.5. Hemolysate
3. Clinical Evidence Supporting Early and Total Evacuation/Treatment of Intracranial Hemorrhage
3.1. Intracerebral Hemorrhage: Evacuation Efficacy
3.2. Intracerebral Hemorrhage: Surgical Timing
3.3. Intracerebral Hemorrhage: Method of Intervention
3.4. Intraventricular Hemorrhage
3.5. Aneurysmal Subarachnoid Hemorrhage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hallevi, H.; Albright, K.C.; Aronowski, J.; Barreto, A.D.; Martin-Schild, S.; Khaja, A.M.; Gonzales, N.R.; Illoh, K.; Noser, E.A.; Grotta, J.C. Intraventricular hemorrhage: Anatomic relationships and clinical implications. Neurology 2008, 70, 848–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, S.J.; Kim, T.J.; Yoon, B.-W. Epidemiology, Risk Factors, and Clinical Features of Intracerebral Hemorrhage: An Update. J. Stroke 2017, 19, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Asch, C.J.; Luitse, M.J.; Rinkel, G.J.; van der Tweel, I.; Algra, A.; Klijn, C.J. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: A systematic review and meta-analysis. Lancet Neurol. 2010, 9, 167–176. [Google Scholar] [CrossRef]
- Krishnamurthi, R.V.; Moran, A.E.; Forouzanfar, M.H.; Bennett, D.A.; Mensah, G.A.; Lawes, C.M.; Barker-Collo, S.; Connor, M.; Roth, G.A.; Sacco, R.; et al. The Global Burden of Hemorrhagic Stroke: A Summary of Findings from the GBD 2010 Study. Glob. Hear. 2014, 9, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Specogna, A.V.; Patten, S.B.; Turin, T.C.; Hill, M.D. Cost of Spontaneous Intracerebral Hemorrhage in Canada during 1 Decade. Stroke 2014, 45, 284–286. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.I.; Palesch, Y.Y.; Barsan, W.G.; Hanley, D.F.; Hsu, C.Y.; Martin, R.L.; Moy, C.S.; Silbergleit, R.; Steiner, T.; Suarez, J.I.; et al. Intensive Blood-Pressure Lowering in Patients with Acute Cerebral Hemorrhage. N. Engl. J. Med. 2016, 375, 1033–1043. [Google Scholar] [CrossRef]
- Anderson, C.S.; Heeley, E.; Huang, Y.; Wang, J.; Stapf, C.; Delcourt, C.; Lindley, R.; Robinson, T.; Lavados, P.; Neal, B.; et al. Rapid Blood-Pressure Lowering in Patients with Acute Intracerebral Hemorrhage. N. Engl. J. Med. 2013, 368, 2355–2365. [Google Scholar] [CrossRef]
- Baharoglu, M.I.; Cordonnier, C.; Salman, R.A.-S.; de Gans, K.; Koopman, M.M.; Brand, A.; Majoie, C.B.; Beenen, L.F.A.; Marquering, H.; Vermeulen, M.; et al. Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): A randomised, open-label, phase 3 trial. Lancet 2016, 387, 2605–2613. [Google Scholar] [CrossRef]
- Mayer, S.A.; Brun, N.C.; Begtrup, K.; Broderick, J.; Davis, S.; Diringer, M.N.; Skolnick, B.E.; Steiner, T. Recombinant Activated Factor VII for Acute Intracerebral Hemorrhage. N. Engl. J. Med. 2005, 352, 777–785. [Google Scholar] [CrossRef]
- Sprigg, N.; Flaherty, K.; Appleton, J.P.; Salman, R.A.-S.; Bereczki, D.; Beridze, M.; Christensen, H.; Ciccone, A.; Collins, R.; Czlonkowska, A.; et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): An international randomised, placebo-controlled, phase 3 superiority trial. Lancet 2018, 391, 2107–2115. [Google Scholar] [CrossRef] [Green Version]
- Chang, G.Y.; Davis, S.M.; Broderick, J.; Hennerici, M.; Brun, N.C.; Diringer, M.N.; Mayer, S.A.; Begtrup, K.; Steiner, T. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 2007, 68, 471–472. [Google Scholar] [CrossRef]
- Safatli, D.A.; Günther, A.; Schlattmann, P.; Schwarz, F.; Kalff, R.; Ewald, C. Predictors of 30-day mortality in patients with spontaneous primary intracerebral hemorrhage. Surg. Neurol. Int. 2016, 7, S510–S517. [Google Scholar] [CrossRef] [Green Version]
- Broderick, J.P.; Brott, T.G.E.; Duldner, J.; Tomsick, T.; Huster, G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke 1993, 24, 987–993. [Google Scholar] [CrossRef] [Green Version]
- Tuhrim, S.; Horowitz, D.R.; Sacher, M.; Godbold, J.H. Volume of ventricular blood is an important determinant of outcome in supratentorial intracerebral hemorrhage. Crit. Care Med. 1999, 27, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Linn, F.H.; Rinkel, G.J.; Algra, A.; van Gijn, J. Incidence of subarachnoid hemorrhage: Role of region, year, and rate of computed tomography: A meta-analysis. Stroke 1996, 27, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Suarez, J.I.; Tarr, R.W.; Selman, W.R. Aneurysmal subarachnoid hemorrhage. N. Engl. J. Med. 2006, 354, 387–396. [Google Scholar] [CrossRef]
- Van Gijn, J.; Rinkel, G.J. Subarachnoid haemorrhage: Diagnosis, causes and management. Brain 2001, 124, 249–278. [Google Scholar] [CrossRef] [PubMed]
- Nieuwkamp, D.J.E.; Setz, L.; Algra, A.; Linn, F.H.; de Rooij, N.K.; Rinkel, G.J. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: A meta-analysis. Lancet Neurol. 2009, 8, 635–642. [Google Scholar] [CrossRef]
- Hop, J.W.; Rinkel, G.J.; Algra, A.; van Gijn, J. Case-fatality rates and functional outcome after subarachnoid hemorrhage: A systematic review. Stroke 1997, 28, 660–664. [Google Scholar] [CrossRef] [PubMed]
- English, S.W. Long-Term Outcome and Economic Burden of Aneurysmal Subarachnoid Hemorrhage: Are we Only Seeing the Tip of the Iceberg? Neurocrit Care 2020, 33, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Hoh, B.L.; Chi, Y.-Y.; Lawson, M.F.; Mocco, J.; Barker, I.F.G. Length of Stay and Total Hospital Charges of Clipping Versus Coiling for Ruptured and Unruptured Adult Cerebral Aneurysms in the Nationwide Inpatient Sample Database 2002 to. Stroke 2010, 41, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Ko, S.-B.; Choi, H.A.; Carpenter, A.M.; Helbok, R.; Schmidt, J.M.; Badjatia, N.; Claassen, J.; Connolly, E.S.; Mayer, S.A.; Lee, K. Quantitative Analysis of Hemorrhage Volume for Predicting Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Stroke 2011, 42, 669–674. [Google Scholar] [CrossRef] [Green Version]
- Reilly, C.; Amidei, C.; Tolentino, J.; Jahromi, B.S.; Macdonald, R.L. Clot volume and clearance rate as independent predictors of vasospasm after aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2004, 101, 255–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyoda, T.; Yonekura, I.; Iijima, A.; Shinozaki, M.; Tanishima, T. Clot-Clearance Rate in the Sylvian Cistern Is Associated with the Severity of Cerebral Vasospasm After Subarachnoid Hemorrhage. Funct. Rehabil. Neurosurg. Neurotraumatol. 2014, 120, 275–277. [Google Scholar] [CrossRef]
- Adeoye, O.; Woo, D.; Haverbusch, M.; Sekar, P.; Moomaw, C.J.; Broderick, J.; Flaherty, M.L. Surgical Management and Case-Fatality Rates of Intracerebral Hemorrhage in 1988 and 2005. Neurosurgery 2008, 63, 1113–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, K.G.; Brummel, K.; Butenas, S. What is all that thrombin for? J. Thromb. Haemost. 2003, 1, 1504–1514. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Hollenberg, M.D.; Yong, V.W. Combination of Thrombin and Matrix Metalloproteinase-9 Exacerbates Neurotoxicity in Cell Culture and Intracerebral Hemorrhage in Mice. J. Neurosci. 2006, 26, 10281–10291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, S.R.; Dang, T.N.; Dringen, R.; Bishop, G.M. Hemin toxicity: A preventable source of brain damage following hemorrhagic stroke. Redox Rep. 2009, 14, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Regan, R.F.; Panter, S. Neurotoxicity of hemoglobin in cortical cell culture. Neurosci. Lett. 1993, 153, 219–222. [Google Scholar] [CrossRef]
- Levy, Y.S.; Streifler, J.Y.; Panet, H.; Melamed, E.; Offen, D. Hemin-induced apoptosis in PC12 and neuroblastoma cells: Implications for local neuronal death associated with intracerebral hemorrhage. Neurotox. Res. 2002, 4, 609–616. [Google Scholar] [CrossRef]
- Zhang, Y.; Tatsuno, T.; Carney, J.M.; Mattson, M.P. Basic FGF, NGF, and IGFs Protect Hippocampal and Cortical Neurons against Iron-Induced Degeneration. Br. J. Pharmacol. 1993, 13, 378–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smirnova, I.V.; Zhang, S.X.; Citron, B.A.; Arnold, P.M.; Festoff, B.W. Thrombin is an extracellular signal that activates intracellular death protease pathways inducing apoptosis in model motor neurons. J. Neurobiol. 1998, 36, 64–80. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, J.; Hua, Y.; Keep, R.F.; Xiang, J.; Hoff, J.T.; Xi, G. Thrombin-Receptor Activation and Thrombin-Induced Brain Tolerance. Br. J. Pharmacol. 2002, 22, 404–410. [Google Scholar] [CrossRef]
