The Transition from Gastric Intestinal Metaplasia to Gastric Cancer Involves POPDC1 and POPDC3 Downregulation
Abstract
:1. Introduction
2. Results
2.1. Details of Tissue Specimens
2.2. POPDC Protein Distribution
2.3. POPDC mRNA Expression
2.4. Expression of Genes Associated with IM and GC Progression
2.5. Regulators of Transcription
2.6. Mucins
2.7. Stem Cell Markers
3. Discussion
4. Materials and Methods
4.1. Biopsy Selection
4.2. Sample Processing for Histochemistry and IHC
4.3. RNA Isolation and Quantitative Real-Time PCR (qPCR)
4.4. Cell Culture
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eusebi, L.H.; Telese, A.; Marasco, G.; Bazzoli, F.; Zagari, R.M. Gastric cancer prevention strategies: A global perspective. J. Gastroenterol. Hepatol. 2020, 35, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Marques-Silva, L.; Areia, M.; Elvas, L.; Dinis-Ribeiro, M. Prevalence of gastric precancerous conditions: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2014, 26, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.J.; Choi, A.Y.; Truong, C.D.; Yeh, M.M.; Hwang, J.H. Diagnosis and Management of Gastric Intestinal Metaplasia: Current Status and Future Directions. Gut Liver 2019, 13, 596–603. [Google Scholar] [CrossRef]
- Trieu, J.A.; Bilal, M.; Saraireh, H.; Wang, A.Y. Update on the Diagnosis and Management of Gastric Intestinal Metaplasia in the USA. Dig. Dis. Sci. 2019, 64, 1079–1088. [Google Scholar] [CrossRef]
- Nakayama, C.; Yamamichi, N.; Tomida, S.; Takahashi, Y.; Kageyama-Yahara, N.; Sakurai, K.; Takeuchi, C.; Inada, K.I.; Shiogama, K.; Nagae, G.; et al. Transduced caudal-type homeobox (CDX)2/CDX 1 can induce growth inhibition on CDX-deficient gastric cancer by rapid intestinal differentiation. Cancer Sci. 2018, 109, 3853–3864. [Google Scholar] [CrossRef]
- Vernygorodskyi, S. Immunohistochemical evaluation of mucin expression in precancerous tissue of stomach. Exp. Oncol. 2013, 35, 114–117. [Google Scholar]
- Camilo, V.; Garrido, M.; Valente, P.; Ricardo, S.; Amaral, A.L.; Barros, R.; Chaves, P.; Carneiro, F.; David, L.; Almeida, R. Differentiation reprogramming in gastric intestinal metaplasia and dysplasia: Role of SOX2 and CDX2. Histopathology 2014, 66, 343–350. [Google Scholar] [CrossRef]
- Conze, T.; Carvalho, A.S.; Landegren, U.; Almeida, R.; Reis, C.A.; David, L.; Söderberg, O. MUC2 mucin is a major carrier of the cancer-associated sialyl-Tn antigen in intestinal metaplasia and gastric carcinomas. Glycobiology 2009, 20, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Silva, E.; Santos-Silva, F.; Silberg, D.G.; Wang, J.; de Bolós, C.; David, L. Expression of intestine-specific transcription factors, CDX1 and CDX2, in intestinal metaplasia and gastric carcinomas. J. Pathol. 2002, 199, 36–40. [Google Scholar] [CrossRef]
- Jang, B.G.; Lee, B.L.; Kim, W.H. Intestinal Stem Cell Markers in the Intestinal Metaplasia of Stomach and Barrett’s Esophagus. PLoS ONE 2015, 10, e0127300. [Google Scholar] [CrossRef] [PubMed]
- Andrée, B.; Hillemann, T.; Kessler-Icekson, G.; Schmitt-John, T.; Jockusch, H.; Arnold, H.-H.; Brand, T. Isolation and Characterization of the Novel Popeye Gene Family Expressed in Skeletal Muscle and Heart. Dev. Biol. 2000, 223, 371–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osler, M.E.; Smith, T.K.; Bader, D.M. Bves, a member of the Popeye domain-containing gene family. Dev. Dyn. 2006, 235, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Swan, A.H.; Gruscheski, L.; Boland, L.A.; Brand, T. The Popeye domain containing gene family encoding a family of cAMP-effector proteins with important functions in striated muscle and beyond. J. Muscle Res. Cell Motil. 2019, 40, 169–183. [Google Scholar] [CrossRef] [Green Version]