- Donovan, F.M.; Pike, C.J.; Cotman, C.W.; Cunningham, D.D. Thrombin Induces Apoptosis in Cultured Neurons and Astrocytes via a Pathway Requiring Tyrosine Kinase and RhoA Activities. J. Neurosci. 1997, 17, 5316–5326. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Wu, J.; Keep, R.F.; Nakamura, T.; Hoff, J.T.; Xi, G. Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation. Neurosurgery 2006, 58, 542–550. [Google Scholar] [CrossRef]
- Lan, X.; Han, X.; Li, Q.; Yang, Q.-W.; Wang, X.L.X.H.Q.L.J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat. Rev. Neurol. 2017, 13, 420–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, S.; Cheng, Y.; Jin, H.; Guo, D.; Hua, Y.; Keep, R.F.; Xi, G. Microglia Activation and Polarization After Intracerebral Hemorrhage in Mice: The Role of Protease-Activated Receptor. Transl. Stroke Res. 2016, 7, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Nicole, O.; Goldshmidt, A.; Hamill, C.E.; Sorensen, S.D.; Sastre, A.; Lyuboslavsky, P.; Hepler, J.R.; McKeon, R.J.; Traynelis, S.F. Activation of Protease-Activated Receptor-1 Triggers Astrogliosis after Brain Injury. J. Neurosci. 2005, 25, 4319–4329. [Google Scholar] [CrossRef] [Green Version]
- Bar-Shavit, R.; Kahn, A.; Fenton, J.W., 2nd; Wilner, G.D. Chemotactic response of monocytes to thrombin. J. Cell Biol. 1983, 96, 282–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minami, T.; Sugiyama, A.; Wu, S.-Q.; Abid, R.; Kodama, T.; Aird, W.C. Thrombin and Phenotypic Modulation of the Endothelium. Arter. Thromb. Vasc. Biol. 2004, 24, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Alabanza, L.M.; Bynoe, M.S. Thrombin induces an inflammatory phenotype in a human brain endothelial cell line. J. Neuroimmunol. 2012, 245, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stasek, J.E.; Patterson, C.E.; Garcia, J.G.N. Protein kinase C phosphorylates caldesmon77 and vimentin and enhances albumin permeability across cultured bovine pulmonary artery endothelial cell monolayers. J. Cell. Physiol. 1992, 153, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Rabiet, M.-J.; Plantier, J.-L.; Rival, Y.; Genoux, Y.; Lampugnani, M.-G.; Dejana, E. Thrombin-Induced Increase in Endothelial Permeability Is Associated with Changes in Cell-to-Cell Junction Organization. Arter. Thromb. Vasc. Biol. 1996, 16, 488–496. [Google Scholar] [CrossRef]
- Marin, V.; Farnarier, C.; Grès, S.; Kaplanski, S.; Su, M.S.-S.; Dinarello, C.A.; Kaplanski, G. The p38 mitogen-activated protein kinase pathway plays a critical role in thrombin-induced endothelial chemokine production and leukocyte recruitment. Blood 2001, 98, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Anwar, K.N.; True, A.L.; Malik, A.B. Thrombin-induced p65 homodimer binding to downstream NF-kappa B site of the promoter mediates endothelial ICAM-1 expression and neutrophil adhesion. J. Immunol. 1999, 162, 5466–5476. [Google Scholar]
- Kaplanski, G.; Marin, V.; Fabrigoule, M.; Boulay, V.; Benoliel, A.M.; Bongrand, P.; Kaplanski, S.; Farnarier, C. Thrombin-activated human endothelial cells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106). Blood 1998, 92, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Pankonin, G.; Teuscher, E. Stimulation of endothelial cell migration by thrombin. Biomed. Biochim. Acta 1991, 50, 1073–1078. [Google Scholar]
- Duhamel-Clérin, E.; Orvain, C.; Lanza, F.; Cazenave, J.-P.; Klein-Soyer, C. Thrombin Receptor-Mediated Increase of Two Matrix Metalloproteinases, MMP-1 and MMP-3, in Human Endothelial Cells. Arter. Thromb. Vasc. Biol. 1997, 17, 1931–1938. [Google Scholar] [CrossRef]
- Sugawara, T.; Jadhav, V.; Ayer, R.; Chen, W.; Suzuki, H.; Zhang, J.H. Thrombin Inhibition by Argatroban Ameliorates Early Brain Injury and Improves Neurological Outcomes After Experimental Subarachnoid Hemorrhage in Rats. Stroke 2009, 40, 1530–1532. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Liu, F.; Chen, Z.; Hua, Y.; Keep, R.F.; Xi, G. Hydrocephalus after Intraventricular Hemorrhage: The Role of Thrombin. Br. J. Pharmacol. 2013, 34, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Hua, Y.; Garton, H.J.L.; Novakovic, N.; Keep, R.F.; Xi, G. Activation of epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin. CNS Neurosci. Ther. 2019, 25, 1134–1141. [Google Scholar] [CrossRef]
- Maggio, N.; Shavit, E.; Chapman, J.; Segal, M. Thrombin Induces Long-Term Potentiation of Reactivity to Afferent Stimulation and Facilitates Epileptic Seizures in Rat Hippocampal Slices: Toward Understanding the Functional Consequences of Cerebrovascular Insults. J. Neurosci. 2008, 28, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.R.; Drury, I.; Vitarbo, E.; Hoff, J.T. Seizures induced by intracerebral injection of thrombin: A model of intracerebral hemorrhage. J. Neurosurg. 1997, 87, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Isaeva, E.; Hernan, A.; Isaev, D.; Holmes, G.L. Thrombin facilitates seizures through activation of persistent sodium current. Ann. Neurol. 2012, 72, 192–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davalos, D.; Ryu, J.K.; Merlini, M.; Baeten, K.M.; Le Moan, N.; Petersen, M.A.; Deerinck, T.J.; Smirnoff, D.S.; Bedard, C.; Hakozaki, H.; et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat. Commun. 2012, 3, 1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schachtrup, C.; Ryu, J.K.; Helmrick, M.J.; Vagena, E.; Galanakis, D.K.; Degen, J.L.; Margolis, R.U.; Akassoglou, K. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J. Neurosci. 2010, 30, 5843–5854. [Google Scholar] [CrossRef]
- Smiley, S.T.; King, J.A.; Hancock, W.W. Fibrinogen Stimulates Macrophage Chemokine Secretion Through Toll-Like Receptor. J. Immunol. 2001, 167, 2887–2894. [Google Scholar] [CrossRef] [Green Version]
- Petersen, M.A.; Ryu, J.K.; Akassoglou, K. Fibrinogen in neurological diseases: Mechanisms, imaging and therapeutics. Nat. Rev. Neurosci. 2018, 19, 283–301. [Google Scholar] [CrossRef]
- Lishko, V.K.; Kudryk, B.; Yakubenko, V.P.; Yee, V.C.; Ugarova, T.P. Regulated unmasking of the cryptic binding site for integrin alpha M beta 2 in the gamma C-domain of fibrinogen. Biochemistry 2002, 41, 12942–12951. [Google Scholar] [CrossRef]
- Brennan, F.H.; Anderson, A.J.; Taylor, S.M.; Woodruff, T.M.; Ruitenberg, M.J. Complement activation in the injured central nervous system: Another dual-edged sword? J. Neuroinflammation 2012, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Nakamura, T.; Hua, Y.; Keep, R.F.; Younger, J.G.; He, Y.; Hoff, J.T.; Xi, G. The Role of Complement C3 in Intracerebral Hemorrhage-Induced Brain Injury. Br. J. Pharmacol. 2006, 26, 1490–1495. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Fan, R.-M.; Chen, J.-L.; Wang, C.-M.; Zeng, Y.-C.; Han, C.; Jiao, S.; Xia, X.-P.; Chen, W.; Yao, S.-T. Neuroprotective effects of argatroban and C5a receptor antagonist (PMX53) following intracerebral haemorrhage. Clin. Exp. Immunol. 2014, 175, 285–295. [Google Scholar] [CrossRef]
- Xi, G.; Keep, R.F.; Hoff, J.T. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J. Neurosurg. 1998, 89, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zheng, M.; Guohua, X.; Chen, G.; Keep, R.F.; Xi, G. Hematoma Changes During Clot Resolution After Experimental Intracerebral Hemorrhage. Stroke 2016, 47, 1626–1631. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Xi, G.; Keep, R.F.; Hoff, J.T. Complement activation in the brain after experimental intracerebral hemorrhage. J. Neurosurg. 2000, 92, 1016–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, G.; Hua, Y.; Keep, R.F.; Younger, J.G.; Hoff, J.T. Systemic complement depletion diminishes perihematomal brain edema in rats. Stroke 2001, 32, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rynkowski, A.M.; Kim, G.H.; Garrett, M.C.; Zacharia, E.B.; Otten, M.L.A.; Sosunov, S.; Komotar, R.J.; Hassid, B.G.; Ducruet, A.F.; Lambris, J.D.; et al. C3a Receptor Antagonist Attenuates Brain Injury after Intracerebral Hemorrhage. Br. J. Pharmacol. 2008, 29, 98–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sansing, L.H.; Harris, T.H.; Welsh, F.A.; Kasner, S.E.; Hunter, C.A.; Kariko, K. Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann. Neurol. 2011, 70, 646–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, W.; Gao, C.; Wang, P.; Huang, J.; Qian, Y.; Guo, L.; Zhang, J.; Jiang, R. Correlation of Circulating T Lymphocytes and Intracranial Hypertension in Intracerebral Hemorrhage. World Neurosurg. 2017, 107, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Rolland, W.B.; Lekic, T.; Krafft, P.R.; Hasegawa, Y.; Altay, O.; Hartman, R.; Ostrowski, R.; Manaenko, A.; Tang, J.; Zhang, J.H. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp. Neurol. 2013, 241, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Hao, J.; Zhang, N.; Ren, L.; Sun, N.; Li, Y.J.; Yan, Y.; Huang, D.; Yu, C.; Shi, F.D. Fingolimod for the treatment of intracerebral hemorrhage: A 2-arm proof-of-concept study. JAMA Neurol. 2014, 71, 1092–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, S.; Rauvala, H.; Parkkinen, J.; Rouhiainen, A. Occurrence of Amphoterin (HMG1) as an Endogenous Protein of Human Platelets that Is Exported to the Cell Surface upon Platelet Activation. Thromb. Haemost. 2000, 84, 1087–1094. [Google Scholar] [CrossRef]
- Tada, T.; Kanaji, M.; Kobayashi, S. Induction of communicating hydrocephalus in mice by intrathecal injection of human recombinant transforming growth factor-beta. J. Neuroimmunol. 1994, 50, 153–158. [Google Scholar] [CrossRef]
- Botfield, H.; Gonzalez, A.M.; Abdullah, O.; Skjolding, A.D.; Berry, M.; McAllister, J.P., 2nd; Logan, A. Decorin prevents the development of juvenile communicating hydrocephalus. Brain 2013, 136, 2842–2858. [Google Scholar] [CrossRef] [Green Version]
- Grainger, D.J.; Wakefield, L.; Bethell, H.W.; Farndale, R.W.; Metcalfe, J.C. Release and activation of platelet latent TGF-beta in blood clots during dissolution with plasmin. Nat. Med. 1995, 1, 932–937. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mori, T.; Sumii, T.; Lo, E.H. Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: Caspase activation and oxidative stress. Stroke 2002, 33, 1882–1888. [Google Scholar] [CrossRef] [Green Version]
- Lara, F.A.; Kahn, S.; Da Fonseca, A.C.; Bahia, C.P.; Pinho, J.P.; Graca-Souza, A.V.; Houzel, J.C.; de Oliveira, P.L.; Moura-Neto, V.; Oliveira, M.F. On the Fate of Extracellular Hemoglobin and Heme in Brain. Br. J. Pharmacol. 2009, 29, 1109–1120. [Google Scholar] [CrossRef] [Green Version]
- Jaremko, K.M.; Chen-Roetling, J.; Chen, L.; Regan, R.F. Accelerated hemolysis and neurotoxicity in neuron-glia-blood clot co-cultures. J. Neurochem. 2010, 114, 1063–1073. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.-P.; Xi, G.; Keep, R.F.; Hua, Y.; Nemoianu, A.; Hoff, J.T. Brain edema after experimental intracerebral hemorrhage: Role of hemoglobin degradation products. J. Neurosurg. 2002, 96, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Rosen, A.; Frumin, N. Focal epileptogenesis after intracortical hemoglobin injection. Exp. Neurol. 1979, 66, 277–284. [Google Scholar] [CrossRef]
- Strahle, J.M.; Garton, T.; Bazzi, A.A.; Kilaru, H.; Garton, H.J.; Maher, C.O.; Muraszko, K.M.; Keep, R.F.; Xi, G. Role of Hemoglobin and Iron in Hydrocephalus After Neonatal Intraventricular Hemorrhage. Neurosurgery 2014, 75, 696–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garton, T.P.; He, Y.; Garton, H.J.; Keep, R.F.; Xi, G.; Strahle, J.M. Hemoglobin-induced neuronal degeneration in the hippocampus after neonatal intraventricular hemorrhage. Brain Res. 2016, 1635, 86–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rollins, S.; Perkins, E.; Mandybur, G.; Zhang, J.H. Oxyhemoglobin produces necrosis, not apoptosis, in astrocytes. Brain Res. 2002, 945, 41–49. [Google Scholar] [CrossRef]
- Ogihara, K.; Zubkov, A.Y.; Bernanke, D.H.; Lewis, A.I.; Parent, A.D.; Zhang, J.H. Oxyhemoglobin-induced apoptosis in cultured endothelial cells. J. Neurosurg. 1999, 91, 459–465. [Google Scholar] [CrossRef]
- Meguro, T.; Chen, B.; Lancon, J.; Zhang, J.H. Oxyhemoglobin induces caspase-mediated cell death in cerebral endothelial cells. J. Neurochem. 2001, 77, 1128–1135. [Google Scholar] [CrossRef] [Green Version]
- Steele, J.A.; Stockbridge, N.; Maljkovic, G.; Weir, B. Free radicals mediate actions of oxyhemoglobin on cerebrovascular smooth muscle cells. Circ. Res. 1991, 68, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Wellum, G.R.; Irvine, T.W.; Zervas, N.T. Dose responses of cerebral arteries of the dog, rabbit, and man to human hemoglobin in vitro. J. Neurosurg. 1980, 53, 486–490. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Weir, B.K.A.; Runzer, T.D.; Grace, M.G.A.; Findlay, J.M.; Saito, K.; Cook, D.A.; Mielke, B.W.; Kanamaru, K. Etiology of cerebral vasospasm in primates. J. Neurosurg. 1991, 75, 415–424. [Google Scholar] [CrossRef]
- Kwon, M.S.; Woo, S.K.; Kurland, D.B.; Yoon, S.H.; Palmer, A.F.; Banerjee, U.; Iqbal, S.; Ivanova, S.; Gerzanich, V.; Simard, J.M. Methemoglobin Is an Endogenous Toll-Like Receptor 4 Ligand—Relevance to Subarachnoid Hemorrhage. Int. J. Mol. Sci. 2015, 16, 5028–5046. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Bing-Yin, S.; Zhong, Q.; Lv, F.-L.; Jing-Zhou, W.; Li, J.-Q.; Wang, J.-Z.; Su, B.-Y.; Yang, Q.-W. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J. Neuroinflamm. 2012, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Robb, S.; Robb-Gaspers, L.; Scaduto, R.; Thomas, A.; Connor, J. Influence of calcium and iron on cell death and mitochondrial function in oxidatively stressed astrocytes. J. Neurosci. Res. 1999, 55, 674–686. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, T.; Hou, J.; Li, G.; Yu, S.; Xin, W. Iron-induced oxidative damage and apoptosis in cerebellar granule cells: Attenuation by tetramethylpyrazine and ferulic acid. Eur. J. Pharmacol. 2003, 467, 41–47. [Google Scholar] [CrossRef]
- Willmore, L.J.; Rubin, J.J. Formation of malonaldehyde and focal brain edema induced by subpial injection of FeCl2 into rat isocortex. Brain Res. 1982, 246, 113–119. [Google Scholar] [CrossRef]
- Bishop, G.M.; Robinson, S.R. Quantitative analysis of cell death and ferritin expression in response to cortical iron: Implications for hypoxia–ischemia and stroke. Brain Res. 2001, 907, 175–187. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, C.; Hua, Y.; Keep, R.F.; Muraszko, K.; Xi, G. Role of Iron in Brain Injury After Intraventricular Hemorrhage. Stroke 2011, 42, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Strukova, S.M. Role of Platelets and Serine Proteinases in Coupling of Blood Coagulation and Inflammation. Biochemistry 2004, 69, 1067–1081. [Google Scholar] [CrossRef] [PubMed]
- Davie, E.W.; Fujikawa, K.; Kisiel, W. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 1991, 30, 10363–10370. [Google Scholar] [CrossRef] [PubMed]
- Dihanich, M.; Kaser, M.; Reinhard, E.; Cunningham, D.; Monard, D. Prothrombin mRNA is expressed by cells of the nervous system. Neuron 1991, 6, 575–581. [Google Scholar] [CrossRef]
- Vu, T.K.; Wheaton, V.I.; Hung, D.T.; Charo, I.; Coughlin, S.R. Domains specifying thrombin-receptor interaction. Nature 1991, 353, 674–677. [Google Scholar] [CrossRef]
- Hirano, K. The Roles of Proteinase-Activated Receptors in the Vascular Physiology and Pathophysiology. Arter. Thromb. Vasc. Biol. 2007, 27, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junge, C.E.; Lee, C.; Hubbard, K.B.; Zhang, Z.; Olson, J.J.; Hepler, J.R.; Brat, D.J.; Traynelis, S.F. Protease-activated receptor-1 in human brain: Localization and functional expression in astrocytes. Exp. Neurol. 2004, 188, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ubl, J.J.; Stricker, R.; Reiser, G. Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am. J. Physiol. Physiol. 2002, 283, C1351–C1364. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.S.; Kim, Y.E.; Lee, W.J.; Choi, J.W.; Park, G.H.; Kim, S.D.; Jeon, S.J.; Go, H.S.; Shin, S.M.; Kim, W.-K.; et al. Activation of protease-activated receptor1 mediates induction of matrix metalloproteinase-9 by thrombin in rat primary astrocytes. Brain Res. Bull. 2008, 76, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Haralabopoulos, G.C.; Grant, D.S.; Kleinman, H.K.; Maragoudakis, M.E. Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Am. J. Physiol. Physiol. 1997, 273, C239–C245. [Google Scholar] [CrossRef] [PubMed]