- Amunjela, J.N.; Swan, A.H.; Brand, T. The Role of the Popeye Domain Containing Gene Family in Organ Homeostasis. Cells 2019, 8, 1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kliminski, V.; Uziel, O.; Kessler-Icekson, G. Popdc1/Bves Functions in the Preservation of Cardiomyocyte Viability While Affecting Rac1 Activity and Bnip3 Expression. J. Cell. Biochem. 2017, 118, 1505–1517. [Google Scholar] [CrossRef]
- Alcalay, Y.; Hochhauser, E.; Kliminski, V.; Dick, J.; Zahalka, M.A.; Parnes, D.; Schlesinger, H.; Abassi, Z.; Shainberg, A.; Schindler, R.F.R.; et al. Popeye Domain Containing 1 (Popdc1/Bves) Is a Caveolae-Associated Protein Involved in Ischemia Tolerance. PLoS ONE 2013, 8, e71100. [Google Scholar] [CrossRef] [Green Version]
- Schindler, R.F.; Brand, T. The Popeye domain containing protein family—A novel class of cAMP effectors with important functions in multiple tissues. Prog. Biophys. Mol. Biol. 2016, 120, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Hawes, S.E.; Stern, J.E.; Wiens, L.; Lu, H.; Dong, Z.M.; Jordan, C.D.; Kiviat, N.B.; Vesselle, H. DNA Methylation in Tumor and Matched Normal Tissues from Non-Small Cell Lung Cancer Patients. Cancer Epidemiol. Biomark. Prev. 2008, 17, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.S.; Zhang, B.; Smith, J.J.; Jayagopal, A.; Barrett, C.W.; Pino, C.; Russ, P.; Presley, S.H.; Peng, D.; Rosenblatt, D.O.; et al. BVES regulates EMT in human corneal and colon cancer cells and is silenced via promoter methylation in human colorectal carcinoma. J. Clin. Investig. 2011, 121, 4056–4069. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Jang, H.-R.; Haam, K.; Kang, T.-W.; Kim, J.-H.; Kim, S.-Y.; Noh, S.-M.; Song, K.-S.; Cho, J.-S.; Jeong, H.-Y.; et al. Frequent silencing of popeye domain-containing genes, BVES and POPDC3, is associated with promoter hypermethylation in gastric cancer. Carcinogenesis 2010, 31, 1685–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, D.; Lu, M.-L.; Zhao, G.-F.; Huang, H.; Zheng, M.-Y.; Chang, J.; Lv, L.; Luo, J.-B. Reduced Popdc3 expression correlates with high risk and poor survival in patients with gastric cancer. World J. Gastroenterol. 2012, 18, 2423–2429. [Google Scholar] [CrossRef] [PubMed]
- Parang, B.; Kaz, A.M.; Barrett, C.W.; Short, S.P.; Ning, W.; Keating, C.E.; Mittal, M.K.; Naik, R.D.; Washington, M.K.; Revetta, F.L.; et al. BVES regulates c-Myc stability via PP2A and suppresses colitis-induced tumourigenesis. Gut 2017, 66, 852–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.J.; Short, S.P.; Parang, B.; Brown, R.E.; Li, C.; Ng, V.H.; Saito-Diaz, K.; Choksi, Y.A.; Washington, M.K.; Smith, J.J.; et al. Blood vessel epicardial substance (BVES) reduces LRP6 receptor and cytoplasmic -catenin levels to modulate Wnt signaling and intestinal homeostasis. Carcinogenesis 2019, 40, 1086–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, V.K.; Short, S.P.; Barrett, C.W.; Mittal, M.K.; Keating, C.E.; Thompson, J.J.; Harris, E.I.; Revetta, F.; Bader, D.M.; Brand, T.; et al. BVES Regulates Intestinal Stem Cell Programs and Intestinal Crypt Viability after Radiation. Steam Cells 2016, 34, 1626–1636. [Google Scholar] [CrossRef] [Green Version]
- Parang, B.; Thompson, J.J.; Williams, C.S. Blood Vessel Epicardial Substance (BVES) in junctional signaling and cancer. Tissue Barriers 2018, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Choksi, Y.A.; Reddy, V.K.; Singh, K.; Barrett, C.W.; Short, S.P.; Parang, B.; Keating, C.E.; Thompson, J.J.; Verriere, T.G.; Brown, R.E.; et al. BVES is required for maintenance of colonic epithelial integrity in experimental colitis by modifying intestinal permeability. Mucosal Immunol. 2018, 11, 1363–1374. [Google Scholar] [CrossRef]