- Tsopanoglou, N.E.; Maragoudakis, M.E. On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J. Biol. Chem. 1999, 274, 23969–23976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.; Xi, G.; Hu, H.; Gu, Y.; Huang, F.; Keep, R.F.; Hua, Y. Increase in brain thrombin activity after experimental intracerebral hemorrhage. Neurosurg. Med. Ethics 2008, 105, 47–50. [Google Scholar] [CrossRef]
- Ku, D.D.; Zaleski, J.K. Receptor Mechanism of Thrombin-Induced Endothelium-Dependent and Endothelium-Independent Coronary Vascular Effects in Dogs. J. Cardiovasc. Pharmacol. 1993, 22, 609–676. [Google Scholar] [CrossRef] [PubMed]
- White, R.P.; Robertson, J.T. Role of plasmin, thrombin, and antithrombin III as etiological factors in delayed cerebral vasospasm. Neurosurgery 1985, 16, 27–35. [Google Scholar] [PubMed]
- Kai, Y.; Hirano, K.; Maeda, Y.; Nishimura, J.; Sasaki, T.; Kanaide, H. Prevention of the Hypercontractile Response to Thrombin by Proteinase-Activated Receptor-1 Antagonist in Subarachnoid Hemorrhage. Stroke 2007, 38, 3259–3265. [Google Scholar] [CrossRef] [Green Version]
- Xi, G.; Wagner, K.R.; Keep, R.F.; Hua, Y.; De Courten-Myers, G.M.; Broderick, J.P.; Brott, T.G.; Hoff, J.T. Role of Blood Clot Formation on Early Edema Development After Experimental Intracerebral Hemorrhage. Stroke 1998, 29, 2580–2586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.R.; Colon, G.P.; Betz, A.L.; Keep, R.F.; Kim, S.; Hoff, J.T. Edema from intracerebral hemorrhage: The role of thrombin. J. Neurosurg. 1996, 84, 91–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, X.; Le, C.; Zhang, H.; Shang, D.; Tong, L.; Gao, F. Thrombin disrupts vascular endothelial-cadherin and leads to hydrocephalus via protease-activated receptors-1 pathway. CNS Neurosci. Ther. 2019, 25, 1142–1150. [Google Scholar] [CrossRef] [Green Version]
- Alper, C.A.; Johnson, A.M.; Birtch, A.G.; Moore, F.D. Human C’3: Evidence for the Liver as the Primary Site of Synthesis. Science 1969, 163, 286–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veerhuis, R.; Nielsen, H.M.; Tenner, A.J. Complement in the brain. Mol. Immunol. 2011, 48, 1592–1603. [Google Scholar] [CrossRef] [PubMed]
- Lindsberg, P.J.; Öhman, J.; Lehto, T.; Wuorimaa, T.; Meri, S.; Karjalainen-Lindsberg, M.-L.; Paetau, A.; Carpén, O.; Kaste, M. Complement activation in the central nervous system following blood-brain barrier damage in man. Ann. Neurol. 1996, 40, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, B.J.; Meijers, J.C.M.; Kloek, A.T.; Knaup, V.L.; Rinkel, G.J.E.; Morgan, B.P.; van der Kamp, M.J.; Osuka, K.; Aronica, E.; Ruigrok, Y.M.; et al. Complement C5 Contributes to Brain Injury After Subarachnoid Hemorrhage. Transl Stroke Res 2019. [Google Scholar] [CrossRef] [Green Version]
- Fishelson, Z.; Attali, G.; Mevorach, D. Complement and apoptosis. Mol. Immunol. 2001, 38, 207–219. [Google Scholar] [CrossRef]
- Ames, R.S.; Li, Y.; Sarau, H.M.; Nuthulaganti, P.; Foley, J.J.; Ellis, C.; Zeng, Z.; Su, K.; Jurewicz, A.J.; Hertzberg, R.P.; et al. Molecular Cloning and Characterization of the Human Anaphylatoxin C3a Receptor. J. Biol. Chem. 1996, 271, 20231–20234. [Google Scholar] [CrossRef] [Green Version]
- Gerard, N.P.; Gerard, C. The chemotactic receptor for human C5a anaphylatoxin. Nat. Cell Biol. 1991, 349, 614–617. [Google Scholar] [CrossRef]
- Bianchi, M.E. DAMPs, PAMPs and alarmins: All we need to know about danger. J. Leukoc. Biol. 2007, 81, 1–5. [Google Scholar] [CrossRef]
- Fang, H.; Wang, P.-F.; Zhou, Y.; Wang, Y.-C.; Yang, Q.-W. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J. Neuroinflammation 2013, 10, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, W.; Wang, L.; Xue, W.; Guan, C. Activation of TLR4-mediated NFkappaB signaling in hemorrhagic brain in rats. Mediat. Inflamm 2009, 2009, 473276. [Google Scholar] [CrossRef] [Green Version]
- Kitazawa, K.; Tada, T. Elevation of transforming growth factor-beta 1 level in cerebrospinal fluid of patients with communicating hydrocephalus after subarachnoid hemorrhage. Stroke 1994, 25, 1400–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agresti, A.E.; Bianchi, M. HMGB proteins and gene expression. Curr. Opin. Genet. Dev. 2003, 13, 170–178. [Google Scholar] [CrossRef]
- Park, J.S.; Svetkauskaite, D.; He, Q.; Kim, J.-Y.; Strassheim, D.; Ishizaka, A.; Abraham, E. Involvement of Toll-like Receptors 2 and 4 in Cellular Activation by High Mobility Group Box 1 Protein. J. Biol. Chem. 2004, 279, 7370–7377. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Chen, Q.; Yang, H.; Tracey, K.J.; Bustin, M.; Oppenheim, J.J. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J. Leukoc. Biol. 2006, 81, 59–66. [Google Scholar] [CrossRef]
- Nguyen, H.X.; O’Barr, T.J.; Anderson, A.J. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha. J. Neurochem. 2007, 102, 900–912. [Google Scholar] [CrossRef]
- Fujiwara, S.; Kuriyama, H. Hemolysate-induced contraction in smooth muscle cells of the guinea pig basilar artery. Stroke 1984, 15, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Toda, N. Hemolysate Inhibits Cerebral Artery Relaxation. Br. J. Pharmacol. 1988, 8, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Kondo, H.; Saito, K.; Grasso, J.P.; Aisen, P. Iron metabolism in the erythrophagocytosing Kupffer cell. Hepatology 1988, 8, 32–38. [Google Scholar] [CrossRef]
- Mayberg, M.R.; Okada, T.; Bark, D.H. The role of hemoglobin in arterial narrowing after subarachnoid hemorrhage. J. Neurosurg. 1990, 72, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Sinha, K.; Das, J.; Pal, P.B.; Sil, P.C. Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol. 2013, 87, 1157–1180. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Kim, S.Y.; Choi, J.S.; Lee, I.H.; Choi, Y.S.; Jin, J.Y.; Park, S.J.; Sung, K.W.; Chun, M.H.; Kim, I.S. Upregulation of haptoglobin in reactive astrocytes after transient forebrain ischemia in rats. J. Cereb. Blood. Flow. Metab. 2002, 22, 1176–1180. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.J.; Petersen, S.V.; Jacobsen, C.; Thirup, S.; Enghild, J.J.; Graversen, J.H.; Moestrup, S.K. A Unique Loop Extension in the Serine Protease Domain of Haptoglobin Is Essential for CD163 Recognition of the Haptoglobin-Hemoglobin Complex. J. Biol. Chem. 2007, 282, 1072–1079. [Google Scholar] [CrossRef] [Green Version]
- Cooper, C.E.; Schaer, D.J.; Buehler, P.W.; Wilson, M.T.; Reeder, B.J.; Silkstone, G.; Svistunenko, D.A.; Bulow, L.; Alayash, A.I. Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine beta 145. Antioxid Redox Signal 2013, 18, 2264–2273. [Google Scholar] [CrossRef] [PubMed]
- Bulters, D.; Gaastra, B.; Zolnourian, A.; Alexander, S.; Ren, D.; Blackburn, S.L.; Borsody, M.; Doré, S.; Galea, J.; Iihara, K.; et al. Haemoglobin scavenging in intracranial bleeding: Biology and clinical implications. Nat. Rev. Neurol. 2018, 14, 416–432. [Google Scholar] [CrossRef]
- Posta, N.; Csősz, É.; Oros, M.; Pethő, D.; Potor, L.; Kalló, G.; Hendrik, Z.; Sikura, K.É.; Méhes, G.; Tóth, C.; et al. Hemoglobin oxidation generates globin-derived peptides in atherosclerotic lesions and intraventricular hemorrhage of the brain, provoking endothelial dysfunction. Lab. Investig. 2020, 100, 986–1002. [Google Scholar] [CrossRef]
- Smith, A.; Hunt, R.C. Hemopexin joins transferrin as representative members of a distinct class of receptor-mediated endocytic transport systems. Eur. J. Cell Biol. 1990, 53, 234–245. [Google Scholar] [PubMed]
- Ishiguro, M.; Imai, Y.; Kohsaka, S. Expression and distribution of low density lipoprotein receptor-related protein mRNA in the rat central nervous system. Mol. Brain Res. 1995, 33, 37–46. [Google Scholar] [CrossRef]
- Dang, T.N.; Bishop, G.M.; Dringen, R.; Robinson, S.R. The putative heme transporter HCP1 is expressed in cultured astrocytes and contributes to the uptake of hemin. Glia 2010, 58, 55–65. [Google Scholar] [CrossRef]
- Scapagnini, G.; D’Agata, V.; Calabrese, V.; Pascale, A.; Colombrita, C.; Alkon, D.; Cavallaro, S. Gene expression profiles of heme oxygenase isoforms in the rat brain. Brain Res. 2002, 954, 51–59. [Google Scholar] [CrossRef]
- Theil, E.C. Ferritin: Structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 1987, 56, 289–315. [Google Scholar] [CrossRef]
- Song, S.; Hua, Y.; Keep, R.F.; Hoff, J.T.; Xi, G. A new hippocampal model for examining intracerebral hemorrhage-related neuronal death: Effects of deferoxamine on hemoglobin-induced neuronal death. Stroke 2007, 38, 2861–2863. [Google Scholar] [CrossRef] [Green Version]
- Hansen-Schwartz, J. Cerebral Vasospasm: A Consideration of the Various Cellular Mechanisms Involved in the Pathophysiology. Neurocritical Care 2004, 1, 235–246. [Google Scholar] [CrossRef]
- Balla, J.; Jacob, H.S.; Balla, G.; Nath, K.; Eaton, J.W.; Vercellotti, G.M. Endothelial-cell heme uptake from heme proteins: Induction of sensitization and desensitization to oxidant damage. Proc. Natl. Acad. Sci. 1993, 90, 9285–9289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balla, G.; Vercellotti, G.M.; Muller-Eberhard, U.; Eaton, J.; Jacob, H.S. Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species. Lab. Investig. 1991, 64, 648–655. [Google Scholar]
- Balla, G.; Jacob, H.S.; Eaton, J.W.; Belcher, J.D.; Vercellotti, G.M. Hemin: A possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arter. Thromb. A J. Vasc. Biol. 1991, 11, 1700–1711. [Google Scholar] [CrossRef] [Green Version]
- Gáll, T.; Pethő, D.; Nagy, A.; Hendrik, Z.; Méhes, G.; Potor, L.; Gram, M.; Åkerström, B.; Smith, A.; Nagy, P.; et al. Heme Induces Endoplasmic Reticulum Stress (HIER Stress) in Human Aortic Smooth Muscle Cells. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Higdon, A.N.; Benavides, G.A.; Chacko, B.K.; Ouyang, X.; Johnson, M.S.; Landar, A.; Zhang, J.; Darley-Usmar, V.M. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: The protective role of autophagy. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H1394–H1409. [Google Scholar] [CrossRef] [Green Version]
- Chen-Roetling, J.; Kamalapathy, P.; Cao, Y.; Song, W.; Schipper, H.M.; Regan, R.F. Astrocyte heme oxygenase-1 reduces mortality and improves outcome after collagenase-induced intracerebral hemorrhage. Neurobiol. Dis. 2017, 102, 140–146. [Google Scholar] [CrossRef]
- Stocker, R.; Yamamoto, Y.; McDonagh, A.F.; Glazer, A.N.; Ames, B.N. Bilirubin is an antioxidant of possible physiological importance. Science 1987, 235, 1043–1046. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.; Yakopson, V.; Teng, Z.-P.; Guo, Y.; Regan, R.F. Heme oxygenase-2 knockout neurons are less vulnerable to hemoglobin toxicity. Free. Radic. Biol. Med. 2003, 35, 872–881. [Google Scholar] [CrossRef]
- Koeppen, A.H.; Dickson, A.C.; Smith, J. Heme Oxygenase in Experimental Intracerebral Hemorrhage: The Benefit of Tin-Mesoporphyrin. J. Neuropathol. Exp. Neurol. 2004, 63, 587–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leffler, C.W.; Parfenova, H.; Jaggar, J.H. Carbon monoxide as an endogenous vascular modulator. Am. J. Physiol. Circ. Physiol. 2011, 301, H1–H11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Hua, Y.; Keep, R.F.; Nakamura, T.; Hoff, J.T.; Xi, G. Iron and Iron-Handling Proteins in the Brain After Intracerebral Hemorrhage. Stroke 2003, 34, 2964–2969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, Y.; Nakamura, T.; Keep, R.F.; Wu, J.; Schallert, T.; Hoff, J.T.; Xi, G. Long-term effects of experimental intracerebral hemorrhage: The role of iron. J. Neurosurg. 2006, 104, 305–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, T.; Keep, R.F.; Hua, Y.; Schallert, T.; Hoff, J.T.; Xi, G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J. Neurosurg. 2004, 100, 672–678. [Google Scholar] [CrossRef]
- Al-Shahi Salman, R.; Law, Z.K.; Bath, P.M.; Steiner, T.; Sprigg, N. Haemostatic therapies for acute spontaneous intracerebral haemorrhage. Cochrane Database Syst. Rev. 2018, 4, CD005951. [Google Scholar] [CrossRef]
- Mayer, S.A.; Brun, N.C.; Begtrup, K.; Broderick, J.; Davis, S.; Diringer, M.N.; Skolnick, B.E.; Steiner, T. Efficacy and Safety of Recombinant Activated Factor VII for Acute Intracerebral Hemorrhage. N. Engl. J. Med. 2008, 358, 2127–2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meretoja, A.; Yassi, N.; Wu, T.Y.; Churilov, L.; Sibolt, G.; Jeng, J.-S.; Kleinig, T.; Spratt, N.J.; Thijs, V.; Wijeratne, T.; et al. Tranexamic acid in patients with intracerebral haemorrhage (STOP-AUST): A multicentre, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2020, 19, 980–987. [Google Scholar] [CrossRef]
- Selim, M.; Foster, L.D.; Moy, C.S.; Xi, G.; Hill, M.D.; Morgenstern, L.B.; Greenberg, S.M.; James, M.L.; Singh, V.; Clark, W.M.; et al. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): A multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 2019, 18, 428–438. [Google Scholar] [CrossRef]
- Cavallo, C.; Zhao, X.; Abou-Al-Shaar, H.; Weiss, M.; Gandhi, S.; Belykh, E.; Tayebi-Meybodi, A.; Labib, M.A.; Preul, M.C.; Nakaji, P. Minimally invasive approaches for the evacuation of intracerebral hemorrhage: A systematic review. J. Neurosurg. Sci. 2018, 62, 718–733. [Google Scholar] [CrossRef]
- Rychen, J.; O’Neill, A.; Lai, L.T.; Bervini, D. Natural history and surgical management of spontaneous intracerebral hemorrhage: A systematic review. J. Neurosurg. Sci. 2021, 64, 558–570. [Google Scholar] [CrossRef]
- Akhigbe, T.; Okafor, U.; Sattar, T.; Rawluk, D.; Fahey, T.; Ndoro, S.; Sattar, M. Stereotactic-Guided Evacuation of Spontaneous Supratentorial Intracerebral Hemorrhage: Systematic Review and Meta-Analysis. World Neurosurg. 2015, 84, 451–460. [Google Scholar] [CrossRef]
- McKissock, W.R.A.; Taylor, J. Primary Intracerebral haematoma: A controlled trial of surgical and conservative treatment in 180 unselected cases. Lancet 1961, 278, 221–226. [Google Scholar] [CrossRef]
- Auer, L.M.; Deinsberger, W.; Niederkorn, K.; Gell, G.; Kleinert, R.; Schneider, G.; Holzer, P.; Bone, G.; Mokry, M.; Körner, E.; et al. Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: A randomized study. J. Neurosurg. 1989, 70, 530–535. [Google Scholar] [CrossRef]
- Juvela, S.; Heiskanen, O.; Poranen, A.; Valtonen, S.; Kuurne, T.; Kaste, M.; Troupp, H. The treatment of spontaneous intracerebral hemorrhage. A prospective randomized trial of surgical and conservative treatment. J. Neurosurg. 1989, 70, 755–758. [Google Scholar] [CrossRef]
- Batjer, H.H.; Reisch, J.S.; Allen, B.C.; Plaizier, L.J.; Su, C.J. Failure of Surgery to Improve Outcome in Hypertensive Putaminal Hemorrhage. Arch. Neurol. 1990, 47, 1103–1106. [Google Scholar] [CrossRef]
- Morgenstern, L.B.; Frankowski, R.F.; Shedden, P.; Pasteur, W.; Grotta, J.C. Surgical treatment for intracerebral hemorrhage (STICH): A single-center, randomized clinical trial. Neurology 1998, 51, 1359–1363. [Google Scholar] [CrossRef]
- Zuccarello, M.; Brott, T.; Derex, L.; Kothari, R.; Sauerbeck, L.; Tew, J.; Van Loveren, H.; Yeh, H.S.; Tomsick, T.; Pancioli, A.; et al. Early surgical treatment for supratentorial intracerebral hemorrhage: A randomized feasibility study. Stroke 1999, 30, 1833–1839. [Google Scholar] [CrossRef] [Green Version]
- Teernstra, O.P.; Evers, S.M.; Lodder, J.; Leffers, P.; Franke, C.L.; Blaauw, G. Multicenter randomized controlled t. Stereotactic treatment of intracerebral hematoma by means of a plasminogen activator: A multicenter randomized controlled trial (SICHPA). Stroke 2003, 34, 968–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattori, N.; Katayama, Y.; Maya, Y.; Gatherer, A. Impact of stereotactic hematoma evacuation on activities of daily living during the chronic period following spontaneous putaminal hemorrhage: A randomized study. J. Neurosurg. 2004, 101, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Mendelow, A.D.; Gregson, B.A.; Fernandes, H.M.; Murray, G.D.; Teasdale, G.M.; Hope, D.T.; Karimi., A.; Shaw, M.D.; Barer, D.H.; STITCH Investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): A randomised trial. Lancet 2005, 365, 387–397. [Google Scholar] [CrossRef]