- Han, P.; Fu, Y.; Luo, M.; He, J.; Liu, J.; Liao, J.; Tian, D.; Yan, W. BVES Inhibition Triggers Epithelial-Mesenchymal Transition in Human Hepatocellular Carcinoma. Dig. Dis. Sci. 2014, 59, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Amunjela, J.N.; Tucker, S.J. POPDC proteins as potential novel therapeutic targets in cancer. Drug Discov. Today 2016, 21, 1920–1927. [Google Scholar] [CrossRef]
- Han, P.; Lei, Y.; Li, D.; Liu, J.; Yan, W.; Tian, D. Ten years of research on the role of BVES/POPDC1 in human disease: A review. OncoTargets Ther. 2019, 12, 1279–1291. [Google Scholar] [CrossRef] [Green Version]
- Park, J.G.; Frucht, H.; la Rocca, R.V.; Bliss, D.P., Jr.; Kurita, Y.; Chen, T.R.; Henslee, J.G.; Trepel, J.B.; Jensen, R.T.; Johnson, B.E. Characteristics of cell lines established from human gastric carcinoma. Cancer Res. 1990, 50, 2773–2780. [Google Scholar] [PubMed]
- Park, J.G.; Yang, H.K.; Kim, W.H.; Chung, J.K.; Kang, M.S.; Lee, J.H.; Oh, J.H.; Park, H.S.; Yeo, K.S.; Kang, S.H.; et al. Establishment and characterization of human gastric carcinoma cell lines. Int. J. Cancer 1997, 70, 443–449. [Google Scholar] [CrossRef]
- Xing, J.; Wang, K.; Liu, P.-W.; Miao, Q.; Chen, X.-Y. Mina53, a novel molecular marker for the diagnosis and prognosis of gastric adenocarcinoma. Oncol. Rep. 2014, 31, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Oue, N.; Sentani, K.; Sakamoto, N.; Yasui, W. Clinicopathologic and molecular characteristics of gastric cancer showing gastric and intestinal mucin phenotype. Cancer Sci. 2015, 106, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Oue, N.; Sentani, K.; Sakamoto, N.; Uraoka, N.; Yasui, W. Molecular carcinogenesis of gastric cancer: Lauren classification, mucin phenotype expression, and cancer stem cells. Int. J. Clin. Oncol. 2019, 24, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Hollingsworth, M.A.; Swanson, B.J. Mucins in cancer: Protection and control of the cell surface. Nat. Rev. Cancer 2004, 4, 45–60. [Google Scholar] [CrossRef]
- Gupta, S.; Li, D.; el Serag, H.B.; Davitkov, P.; Altayar, O.; Sultan, S.; Falck-Ytter, Y.; Mustafa, R.A. AGA Clinical Practice Guidelines on Management of Gastric Intestinal Metaplasia. Gastroenterology 2020, 158, 693–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, T. POPDC proteins and cardiac function. Biochem. Soc. Trans. 2019, 47, 1393–1404. [Google Scholar] [CrossRef]
- Lee, S.-K.; Hwang, J.-H.; Choi, K.-Y. Interaction of the Wnt/β-catenin and RAS-ERK pathways involving co-stabilization of both β-catenin and RAS plays important roles in the colorectal tumorigenesis. Adv. Biol. Regul. 2018, 68, 46–54. [Google Scholar] [CrossRef]
- Parnes, D.; Jacoby, V.; Sharabi, A.; Schlesinger, H.; Brand, T.; Kessler-Icekson, G. The Popdc gene family in the rat: Molecular cloning, characterization and expression analysis in the heart and cultured cardiomyocytes. Biochim. Biophys. Acta 2007, 1769, 586–592. [Google Scholar] [CrossRef]
- Lin, S.; Zhao, D.; Bownes, M. Blood vessel/epicardial substance (bves) expression, essential for embryonic development, is down regulated by Grk/EFGR signalling. Int. J. Dev. Biol. 2007, 51, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Brand, T.; Schindler, R. New kids on the block: The Popeye domain containing (POPDC) protein family acting as a novel class of cAMP effector proteins in striated muscle. Cell. Signal. 2017, 40, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Amunjela, J.N.; Tucker, S.J. Dysregulation of POPDC1 promotes breast cancer cell migration and proliferation. Biosci. Rep. 2017, 37. [Google Scholar] [CrossRef] [Green Version]