- Pantazis, G.; Tsitsopoulos, P.; Mihas, C.; Katsiva, V.; Stavrianos, V.; Zymaris, S. Early surgical treatment vs conservative management for spontaneous supratentorial intracerebral hematomas: A prospective randomized study. Surg. Neurol. 2006, 66, 492–501. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wu, J.S.; Mao, Y.; Chen, X.C.; Zhou, L.F.; Zhang, Y. The optimal time-window for surgical treatment of spontaneous intracerebral hemorrhage: Result of prospective randomized controlled trial of 500 cases. Neurosurg. Med Ethics 2008, 105, 141–145. [Google Scholar] [CrossRef]
- Miller, C.M.; Vespa, P.; Saver, J.L.; Kidwell, C.S.; Carmichael, S.T.; Alger, J.; Frazee, J.; Starkman, S.; Liebeskind, D.; Nenov, V.; et al. Image-guided endoscopic evacuation of spontaneous intracerebral hemorrhage. Surg. Neurol. 2008, 69, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.Z.; Kim, K.H. Even in Patients with a Small Hemorrhagic Volume, Stereotactic-Guided Evacuation of Spontaneous Intracerebral Hemorrhage Improves Functional Outcome. J. Korean Neurosurg. Soc. 2009, 46, 109–115. [Google Scholar] [CrossRef]
- Wang, W.-Z.; Jiang, B.; Liu, G.-M.; Li, D.; Lu, C.-Z.; Zhao, Y.-D.; Sander, J.W.; Liu, H.G.-M. Minimally Invasive Craniopuncture Therapy vs. Conservative Treatment for Spontaneous Intracerebral Hemorrhage: Results from a Randomized Clinical Trial in China. Int. J. Stroke 2009, 4, 11–16. [Google Scholar] [CrossRef]
- Sun, H.; Liu, H.; Li, D.; Liu, L.; Yang, J.; Wang, W. An effective treatment for cerebral hemorrhage: Minimally invasive craniopuncture combined with urokinase infusion therapy. Neurol. Res. 2010, 32, 371–377. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, Y.; Liu, L.; Han, X.; Tao, Y.; Tang, Y.; Hua, W.; Xue, J.; Dong, Q. A prospective controlled study: Minimally invasive stereotactic puncture therapy versus conventional craniotomy in the treatment of acute intracerebral hemorrhage. BMC Neurol. 2011, 11, 76. [Google Scholar] [CrossRef] [Green Version]
- Mendelow, A.D.A.; Gregson, B.; Rowan, E.N.; Murray, G.D.; Gholkar, A.; Mitchell, P.M. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): A randomised trial. Lancet 2013, 382, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-Z.; Li, Y.-P.; Yan, Z.-C.; Wang, X.-D.; She, L.; Wang, X.-D.; Dong, L. Endoscopic Evacuation of Basal Ganglia Hemorrhage via Keyhole Approach Using an Adjustable Cannula in Comparison with Craniotomy. BioMed Res. Int. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; He, J.; Liu, B.; Yang, L.; Wang, Y. Endoscopic-assisted keyhole technique for hypertensive cerebral hemorrhage in elderly patients: A randomized controlled study in 184 patients. Turk. Neurosurg. 2015, 26, 84–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanley, D.F.E.; Thompson, R.; Muschelli, J.; Rosenblum, M.; McBee, N.; Lane, K.; Bistran-Hall, A.J.; Mayo, S.W.; Keyl, P.; Gandhi, D.; et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): A randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016, 15, 1228–1237. [Google Scholar] [CrossRef] [Green Version]
- Vespa, P.; Hanley, D.; Betz, J.; Hoffer, A.; Engh, J.; Carter, R.; Nakaji, P.; Ogilvy, C.; Jallo, J.; Selman, W.; et al. ICES (Intraoperative Stereotactic Computed Tomography-Guided Endoscopic Surgery) for Brain Hemorrhage: A Multicenter Randomized Controlled Trial. Stroke 2016, 47, 2749–2755. [Google Scholar] [CrossRef]
- Yang, G.; Shao, G. Clinical effect of minimally invasive intracranial hematoma in treating hypertensive cerebral hemorrhage. Pak. J. Med Sci. 2016, 32, 677–681. [Google Scholar] [CrossRef]
- Hanley, D.F.E.; Thompson, R.; Rosenblum, M.; Yenokyan, G.; Lane, K.; McBee, N.; Mayo, S.W.; Bistran-Hall, A.J.; Gandhi, D.; Mould, W.A.; et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): A randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet 2019, 393, 1021–1032. [Google Scholar] [CrossRef] [Green Version]
- Ziai, W.C.; McBee, N.; Lane, K.; Lees, K.R.; Dawson, J.; Vespa, P.; Thompson, R.E.; Mendelow, A.D.; Kase, C.S.; Carhuapoma, J.R.; et al. A randomized 500-subject open-label phase 3 clinical trial of minimally invasive surgery plus alteplase in intracerebral hemorrhage evacuation (MISTIE III). Int. J. Stroke 2019, 14, 548–554. [Google Scholar] [CrossRef]
- Sattur, M.G.; Spiotta, A.M. Commentary: Efficacy and Safety of Minimally Invasive Surgery With Thrombolysis in Intracerebral Haemorrhage Evacuation (MISTIE III): A Randomized, Controlled, Open-Label, Blinded Endpoint Phase 3 Trial. Neurosurgery 2020, 86, E444–E446. [Google Scholar] [CrossRef] [Green Version]
- Awad, A.I.; Polster, S.P.; Carrión-Penagos, J.E.; Thompson, R.; Cao, Y.; Stadnik, A.; Money, P.L.; Fam, M.D.; Koskimäki, J.; Girard, R.; et al. Surgical Performance Determines Functional Outcome Benefit in the Minimally Invasive Surgery Plus Recombinant Tissue Plasminogen Activator for Intracerebral Hemorrhage Evacuation (MISTIE) Procedure. Neurosurgery 2019, 84, 1157–1168. [Google Scholar] [CrossRef] [Green Version]
- De Havenon, A.; Joyce, E.; Yaghi, S.; Ansari, S.; Delic, A.; Taussky, P.; Alexander, M.; Tirschwell, D.; Grandhi, R. End-of-Treatment Intracerebral and Ventricular Hemorrhage Volume Predicts Outcome: A Secondary Analysis of MISTIE III. Stroke 2020, 51, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Cheng, G.; Gao, D.-K.; Zhang, X.; Zhen, H.-N.; Zhang, W.; Xiao, S.-C. Gross-total hematoma removal of hypertensive basal ganglia hemorrhages: A long-term follow-up. J. Neurol. Sci. 2009, 287, 100–104. [Google Scholar] [CrossRef]
- Urday, S.; Kimberly, W.T.; Beslow, L.A.; Vortmeyer, A.O.; Selim, M.H.; Rosand, J.; Simard, J.M.; Sheth, K.N. Targeting secondary injury in intracerebral haemorrhage—perihaematomal oedema. Nat. Rev. Neurol. 2015, 11, 111–122. [Google Scholar] [CrossRef]
- Venkatasubramanian, C.; Mlynash, M.; Finley-Caulfield, A.; Eyngorn, I.; Kalimuthu, R.; Snider, R.W.; Wijman, C.A. Natural History of Perihematomal Edema After Intracerebral Hemorrhage Measured by Serial Magnetic Resonance Imaging. Stroke 2011, 42, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Grunwald, Z.; Beslow, L.A.; Urday, S.; Vashkevich, A.; Ayres, A.; Greenberg, S.M.; Goldstein, J.N.; Leasure, A.; Shi, F.-D.; Kahle, K.T.; et al. Perihematomal Edema Expansion Rates and Patient Outcomes in Deep and Lobar Intracerebral Hemorrhage. Neurocritical Care 2016, 26, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, F.; Wu, G.; Shi, J. Early-stage minimally invasive procedures decrease perihematomal endothelin-1 levels and improve neurological functioning in a rabbit model of intracerebral hemorrhage. Neurol. Res. 2014, 37, 320–327. [Google Scholar] [CrossRef]
- Wu, G.; Sheng, F.; Wang, L.; Wang, F. The pathophysiological time window study of performing minimally invasive procedures for the intracerebral hematoma evacuation in rabbit. Brain Res. 2012, 1465, 57–65. [Google Scholar] [CrossRef]
- Mould, W.A.; Carhuapoma, J.R.; Muschelli, J.; Lane, K.; Morgan, T.C.; McBee, N.A.; Bistran-Hall, A.J.; Ullman, N.L.; Vespa, P.; Martin, N.A.; et al. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke 2013, 44, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Ma, L.; You, C.; He, M. Decompressive Craniectomy for Spontaneous Intracerebral Hemorrhage: A Systematic Review and Meta-analysis. World Neurosurg. 2018, 110, 121–128. [Google Scholar] [CrossRef]
- Moussa, W.M.M.; Khedr, W. Decompressive craniectomy and expansive duraplasty with evacuation of hypertensive intracerebral hematoma, a randomized controlled trial. Neurosurg. Rev. 2016, 40, 115–127. [Google Scholar] [CrossRef]