- Benesh, E.C.; Miller, P.M.; Pfaltzgraff, E.R.; Grega-Larson, N.E.; Hager, H.A.; Sung, B.H.; Qu, X.; Baldwin, H.S.; Weaver, A.M.; Bader, D.M. Bves and NDRG4 regulate directional epicardial cell migration through autocrine extracellular matrix deposition. Mol. Biol. Cell 2013, 24, 3496–3510. [Google Scholar] [CrossRef] [PubMed]
- Hager, H.A.; Roberts, R.J.; Cross, E.E.; Proux-Gillardeaux, V.; Bader, D.M. Identification of a novel Bves function: Regulation of vesicular transport. EMBO J. 2010, 29, 532–545. [Google Scholar] [CrossRef] [Green Version]
- Companioni, O.; Sanz-Anquela, J.M.; Pardo, M.L.; Puigdecanet, E.; Nonell, L.; García, N.; Blanco, V.P.; López, C.; Andreu, V.; Cuatrecasas, M.; et al. Gene expression study and pathway analysis of histological subtypes of intestinal metaplasia that progress to gastric cancer. PLoS ONE 2017, 12, e0176043. [Google Scholar] [CrossRef] [Green Version]
- Boltin, D.; Gingold-Belfer, R.; Dickman, R.; Halpern, M.; Morgenstern, S.; Roth, M.; Layfer, O.; Vilkin, A.; Niv, Y.; Levi, Z. Gastric mucin expression in first-degree relatives of gastric cancer patients. Eur. J. Gastroenterol. Hepatol. 2014, 26, 710–714. [Google Scholar] [CrossRef]
- Herman-Edelstein, M.; Scherzer, P.; Tobar, A.; Levi, M.; Gafter, U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res. 2014, 55, 561–572. [Google Scholar] [CrossRef] [Green Version]
Normal | Gastric IM | GC | ||
---|---|---|---|---|
Focal IM | Extensive IM | |||
Number | 20 | 22 | 18 | 20 |
Age (Years ± SD) | 69.5 ± 9.9 | 69.6 ± 10.1 | 66.7 ± 11.2 | 76.8 ± 9.9 |
Males (N %) | 9 (45%) | 12 (55%) | 7 (39%) | 10 (50%) |
Females (N %) | 11 (55%) | 10 (45%) | 11 (61%) | 10 (50%) |
POPDC1 | POPDC3 | |||
---|---|---|---|---|
R | P | r | p | |
LGR5 | −0.443 | <0.0001 | −0.302 | <0.05 |
LRIG1 | −0.164 | NS | 0.114 | NS |
OLFM4 | −0.593 | <0.0001 | −0.521 | <0.01 |
ATHO1 | −0.359 | <0.005 | −0.277 | <0.05 |
ASCL2 | −0.373 | <0.005 | −0.297 | <0.05 |
AXIN2 | −0.323 | <0.01 | −0.185 | NS |
SOX9 | −0.348 | <0.005 | −0.018 | NS |
SOX2 | −0.256 | <0.05 | −0.235 | NS |
EPHB2 | −0.471 | <0.0001 | −0.361 | <0.01 |
TRET | −0.387 | <0.001 | −0.256 | <0.05 |
WNT2 | −0.229 | NS | −0.129 | NS |
FZD3 | −0.26 | <0.05 | 0.063 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gingold-Belfer, R.; Kessler-Icekson, G.; Morgenstern, S.; Rath-Wolfson, L.; Zemel, R.; Boltin, D.; Levi, Z.; Herman-Edelstein, M. The Transition from Gastric Intestinal Metaplasia to Gastric Cancer Involves POPDC1 and POPDC3 Downregulation. Int. J. Mol. Sci. 2021, 22, 5359. https://doi.org/10.3390/ijms22105359
Gingold-Belfer R, Kessler-Icekson G, Morgenstern S, Rath-Wolfson L, Zemel R, Boltin D, Levi Z, Herman-Edelstein M. The Transition from Gastric Intestinal Metaplasia to Gastric Cancer Involves POPDC1 and POPDC3 Downregulation. International Journal of Molecular Sciences. 2021; 22(10):5359. https://doi.org/10.3390/ijms22105359
Chicago/Turabian StyleGingold-Belfer, Rachel, Gania Kessler-Icekson, Sara Morgenstern, Lea Rath-Wolfson, Romy Zemel, Doron Boltin, Zohar Levi, and Michal Herman-Edelstein. 2021. "The Transition from Gastric Intestinal Metaplasia to Gastric Cancer Involves POPDC1 and POPDC3 Downregulation" International Journal of Molecular Sciences 22, no. 10: 5359. https://doi.org/10.3390/ijms22105359
APA StyleGingold-Belfer, R., Kessler-Icekson, G., Morgenstern, S., Rath-Wolfson, L., Zemel, R., Boltin, D., Levi, Z., & Herman-Edelstein, M. (2021). The Transition from Gastric Intestinal Metaplasia to Gastric Cancer Involves POPDC1 and POPDC3 Downregulation. International Journal of Molecular Sciences, 22(10), 5359. https://doi.org/10.3390/ijms22105359