- Shimamura, N.; Munakata, A.; Naraoka, M.; Nakano, T.; Ohkuma, H. Decompressive Hemi-craniectomy Is Not Necessary to Rescue Supratentorial Hypertensive Intracerebral Hemorrhage Patients: Consecutive Single-Center Experience. Neurosurg. Med. Ethics 2011, 111, 415–419. [Google Scholar] [CrossRef]
- Rutkowski, M.; Song, I.; Mack, W.; Zada, G. Outcomes After Minimally Invasive Parafascicular Surgery for Intracerebral Hemorrhage: A Single-Center Experience. World Neurosurg. 2019, 132, e520–e528. [Google Scholar] [CrossRef]
- Bauer, A.M.; Rasmussen, P.A.; Bain, M.D. Initial Single-Center Technical Experience With the BrainPath System for Acute Intracerebral Hemorrhage Evacuation. Oper. Neurosurg. 2017, 13, 69–76. [Google Scholar] [CrossRef]
- Labib, M.A.; Shah, M.; Kassam, A.B.; Young, R.; Zucker, L.; Maioriello, A.; Britz, G.; Agbi, C.; Day, J.D.; Gallia, G.; et al. The Safety and Feasibility of Image-Guided BrainPath-Mediated Transsulcul Hematoma Evacuation: A Multicenter Study. Neurosurgery 2017, 80, 515–524. [Google Scholar] [CrossRef]
- Steiner, T.; Diringer, M.N.; Schneider, D.; Mayer, S.A.; Begtrup, K.; Broderick, J.; Skolnick, B.E.; Davis, S.M. Dynamics of Intraventricular Hemorrhage in Patients with Spontaneous Intracerebral Hemorrhage: Risk Factors, Clinical Impact, and Effect of Hemostatic Therapy with Recombinant Activated Factor VII. Neurosurgery 2006, 59, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Fam, M.D.; Zeineddine, H.A.; Eliyas, J.K.; Stadnik, A.; Jesselson, M.; McBee, N.; Lane, K.; Cao, Y.; Wu, M.; Zhang, L.; et al. CSF inflammatory response after intraventricular hemorrhage. Neurology 2017, 89, 1553–1560. [Google Scholar] [CrossRef]
- Ziai, W.C.; Tuhrim, S.; Lane, K.; McBee, N.; Lees, K.; Dawson, J.; Butcher, K.; Vespa, P.; Wright, D.W.; Keyl, P.M.; et al. A Multicenter, Randomized, Double-Blinded, Placebo-Controlled Phase III Study of Clot Lysis Evaluation of Accelerated Resolution of Intraventricular Hemorrhage (CLEAR III). Int. J. Stroke 2013, 9, 536–542. [Google Scholar] [CrossRef]
- Chen, C.-C.; Liu, C.-L.; Tung, Y.-N.; Lee, H.-C.; Chuang, H.-C.; Lin, S.-Z.; Cho, D.-Y. Endoscopic Surgery for Intraventricular Hemorrhage (IVH) Caused by Thalamic Hemorrhage: Comparisons of Endoscopic Surgery and External Ventricular Drainage (EVD) Surgery. World Neurosurg. 2011, 75, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Tsuchiya, K.; Fujisawa, H. Endoscopic surgery for thalamic hemorrhage with intraventricular hemorrhage: Effects of combining evacuation of a thalamic hematoma to external ventricular drainage. Asian, J. Neurosurg. 2019, 14, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Wang, X.; She, L.; Yan, Z.; Zhang, N.; Du, R.; Yan, K.; Xu, E.; Pang, L. Neuroendoscopic Surgery versus External Ventricular Drainage Alone or with Intraventricular Fibrinolysis for Intraventricular Hemorrhage Secondary to Spontaneous Supratentorial Hemorrhage: A Systematic Review and Meta-Analysis. PLoS ONE 2013, 8, e80599. [Google Scholar] [CrossRef] [Green Version]
- Staykov, D.; Huttner, H.B.; Struffert, T.; Ganslandt, O.; Doerfler, A.; Schwab, S.; Bardutzky, J. Intraventricular Fibrinolysis and Lumbar Drainage for Ventricular Hemorrhage. Stroke 2009, 40, 3275–3280. [Google Scholar] [CrossRef] [Green Version]
- Staykov, D.; Kuramatsu, J.B.; Bardutzky, J.; Volbers, B.; Gerner, S.T.; Kloska, S.P.; Doerfler, A.; Schwab, S.; Huttner, H.B. Efficacy and safety of combined intraventricular fibrinolysis with lumbar drainage for prevention of permanent shunt dependency after intracerebral hemorrhage with severe ventricular involvement: A randomized trial and individual patient data meta-analysi. Ann. Neurol. 2017, 81, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Van der Steen, W.E.; Leemans, E.L.; van den Berg, R.; Roos, Y.; Marquering, H.A.; Verbaan, D.; Majoie, C. Radiological scales predicting delayed cerebral ischemia in subarachnoid hemorrhage: Systematic review and meta-analysis. Neuroradiology 2019, 61, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Van Norden, A.G.; van Dijk, G.W.; van Huizen, M.D.; Algra, A.; Rinkel, G.J. Interobserver agreement and predictive value for outcome of two rating scales for the amount of extravasated blood after aneurysmal subarachnoid haemorrhage. J. Neurol. 2006, 253, 1217–1220. [Google Scholar] [CrossRef]
- Zijlstra, I.; Gathier, C.; Boers, A.; Marquering, H.; Slooter, A.; Velthuis, B.; Coert, B.; Verbaan, D.; Berg, R.V.D.; Rinkel, G.; et al. Association of Automatically Quantified Total Blood Volume after Aneurysmal Subarachnoid Hemorrhage with Delayed Cerebral Ischemia. Am. J. Neuroradiol. 2016, 37, 1588–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Roldán, L.; Alén, J.F.; Gómez, P.A.; Lobato, R.D.; Ramos, A.; Munarriz, P.M.; Lagares, A. Volumetric analysis of subarachnoid hemorrhage: Assessment of the reliability of two computerized methods and their comparison with other radiographic scales. J. Neurosurg. 2013, 118, 84–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishihara, H.; Oka, F.; Kawano, R.; Shinoyama, M.; Nishimoto, T.; Kudomi, S.; Suzuki, M. Hounsfield Unit Value of Interpeduncular Cistern Hematomas Can Predict Symptomatic Vasospasm. Stroke 2020, 51, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Yang, H.; Zheng, K.; Li, Z.; Xiong, Y.; Tan, X.; Zhong, M. Preoperative and postoperative predictors of long-term outcome after endovascular treatment of poor-grade aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2016, 126, 1764–1771. [Google Scholar] [CrossRef]
- Liu, J.; Xiong, Y.; Zhong, M.; Yang, Y.; Guo, X.; Tan, X.; Zhao, B. Predicting Long-Term Outcomes After Poor-Grade Aneurysmal Subarachnoid Hemorrhage Using Decision Tree Modeling. Neurosurgery 2020, 87, 523–529. [Google Scholar] [CrossRef]
- Kasuya, H.; Shimizu, T.; Takakura, K. Thrombin activity in CSF after SAH is correlated with the degree of SAH the persistence of subarachnoid clot and the development of vasospasm. Acta Neurochir. 1998, 140, 579–584. [Google Scholar] [CrossRef]
- De Aguiar, P.H.; Barros, I.; Paiva, B.L.; Simm, R.F. Removal of clots in subarachnoid space could reduce the vasospasm after subarachnoid hemorrhage. Acta Neurochir. Suppl. 2013, 115, 91–93. [Google Scholar]
- Roelz, R.; Coenen, V.A.; Scheiwe, C.; Niesen, W.D.; Egger, K.; Csok, I.; Kraeutle, R.; Jabbarli, R.; Urbach, H.; Reinacher, P.C. Stereotactic Catheter Ventriculocisternostomy for Clearance of Subarachnoid Hemorrhage: A Matched Cohort Study. Stroke 2017, 48, 2704–2709. [Google Scholar] [CrossRef]
- Kawamoto, S.; Tsutsumi, K.; Yoshikawa, G.; Shinozaki, M.-H.; Yako, K.; Nagata, K.; Ueki, K. Effectiveness of the head-shaking method combined with cisternal irrigation with urokinase in preventing cerebral vasospasm after subarachnoid hemorrhage. J. Neurosurg. 2004, 100, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, N.; Sasaki, T.; Kawakami, M.; Sato, M.; Asari, J. Cisternal irrigation therapy with urokinase and ascorbic acid for prevention of vasospasm after aneurysmal subarachnoid hemorrhage: Outcome in 217 patients. Surg. Neurol. 2000, 53, 110–118. [Google Scholar] [CrossRef]
- Kinouchi, H.; Ogasawara, K.; Shimizu, H.; Mizoi, K.; Yoshimoto, T. Prevention of Symptomatic Vasospasm After Aneurysmal Subarachnoid Hemorrhage by Intraoperative Cisternal Fibrinolysis Using Tissue-Type Plasminogen Activator Combined With Continuous Cisternal Drainage. Neurol. Med. Chir. 2004, 44, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Otawara, Y.; Ogasawara, K.; Kubo, Y.; Sasoh, M.; Ogawa, A. Effect of continuous cisternal cerebrospinal fluid drainage for patients with thin subarachnoid hemorrhage. Vasc. Heal. Risk Manag. 2007, 3, 401–404. [Google Scholar]
- Della Pepa, G.M.; Scerrati, A.; Albanese, A.; Marchese, E.; Maira, G.; Sabatino, G. Protective effect of external ventricular drainage on cerebral vasospasm. A retrospective study on aneurysmal SAH treated endovascularly. Clin. Neurol. Neurosurg. 2014, 124, 97–101. [Google Scholar] [CrossRef]
- Maeda, Y.; Shirao, S.; Yoneda, H.; Ishihara, H.; Shinoyama, M.; Oka, F.; Sadahiro, H.; Ueda, K.; Sano, Y.; Kudomi, S.; et al. Comparison of lumbar drainage and external ventricular drainage for clearance of subarachnoid clots after Guglielmi detachable coil embolization for aneurysmal subarachnoid hemorrhage. Clin. Neurol. Neurosurg. 2013, 115, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Klimo, P., Jr.; Kestle, J.R.; MacDonald, J.D.; Schmidt, R.H. Marked reduction of cerebral vasospasm with lumbar drainage of cerebrospinal fluid after subarachnoid hemorrhage. J. Neurosurg. 2004, 100, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Borkar, S.A.; Singh, M.; Kale, S.S.; Suri, A.; Chandra, P.S.; Kumar, R.; Sharma, B.S.; Gaikwad, S.; Mahapatra, A.K. Spinal cerebrospinal fluid drainage for prevention of vasospasm in aneurysmal subarachnoid hemorrhage: A prospective, randomized controlled study. Asian J. Neurosurg. 2018, 13, 238–246. [Google Scholar] [CrossRef]
- Panni, P.E.; Fugate, J.A.; Rabinstein, A.; Lanzino, G. Lumbar drainage and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage:a systematic review. J. Neurosurg. Sci. 2015, 61, 665–672. [Google Scholar]
- Al-Tamimi, Y.Z.; Bhargava, D.; Feltbower, R.G.; Hall, G.; Goddard, A.J.; Quinn, A.C.; Ross, S.A. Lumbar drainage of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage: A prospective, randomized, controlled trial (LUMAS). Stroke 2012, 43, 677–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khani, M.; Sass, L.R.; Sharp, M.K.; McCabe, A.R.; Verbick, L.M.Z.; Lad, S.P.; Martin, B.A. In vitro and numerical simulation of blood removal from cerebrospinal fluid: Comparison of lumbar drain to Neurapheresis therapy. Fluids Barriers CNS 2020, 17, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackburn, S.L.; Grande, A.W.; Swisher, C.B.; Hauck, E.F.; Jagadeesan, B.; Provencio, J.J. Prospective Trial of Cerebrospinal Fluid Filtration After Aneurysmal Subarachnoid Hemorrhage via Lumbar Catheter (PILLAR). Stroke 2019, 50, 2558–2561. [Google Scholar] [CrossRef] [PubMed]
Blood Component | Concentration in Whole Blood | LD50 in Neurons at 24 h | Blood Concentration Relative to LD50 |
---|---|---|---|
Thrombin | 30 U/mL [26] | ~4 U/mL [27] | 7.5x |
Hemoglobin | 2.5 mM [28] | 1–8 µM [29,30] | ~1000x |
Free Iron | 10–30 µM | ~10 µM [31] | 1–3x |
Component | Deleterious Effect | References |
---|---|---|
Thrombin | Neuron Death | [27,32,33,34] |
Neuroinflammation | [35,36,37,38,39,40,41] | |
Cerebral Edema | [41,42,43,44,45,46,47,48] | |
Vasospasm | [48,49] | |
Hydrocephalus | [50,51] | |
Seizure | [52,53,54] | |
Fibrinogen | Neuroinflammation | [55,56,57,58,59] |
Complement | Neuroinflammation | [60,61,62] |
Cerebral Edema | [61,63,64,65,66,67] | |
Leukocytes | Neuroinflammation | [68,69,70,71] |
Platelets | Neuroinflammation | [72] |
Hydrocephalus | [73,74,75] | |
Hemoglobin | Neuron Death | [29,30,76,77,78] |
Cerebral Edema | [63,79] | |
Seizure | [80] | |
Hydrocephalus | [81,82] | |
Oxyhemoglobin | Neuron Death | [83,84,85,86] |
Vasospasm | [87,88] | |
Methemoglobin | Neuroinflammation | [89] |
Hemin | Neuron Death | [29,30] |
Cerebral Edema | [79] | |
Neuroinflammation | [90] | |
Iron | Neuron Death | [31,91,92,93,94] |
Cerebral Edema | [79,93] | |
Neuroinflammation | [93] | |
Hydrocephalus | [95] |
Study | Year Published | Intervention | Outcome |
---|---|---|---|
FAST [159] | 2008 | Factor VII vs. placebo | No difference in outcome |
INTERACT-2 [7] | 2013 | BP < 140 vs. BP < 180 mm Hg | No difference in outcome |
ATACH-2 [6] | 2016 | BP 110–139 vs. 140–179 mm Hg | No difference in outcome |
PATCH [8] | 2016 | Platelet transfusion vs. standard care | Worse outcome in transfusion group |
TICH-2 [10] | 2018 | Tranexamic Acid vs. placebo | No difference in outcome |
STOP-AUST [160] | 2020 | Tranexamic Acid vs. placebo for spot sign ICH | No difference in outcome |
I-DEF [161] | 2020 | Deferoxamine Mesylate vs. placebo | No difference in outcome |
Study | Number of Study Subjects (Surgery; Control) | Time from Onset to Randomization * or Treatment | Hematoma Evacuation Efficacy Measured? | Average Rate of Hematoma Evacuated in Intervention Group | Primary Surgical Technique | Functional Benefit? | Mortality Benefit? |
---|---|---|---|---|---|---|---|
McKissock et al. (1961) [165] | n = 180 (89 surgery, 91 control) | 72 h | No | NA | Open Surgery | No | No |
Auer et al. (1989) [166] | n = 100 (50 surgery; 50 control) | 48 h | Yes | Est. Avg.: 71% 50–70%: 56% 70–90%: 29% 90–100%: 15% | Endoscopic Surgery | Yes | Yes |
Juvela et al. (1989) [167] | n = 52 (56 surgery; 56 control) | 48 h | No | NA | Open Surgery | No | Yes |
Batjer et al. (1990) [168] | n = 21 (8 surgery; 13 control) | 24 h * | No | NA | Open Surgery | No | No |
Morgenstern et al. (1998) [169] | n = 34 (17 surgery; 13 control) | Avg: 1.2 h * (surgery) Avg: 5.1 h * (control) | No | NA | Open Surgery | No | No |
Zuccarello et al. (1999) [170] | n = 20 (9 surgery; 11 control) | Avg: 8 h and 35 min | No | NA | Open Surgery/Stereotactic aspiration (deep hemorrhages) | No (GOS or Rankin Scale); lower follow-up NIHSS in surgical group | No |
Teernstra et al. (2003) [171] | n = 70 (36 surgery; 34 control) | 72 h | Yes | 10–20% | Stereotactic thrombolysis | No | No |
Hattori et al. (2004) [172] | n = 242 (121 surgery; 121 control) | 24 h | No | NA | Stereotactic | Yes | Yes |
Mendelow et al. (2005) [173] | n = 964 (468 surgery; 496 control) | <72 h * (Avg. time from ictus to surgery: surgery 30 h; control 60 h ¥) | No | NA | Open Surgery | No | No |
Pantazis et al. (2006) [174] | n = 108 (54 surgery; 54 control) | 8 h | No | NA | Open Surgery (15–20 mm dural incision) | Yes | No |
Wang et al. (2008) [175] | n = 500 (266 surgery; 234 control) | ≤7 h 7–24 h Or >24 h | No | NA | MIS, endoscopic, stereotactic, open surgery | Yes (those treated <24 h) | Yes (those treated <24 h) |
Miller et al. (2008) [176] | n = 10 (6 surgery; 4 control) | 24 h * | Yes | Avg. 80% | Endoscopic | NA | NA |
Kim et al. (2009) [177] | n = 387 (284 surgery; 183 control) | 5 days | No | NA | Stereotactic | Yes | No |
Wang et al. (2009) [178] | n = 377 (195 surgery; 182 control) | Avg. 21 h | No | NA | Stereotactic | Yes | No |
Sun et al. (2010) [179] | n = 304 (159 MIS; 145 control ¥) | 72 h * | No | NA | Stereotactic | Yes | No |
Zhou et al. (2011) [180] | n = 168 (90 MIS; 78 control ¥) | 24 h * | No | NA | Stereotactic | Yes | No |
Mendelow et al. (2013) [181] | n = 601 (307 surgery; 294 control) | 48 h * | No | NA | Open surgery | No | Yes (in superficial hematoma subgroup) |
Zhang et al. (2014) [182] | n = 31 (21 MIS; 30 control ¥) | 24 h. | No | NA | Endoscopic surgery | Yes | No |
Feng et al. (2016) [183] | n = 184 (93 MIS; 91 control ¥) | 24 h * | Yes | ≥70% | Endoscopic surgery | Yes | NA |
Hanley et al. (2016) [184] | n = 96 (54 surgery; 42 control) | 48 h * | No | NA | Stereotactic | No | No |
Vespa et al. (2016) [185] | n = 56 (14 surgery; 42 control ¥¥) | 48 h * | Yes | Avg. 68% | Endoscopic | Yes | No |
Yang and Shao (2016) [186] | n = 156 (78 surgery, 78 control) | Unknown | Yes | 75% | Craniopuncture | Yes | NA |
Hanley et al. (2019) [187] | n = 506 (255 surgical, 251 control) | 36 h * | Yes | NA | Stereotactic | No | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stokum, J.A.; Cannarsa, G.J.; Wessell, A.P.; Shea, P.; Wenger, N.; Simard, J.M. When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood. Int. J. Mol. Sci. 2021, 22, 5132. https://doi.org/10.3390/ijms22105132
Stokum JA, Cannarsa GJ, Wessell AP, Shea P, Wenger N, Simard JM. When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood. International Journal of Molecular Sciences. 2021; 22(10):5132. https://doi.org/10.3390/ijms22105132
Chicago/Turabian StyleStokum, Jesse A., Gregory J. Cannarsa, Aaron P. Wessell, Phelan Shea, Nicole Wenger, and J. Marc Simard. 2021. "When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood" International Journal of Molecular Sciences 22, no. 10: 5132. https://doi.org/10.3390/ijms22105132
APA StyleStokum, J. A., Cannarsa, G. J., Wessell, A. P., Shea, P., Wenger, N., & Simard, J. M. (2021). When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood. International Journal of Molecular Sciences, 22(10), 5132. https://doi.org/10.3390/ijms22105132